Turk. J. Math. Comput. Sci. 7(2017) 59–62 © MatDer http://dergipark.gov.tr/tjmcshttp://tjmcs.matder.org.tr

Pell and Pell-Lucas Numbers Associated with Brocard-Ramanujan Equation

Dursun Taşçı^{a,*}, Emre Sevgi^a

^aDepartment of Mathematics, Faculty of Science, Gazi University, 06500, Ankara, Turkey

Received: 07-09-2017 • Accepted: 11-12-2017

ABSTRACT. In this paper, the diophantine equations of the form $A_{n_1}A_{n_2}\cdots A_{n_k}\pm 1=B_m^2$ where $(A_n)_{n\geq 0}$ and $(B_m)_{m\geq 0}$ are either the Pell sequence or Pell-Lucas sequence are solved by applying the Primitive Divisor Theorem. This is another version of Brocard-Ramanujan equation.

2010 AMS Classification: 11B39, 11D99.

Keywords: Pell number, Pell-Lucas number, Brocard-Ramanujan equation, Diophantine equation.

1. Introduction

The problem of finding all solutions to

$$n! + 1 = m^2$$

is known as Brocard-Ramanujan problem. Some authors [1,3,4] have been worked on this problem. Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence given by $F_0=0$, $F_1=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for $n\geq 2$. The variant of this problem, the diophantine equation

$$F_n F_{n+1} \cdots F_{n+k-1} + 1 = F_m^2$$

was investigated by Marques [5]. Also, Szalay [7] and Pongsriiam [6] worked on another version of this diophantine equation.

In this article we will give a new version of Brocard-Ramanujan equation in terms of Pell and Pell-Lucas sequence. Let $(P_n)_{n\geq 0}$ be the Pell sequence given by $P_0=0$, $P_1=1$ and $P_n=2P_{n-1}+P_{n-2}$ for $n\geq 2$ and let $(Q_n)_{n\geq 0}$ be the Pell-Lucas sequence given by the same recurrence relation as the Pell sequence with the initial values $Q_0=Q_1=2$.

Email addresses: dtasci@gazi.edu.tr (D. Taşçı), emresevgi@gazi.edu.tr (E. Sevgi)

^{*}Corresponding Author

2. Preliminaries and Lemmas

Before giving the Primitive Divisor Theorem, we first give some remarks about it. Let α and β be algebraic numbers such that $\alpha + \beta$ and $\alpha\beta$ are nonzero coprime integers and $\alpha\beta^{-1}$ is not a root of unity. Let $(u_n)_{n\geq 0}$ be the sequence given by

$$u_0 = 0, u_1 = 1$$
, and $u_n = (\alpha + \beta)u_{n-1} - (\alpha\beta)u_{n-2}$ for $n \ge 2$.

Then we have Binet's formula for u_n given by

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 for $n \ge 0$.

If $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$ then u_n is the Pell sequence.

A prime p is said to be a primitive divisor of u_n if $p \mid u_n$ but p does not divide $u_1u_2 \cdots u_{n-1}$.

Theorem 2.1 (Primitive Divisor Theorem [2]). Suppose α and β are real numbers such that $\alpha + \beta$ and $\alpha\beta$ are nonzero coprime integers and $\alpha\beta^{-1}$ is not a root of unity. If $n \neq 1, 2, 6$, then u_n has a primitive divisor except when n = 12, $\alpha + \beta = 1$ and $\alpha\beta = -1$.

Lemma 2.2. For every $m \ge 1$, we have

$$P_{m-1}P_{m+1} = \begin{cases} P_m^2 - 1, & \text{if m is odd;} \\ P_m^2 + 1, & \text{if m is even.} \end{cases}$$

Proof. Let *m* be an even integer. We know that the roots of quadratic equation of Pell numbers are $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$. So by the help of Binet's formula it can be proved as follows:

$$P_{m-1}P_{m+1} = \frac{\alpha^{m-1} - \beta^{m-1}}{\alpha - \beta} \frac{\alpha^{m+1} - \beta^{m+1}}{\alpha - \beta}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - \alpha^{m-1}\beta^{m+1} - \alpha^{m+1}\beta^{m-1}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - (\alpha\beta)^{m-1}(\alpha^{2} + \beta^{2})}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 6(\alpha\beta)^{m-1}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} + 6(\alpha\beta)^{m}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m} + 8}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m} + (\alpha - \beta)^{2}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m} + (\alpha - \beta)^{2}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m}}{(\alpha - \beta)^{2}} + 1$$

$$= P_{m}^{2} + 1.$$

Similarly, let m be an odd integer. It can be proved as follows:

$$P_{m-1}P_{m+1} = \frac{\alpha^{m-1} - \beta^{m-1}}{\alpha - \beta} \frac{\alpha^{m+1} - \beta^{m+1}}{\alpha - \beta}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - \alpha^{m-1}\beta^{m+1} - \alpha^{m+1}\beta^{m-1}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - (\alpha\beta)^{m-1}(\alpha^{2} + \beta^{2})}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 6(\alpha\beta)^{m-1}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} + 6(\alpha\beta)^{m}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m} - 8}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m} - (\alpha - \beta)^{2}}{(\alpha - \beta)^{2}}$$

$$= \frac{\alpha^{2m} + \beta^{2m} - 2(\alpha\beta)^{m}}{(\alpha - \beta)^{2}} - 1$$

$$= P_{m}^{2} - 1.$$

(i)
$$Q_m^2 - 1 = \begin{cases} 8P_{m-1}P_{m+1} + 3, & \text{if m is odd;} \\ P_{3m}/P_m, & \text{if m is even.} \end{cases}$$

Lemma 2.3. For every
$$m \ge 1$$
, we have
(i) $Q_m^2 - 1 = \begin{cases} 8P_{m-1}P_{m+1} + 3, & \text{if } m \text{ is odd;} \\ P_{3m}/P_m, & \text{if } m \text{ is even.} \end{cases}$
(ii) $Q_m^2 + 1 = \begin{cases} P_{3m}/P_m, & \text{if } m \text{ is odd;} \\ 8P_{m-1}P_{m+1} - 3, & \text{if } m \text{ is even.} \end{cases}$

Proof. This can be checked easily by using Binet's formula.

3. Main Results

Theorem 3.1. The diophantine equation

$$P_{n_1}P_{n_2}\cdots P_{n_k} + 1 = P_m^2 \tag{3.1}$$

in positive integers k, m and $3 \le n_1 < n_2 < \cdots < n_k$ has an infinite family of solutions given by

$$P_{m-1}P_{m+1} + 1 = P_m^2.$$

Proof. Taking a solution of (3.1) by Lemma 2.2 we get

$$P_{n_1}P_{n_2}\cdots P_{n_k}=P_{m-1}P_{m+1}.$$

Suppose that $m \ge 14$. Then $13 \le m-1 \le m+1$ and therefore, by Primitive Divisor Theorem, P_{m+1} has a primitive divisor. Then $n_k = m + 1$ and hence (3.1) reduces to

$$P_{n_1}P_{n_2}\cdots P_{n_{k-1}} = P_{m-1}. (3.2)$$

Now $P_{m-1} > 1$ and this implies $k \ge 2$. Using the same arguments linked to primitive divisors as above (3.2) provides $n_{k-1} = m - 1$. As a result, k = 2, i.e. there are no more terms on the left hand side of (3.2). Thus we get the infinite family of solution $P_{m-1}P_{m+1} + 1 = P_m^2, m \ge 14$.

Theorem 3.2. *The diophantine equation*

$$Q_{n_1}Q_{n_2}\cdots Q_{n_k} + 1 = Q_m^2 (3.3)$$

in positive integer k, even integer m and in non-negative integers $n_1 < n_2 < \cdots < n_k \ (n_i \neq 1)$ has no solution.

Proof. Since we know that $P_nQ_n = P_{2n}$, (3.3) reduces to

$$\frac{P_{2n_1}}{P_{n_1}} \frac{P_{2n_2}}{P_{n_2}} \cdots \frac{P_{2n_k}}{P_{n_k}} = \frac{P_{3m}}{P_m}.$$
(3.4)

 $\frac{P_{2n_1}}{P_{n_1}}\frac{P_{2n_2}}{P_{n_2}}\cdots\frac{P_{2n_k}}{P_{n_k}}=\frac{P_{3m}}{P_m}. \tag{3.4}$ Suppose that $m\geq 14$. Then P_{3m} has a primitive divisor. Thus, $2n_k=3m$, i.e. $n_k=\frac{3m}{2}>m$. If k=1 (3.4) reduces to $P_m = P_{n_1}$, and we get a contradiction by $m = n_1$. Supposing k = 2, (3.4) simplies to

$$\frac{P_{2n_1}}{P_{n_1}}P_m = P_{n_2}.$$

Since $n_2 > m$, P_{n_2} contains a primitive divisor. Thus $n_2 = 2n_1$, and $m = n_1$ follows. This contradicts to $n_2 = \frac{3m}{2}$. If $k \ge 3$ then observe that $n_{k-1} < m$ holds, otherwise we could cause a contradiction by $Q_{n_{k-1}}Q_{n_k} > Q_m^2$. Thus the equation

$$\frac{P_{2n_1}}{P_{n_1}} \cdots \frac{P_{2n_{k-2}}}{P_{n_{k-2}}} P_m = P_{n_{k-1}}$$
(3.5)

has no solution since $m \ge 14$, therefore P_m has a primitive divisor on the left hand side of (3.5), which can not exist on the right hand side.

Theorem 3.3. *The diophantine equation*

$$P_{n_1}P_{n_2}\cdots P_{n_k} + 1 = Q_m^2 \tag{3.6}$$

in positive integer k, even integer m and in non-negative integers $n_1 < n_2 < \cdots < n_k \ (n_i \neq 1)$ has no solution.

Proof. Suppose that m > 3. We can write (3.6) as:

$$P_{n_1}P_{n_2}\cdots P_{n_k}P_m = P_{3m}. (3.7)$$

Then P_{3m} has a primitive divisor. This implies that $n_k = 3m$. Then (3.7) reduces to

$$P_{n_1}P_{n_2}\cdots P_{n_k-1}P_m=1.$$

Thus, $1 = P_{n_1} P_{n_2} \cdots P_{n_k-1} P_m > P_m > P_3 = 5$ which is a contradiction. Therefore m < 3, it means m = 0 or 2. In this situation one can check that there is no solution.

REFERENCES

- [1] Berndt, B. C., Galway, W. F., On the Brocard-Ramanujan Diophantine equation $n! + 1 = m^2$, Ramanujan J., 4(1)(2016), 41-42.
- [2] Carmichael, R. D., On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math. Second S., 15(1/4)(1913), 30–48. 2.1
- [3] Dabrowski, A., On the Brocard-Ramanujan problem and generalizations, Colloq. Math., 126(1)(2012), 105–110. 1
- [4] Luca, F., The Diophantine equation P(x) = n! and a result of M. Overholt, Glas. Math. Ser. III, 37(2)(2002), 269–273. 1
- [5] Marques, D., The Fibonacci version of the Brocard-Ramanujan diophantine equation, Portug. Math., 68(2011), 185-189.
- [6] Pongsriiam, P., Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32(3)(2017),
- [7] Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Port. Math., 69(3)(2012), 213–220. 1