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Abstract. In this paper, the diophantine equations of the form An1 An2 · · · Ank ± 1 = B2
m where (An)n≥0 and (Bm)m≥0

are either the Pell sequence or Pell-Lucas sequence are solved by applying the Primitive Divisor Theorem. This is
another version of Brocard-Ramanujan equation.
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1. Introduction

The problem of finding all solutions to

n! + 1 = m2

is known as Brocard-Ramanujan problem. Some authors [1,3,4] have been worked on this problem. Let (Fn)n≥0 be the
Fibonacci sequence given by F0 = 0, F1 = 1 and the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 2. The variant of
this problem, the diophantine equation

FnFn+1 · · · Fn+k−1 + 1 = F2
m

was investigated by Marques [5]. Also, Szalay [7] and Pongsriiam [6] worked on another version of this diophantine
equation.

In this article we will give a new version of Brocard-Ramanujan equation in terms of Pell and Pell-Lucas sequence.
Let (Pn)n≥0 be the Pell sequence given by P0 = 0, P1 = 1 and Pn = 2Pn−1 + Pn−2 for n ≥ 2 and let (Qn)n≥0 be the

Pell-Lucas sequence given by the same recurrence relation as the Pell sequence with the initial values Q0 = Q1 = 2.
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2. Preliminaries and Lemmas

Before giving the Primitive Divisor Theorem, we first give some remarks about it. Let α and β be algebraic numbers
such that α + β and αβ are nonzero coprime integers and αβ−1 is not a root of unity. Let (un)n≥0 be the sequence given
by

u0 = 0, u1 = 1, and un = (α + β)un−1 − (αβ)un−2 for n ≥ 2.

Then we have Binet’s formula for un given by

un =
αn − βn

α − β
for n ≥ 0.

If α = 1 +
√

2 and β = 1 −
√

2 then un is the Pell sequence.
A prime p is said to be a primitive divisor of un if p | un but p does not divide u1u2 · · · un−1.

Theorem 2.1 (Primitive Divisor Theorem [2]). Suppose α and β are real numbers such that α + β and αβ are nonzero
coprime integers and αβ−1 is not a root of unity. If n , 1, 2, 6, then un has a primitive divisor except when n = 12,
α + β = 1 and αβ = −1.

Lemma 2.2. For every m ≥ 1, we have

Pm−1Pm+1 =

{
P2

m − 1, if m is odd;
P2

m + 1, if m is even.

Proof. Let m be an even integer. We know that the roots of quadratic equation of Pell numbers are α = 1 +
√

2 and
β = 1 −

√
2. So by the help of Binet’s formula it can be proved as follows:

Pm−1Pm+1 =
αm−1 − βm−1

α − β

αm+1 − βm+1

α − β

=
α2m + β2m − αm−1βm+1 − αm+1βm−1

(α − β)2

=
α2m + β2m − (αβ)m−1 (α2 + β2)

(α − β)2

=
α2m + β2m − 6 (αβ)m−1

(α − β)2

=
α2m + β2m + 6 (αβ)m

(α − β)2

=
α2m + β2m − 2 (αβ)m + 8

(α − β)2

=
α2m + β2m − 2 (αβ)m + (α − β)2

(α − β)2

=
α2m + β2m − 2 (αβ)m

(α − β)2 + 1

= P2
m + 1.

Similarly, let m be an odd integer. It can be proved as follows:
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Pm−1Pm+1 =
αm−1 − βm−1

α − β

αm+1 − βm+1

α − β

=
α2m + β2m − αm−1βm+1 − αm+1βm−1

(α − β)2

=
α2m + β2m − (αβ)m−1 (α2 + β2)

(α − β)2

=
α2m + β2m − 6 (αβ)m−1

(α − β)2

=
α2m + β2m + 6 (αβ)m

(α − β)2

=
α2m + β2m − 2 (αβ)m − 8

(α − β)2

=
α2m + β2m − 2 (αβ)m − (α − β)2

(α − β)2

=
α2m + β2m − 2 (αβ)m

(α − β)2 − 1

= P2
m − 1.

�

Lemma 2.3. For every m ≥ 1, we have

(i) Q2
m − 1 =

{
8Pm−1Pm+1 + 3, if m is odd;

P3m/Pm, if m is even.

(ii) Q2
m + 1 =

{
P3m/Pm, if m is odd;

8Pm−1Pm+1 − 3, if m is even.

Proof. This can be checked easily by using Binet’s formula. �

3. Main Results

Theorem 3.1. The diophantine equation

Pn1 Pn2 · · · Pnk + 1 = P2
m (3.1)

in positive integers k,m and 3 ≤ n1 < n2 < · · · < nk has an infinite family of solutions given by

Pm−1Pm+1 + 1 = P2
m.

Proof. Taking a solution of (3.1) by Lemma 2.2 we get

Pn1 Pn2 · · · Pnk = Pm−1Pm+1.

Suppose that m ≥ 14. Then 13 ≤ m − 1 ≤ m + 1 and therefore, by Primitive Divisor Theorem, Pm+1 has a primitive
divisor. Then nk = m + 1 and hence (3.1) reduces to

Pn1 Pn2 · · · Pnk−1 = Pm−1. (3.2)

Now Pm−1 > 1 and this implies k ≥ 2. Using the same arguments linked to primitive divisors as above (3.2) provides
nk−1 = m − 1. As a result, k = 2, i.e. there are no more terms on the left hand side of (3.2). Thus we get the infinite
family of solution Pm−1Pm+1 + 1 = P2

m, m ≥ 14. �
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Theorem 3.2. The diophantine equation

Qn1 Qn2 · · ·Qnk + 1 = Q2
m (3.3)

in positive integer k,even integer m and in non-negative integers n1 < n2 < · · · < nk (ni , 1) has no solution.

Proof. Since we know that PnQn = P2n, (3.3) reduces to

P2n1

Pn1

P2n2

Pn2

· · ·
P2nk

Pnk

=
P3m

Pm
. (3.4)

Suppose that m ≥ 14. Then P3m has a primitive divisor. Thus, 2nk = 3m, i.e. nk =
3m
2 > m. If k = 1 (3.4) reduces to

Pm = Pn1 , and we get a contradiction by m = n1. Supposing k = 2, (3.4) simplies to

P2n1

Pn1

Pm = Pn2 .

Since n2 > m, Pn2 contains a primitive divisor. Thus n2 = 2n1, and m = n1 follows. This contradicts to n2 =
3m
2 . If

k ≥ 3 then observe that nk−1 < m holds, otherwise we could cause a contradiction by Qnk−1 Qnk > Q2
m. Thus the equation

P2n1

Pn1

· · ·
P2nk−2

Pnk−2

Pm = Pnk−1 (3.5)

has no solution since m ≥ 14, therefore Pm has a primitive divisor on the left hand side of (3.5), which can not exist on
the right hand side. �

Theorem 3.3. The diophantine equation

Pn1 Pn2 · · · Pnk + 1 = Q2
m (3.6)

in positive integer k,even integer m and in non-negative integers n1 < n2 < · · · < nk (ni , 1) has no solution.

Proof. Suppose that m > 3. We can write (3.6) as:

Pn1 Pn2 · · · Pnk Pm = P3m. (3.7)
Then P3m has a primitive divisor. This implies that nk = 3m. Then (3.7) reduces to

Pn1 Pn2 · · · Pnk−1Pm = 1.
Thus, 1 = Pn1 Pn2 · · · Pnk−1Pm > Pm > P3 = 5 which is a contradiction. Therefore m < 3,it means m = 0 or 2. In this

situation one can check that there is no solution. �
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