On Contra πgs-Continuity

Nebiye Korkmaz*

Abstract
In this work, a novel form of contra continuity entitled as contra πgs-continuity is examined, which has connections to πgs-closed sets. Furthermore, correlations between contra πgs-continuity and several previously established forms of contra continuous functions are further explored, as well as basic features of contra πgs-continuous functions are disclosed.

Keywords: πgs-closed sets, Contra πgs-continuity, Contra continuity
AMS Subject Classification (2020): 54C08; 54C10; 54C0

1. Introduction

The idea of LC-continuous functions was first introduced and analyzed by Ganster and Reilly [5] in 1989. Dontchev [6] produced contra-continuity, as a more robust variant of LC-continuity in 1996. As a very interesting subject, contra continuous functions have continued to attract the attention of many researchers over the years. After Ekici gave the definition of contra πg-continuous functions [7] in 2008, contra πgs-continuous [8] functions were also defined in Caldas et al.’s studies in 2010, which essentially introduced and examined contra πgp-continuous functions [8].

The requirement that every open set in the codomain possesses a preimage that is πgs-closed in the domain identifies contra πgs-continuous functions [8]. A milder version of contra-continuity [6] and contra gs-continuity [9] is contra πgs-continuity. Crucial characteristics of contra πgs-continuous functions are also examined.

2. Preliminaries

Unless otherwise specified, topological spaces in this work always refer to on which no separation axioms are required; Ψ will stand for the topological space (Ψ, τ) and Φ will stand for the topological space (Φ, \perp); \mathbb{N} will...
stand for any subset of the space Ψ. The interior of \aleph is indicated as $int(\aleph)$ and the closure of \aleph in indicated as $cl(\aleph)$. Whenever $\aleph = int(cl(\aleph))$ (correspondingly, $\aleph = cl(int(\aleph))$), afterwards \aleph is a regular closed set (correspondingly, regular open set) [10]. Whenever $\aleph \subset cl(int(\aleph))$, afterwards \aleph is considered as a semi-open set [1]. Whenever \aleph could be expressed as union of regular open sets, afterwards it is accepted as a δ-open set [11]. Complementarity of semi-open set (correspondingly δ-open set) is introduced as semi-closed (correspondingly δ-closed).

The intersection of whole semi-closed sets involving \aleph is known as semi-closure [12] of \aleph which is expressed by $scl(\aleph)$. Dually the semi-interior [12] of \aleph is characterized as union of whole semi-open sets involved in \aleph and indicated by $sint(\aleph)$.

$\nu \in \Psi$ is termed δ-cluster point [11] of \aleph, when $int(cl(F)) \cap \aleph \neq \emptyset$ for every $F \in O(\nu, \Psi)$, where $O(\nu, \Psi)$ stands for all open subsets of Ψ containing the point ν. Whole δ-cluster points of \aleph comprises δ-closure [11] of \aleph that is shown with $cl_{\delta}(\aleph)$.

When $\aleph \subset cl(int(cl_{\delta}(\aleph)))$, then \aleph is named as an e^{*}-open set [13]. We speak of an e^{*}-closed [13] set as complementarity of an e^{*}-open. The e^{*}-closure [13] of \aleph is the intersection of whole e^{*}-closed sets involving subset \aleph and it is symbolized by $e^{*}cl(\aleph)$.

Whenever $e^{*}cl(F) \cap \aleph \neq \emptyset$ for each e^{*}-open set F involving point ν, afterwards ν is identified as e^{*}-θ-cluster point [14] of \aleph. The e^{*}-θ-closure [14] of \aleph is the set of whole e^{*}-θ-closed points of \aleph, and it is expressed by e^{*}-$cl_{\theta}(\aleph)$. For $\aleph = e^{*}cl_{\delta}(\aleph)$, then \aleph is e^{*}-θ-closed [15]. e^{*}-$BC(\Psi)$ is the notion for the collection of whole e^{*}-θ-closed subsets of space Ψ.

When for every ν in \aleph, if there exists an e^{*}-open set F comprising ν such that $F \setminus \aleph$ is countable, then \aleph is termed we^{*}-open [16]. A we^{*}-closed [16] set is the complementarity of an we^{*}-open.

When $\aleph \subset cl(int(\aleph)) \cup int(cl(\aleph))$, subsequently \aleph is named as b-open [17] (or sp-open [18] or γ-open [19]). A b-closed [17] (or γ-closed [20, 21]) set is the complementarity of a b-open (or γ-open). The b-closure [17] (or γ-closure [20]) of \aleph is expressed as $cl(b) (\aleph)$ or $cl_{b}(\aleph)$ and it is the intersection of whole b-closed (or γ-closed) sets comprising \aleph. The set \aleph is said to be pre-closed [22] if $cl(int(\aleph)) \subset \aleph$. The intersection of all pre-closed sets containing \aleph is called pre-closure [20] of \aleph and denoted by $pcl(\aleph)$.

A subset \aleph of a space Ψ is characterized as a \hat{g}-closed [23] set, if $cl(\aleph) \subset F$, whenever F is a semi-open set satisfying the condition $\aleph \subset F$. \hat{g}-open sets [23] are the complement of \hat{g}-closed sets. When $cl(b) (\aleph) \subset F$ whenever $\aleph \subset F$ and F is a \hat{g}-open set in Ψ, \aleph is a \hat{g}-closed [24] set. A \hat{g}-open [25] is the complementarity of a \hat{g}-closed set. When $\aleph \subset cl(\aleph) \subset F$ whenever $\aleph \subset F$ and F is a \hat{g}-open set in Ψ, \aleph is called as a $sb\hat{g}$-closed [26] set.

π-open [27] corresponds to the finite union of regular open sets. π-closed represents the complementarity of a π-open. When $\aleph \subset F$ and F is open (correspondingly, π-open), afterwards \aleph is regarded as a generalized closed (briefly, g-closed) [2] (correspondingly, πg-closed [17]) if $cl(\aleph) \subset F$. g-open [24] (correspondingly, πg-open [7]) is the complementarity of g-closed (correspondingly, πg-closed). While $\aleph \subset F$ and F is open (correspondingly, π-open), afterwards \aleph is regarded to be generalized semi-closed (briefly, gs-closed) [28] (correspondingly, πgs-closed [4]) if $scl(\aleph) \subset F$. gs-open [24] (correspondingly, πgs-open) constitutes the complementarity of a gs-closed (correspondingly, πgs-closed) set. If $pcl(\aleph) \subset F$ for all F which are π-open sets containing \aleph, then \aleph is called as $\pi g p$-closed [29]. The set \aleph is called as $\pi g s$-closed [20], if $\gamma cl(\aleph) \subset F$ for all π-open sets F containing \aleph.

The entire πgs-closed (correspondingly, πgs-open, πgp-closed, $\pi g\gamma$-closed, gs-closed, gs-open, closed, semi-closed, semi-open, πg-open, regular open, regular closed, g-closed, πg-closed, we^{*}-closed, e^{*}-θ-closed, \hat{g}-θ-closed, $sb\hat{g}$-closed) subsets of Ψ are expressed by $\pi G\pi(\Psi)$ (correspondingly, $\pi GSO(\Psi)$, $\pi GPC(\Psi)$, $\pi G\gamma C(\Psi)$, $GSC(\Psi)$, $GSO(\Psi)$, $C(\Psi)$, $SO(\Psi)$, $\gamma O(\Psi)$, $\pi O(\Psi)$, $\pi GO(\Psi)$, $RO(\Psi)$, $RC(\Psi)$, $GC(\Psi)$, $\pi Gc(\Psi)$, $wc^{*} C(\Psi)$, $e^{*} C(\Psi)$, $e^{*} \theta C(\Psi)$, $\hat{g} \theta C(\Psi)$, $sb\hat{g} \theta C(\Psi)$).

$\pi G(\nu, \Psi)$ (correspondingly, $\pi GSO(\nu, \Psi)$, $RO(\nu, \Psi)$, $C(\nu, \Psi)$, $SO(\nu, \Psi)$, $O(\nu, \Psi)$) means the collection of whole πgs-closed (correspondingly, πgs-open, regular open, closed, semi-open, open) sets of Ψ comprising point $\nu \in \Psi$.

$\pi g s$-closure of the set \aleph is denoted by $Cl_{\pi g s}(\aleph)$, which is the intersection of whole πgs-closed sets involving \aleph. On the other hand, πgs-interior of a set \aleph is expressed by $int_{\pi g s}(\aleph)$, which corresponds to the union of whole πgs-open sets included in \aleph.

Definition 2.1. A topological space Ψ is said to be:
1. (i) strongly S-closed [6] while a finite subcover matching could found for each closed cover of Ψ,
2. (ii) strongly countably S-closed [7] when a finite subcover matching found for each countable cover of Ψ consisting of closed sets,
3. (iii) strongly S-Lindelöf [7] when a countable subcover matching could found for each closed cover of Ψ,
4. (iv) ultra normal [30] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets,
5. (v) ultra Hausdorff [30] if for each couple of distinct points, v_1 and v_2 in Ψ there exist clopen sets \aleph_1 and \aleph_2 comprising v_1 and v_2 correspondingly, providing $\aleph_1 \cap \aleph_2 = \emptyset$ equality.

Definition 2.2. When $\aleph \in \Psi$ is strongly S-closed as a subspace, then \aleph is named strongly S-closed [6].
Definition 2.3. \(\mathfrak{N} \) in \(\Psi \) is called:

(i) \(\alpha \)-open [31] whenever \(\mathfrak{N} \subset int(cl(int(\mathbb{R}))) \),

(ii) preopen [22] or nearly open [5] whenever \(\mathfrak{N} \subset int(cl(\mathfrak{N})) \),

(iii) \(\beta \)-open [32] or semi-preopen [33] whenever \(\mathfrak{N} \subset cl(int(cl(\mathfrak{N}))) \).

Complement of an \(\alpha \)-open (correspondingly, preopen, \(\beta \)-open) set is introduced as \(\alpha \)-closed (correspondingly, preclosed, \(\beta \)-closed) set [7]. \(\alpha O(\Psi) \) (correspondingly, \(PO(\Psi), \beta O(\Psi) \)) stands for the collection of whole \(\alpha \)-open (correspondingly, preopen, \(\beta \)-open) subsets of \(\Psi \).

Lemma 2.1. Whenever \(\mathfrak{N} \subset \Psi \),

\((i) \ cl_{\pi gs}(\Psi \setminus \mathfrak{N}) = \Psi \setminus int_{\pi gs}(\mathfrak{N}) \);

\((ii) \ \nu \in cl_{\pi gs}(\mathfrak{N}) \Leftrightarrow \forall F \in \pi GS(\nu, \Psi), \mathfrak{N} \cap F \neq \emptyset \).

Proof. Before starting the proof, let’s remind the definitions of \(\pi gs \)-interior and \(\pi gs \)-closure of a set in a topological space. Let \((\Psi, \tau) \) be a topological space, \(\mathfrak{N} \subset \Psi \). Then, \(\pi gs \)-closure of \(\mathfrak{N} \) is \(cl_{\pi gs}(\mathfrak{N}) = \bigcap \{ \Theta : \mathfrak{N} \subset \Theta, \Theta \in \pi GSC(\Psi) \} \) and \(\pi gs \)-interior of \(\mathfrak{N} \) is \(int_{\pi gs}(\mathfrak{N}) = \bigcup \{ \Theta : \mathfrak{N} \subset \Theta, \Theta \in \pi GSO(\Psi) \} \). Now we can start the proof.

\((i) \): We will complete the proof by showing that the sets claimed to be equal include each other. Let \((\Psi, \tau) \) be a topological space and \(\mathfrak{N} \subset \Psi \).

\((\Rightarrow) \): Let \(\nu \in cl_{\pi gs}(\Psi \setminus \mathfrak{N}) \). Assume that \(\nu \notin \Psi \setminus int_{\pi gs}(\mathfrak{N}) \). Since \(\nu \in int_{\pi gs}(\mathfrak{N}) \) then \(\nu \notin \pi GS(\nu, \Psi) \), it can be said that there exists a set \(F \subset \pi GS(\nu, \Psi) \) and \(F \subset \mathfrak{N} \). Then using \(\Theta \) we can conclude that \(\nu \notin cl_{\pi gs}(\Psi \setminus \mathfrak{N}) \) contrary to our assumption. Hence as a result \(\nu \in cl_{\pi gs}(\Psi \setminus \mathfrak{N}) \).

\((\Leftarrow) \): Let \(\nu \in \Psi \setminus int_{\pi gs}(\mathfrak{N}) \). So it can be clearly seen that \(\nu \notin int_{\pi gs}(\mathfrak{N}) \). Then for all the sets \(\Theta \subset \pi GS(\nu, \Psi) \), we have a contradiction \(\nu \notin cl_{\pi gs}(\mathfrak{N}) \). Thus the proof is completed.

Example 2.1. Consider the subset \(\mathfrak{N} = \{ \nu_1, \nu_2 \} \) of the set \(\Psi = \{ \nu_1, \nu_2, \nu_3, \nu_4, \nu_5 \} \) and the topological space \((\Psi, \tau) \), where \(\tau = \{ \emptyset, \{ \nu_1 \}, \{ \nu_2 \}, \{ \nu_1, \nu_2 \}, \{ \nu_1, \nu_3, \nu_4, \nu_5 \}, \Psi \} \). Then the set \(\mathfrak{N} \) is an acceptable sample that fits the given situation just above, since \(\mathfrak{N} = int_{\pi gs}(\mathfrak{N}) \), while \(\mathfrak{N} \notin \pi GSC(\Psi) \).

\(ker(\mathfrak{U}) \) [34] means \(\bigcap \{ F : F \subset \Psi \} \) which is known as the kernel of \(\mathfrak{U} \).

Lemma 2.2. [35] The subsequent characteristics apply to subsets \(F \) and \(\mathfrak{U} \) of \(\Psi \):

\((i) \nu \in ker(F) \Leftrightarrow (\forall \Theta \subset C(\nu, \Psi))(F \cap \mathfrak{U} \neq \emptyset) \);

\((ii) \ F \subset ker(F) \);

\((ii) \ F \subset ker(F) \);

\((iv) \ F \subset \mathfrak{U} \Rightarrow ker(F) \subset ker(\mathfrak{U}) \).

3. Contra \(\pi gs \)-continuous functions

In this section, first the characterization of contra \(\pi gs \)-continuous functions is presented. Afterwards, the relationships between some types of contra continuous functions and contra \(\pi gs \)-continuous functions were examined. In addition, some new definitions in relation with \(\pi gs \)-open sets are given in order to examine various properties of contra \(\pi gs \)-continuous functions, and these properties are presented through theorems and results.

Definition 3.1. \(\Delta : (\Psi, \tau) \to (\Phi, \downarrow) \) is referred as contra \(\pi gs \)-continuous [8], whenever \(\Delta^{-1}(\mathfrak{U}) \in \pi GS(\Psi) \) for each \(\mathfrak{U} \in \downarrow \).
Theorem 3.1. Under the assumption $\pi GSO(\Psi)$ is closed under arbitrary unions (or likewise $\pi GSC(\Psi)$ is closed under arbitrary intersections), subsequent statements are coequal for $\Delta: (\Psi, \top) \to (\Phi, \bot)$.

$\alpha \Delta$ is contra πgs-continuous:

$(\alpha_i) \exists \in C(\Phi) \implies \Delta^{-1}(\exists) \in \pi GSO(\Psi)$;

$(\alpha_{ii}) (\forall \nu \in \Psi)(\forall \Theta \in C(\Delta(\nu), \Phi))(\exists F \in \pi GSO(\nu, \Psi))(\Delta(F) \subset \Theta)$;

$(\alpha_{iv}) \forall \Theta \in C(\Delta(\nu), \Phi) \exists F \in \pi GSO(\nu, \Psi)$ such that $\Delta(F) \subset \Theta$.

$(\alpha_{v}) \exists \in C(\Phi) \implies \Delta^{-1}(\exists) \subset \pi GSO(\Psi)$.$\Phi$.

Proof. Let $\Delta: (\Psi, \top) \to (\Phi, \bot)$ be a function, where (Ψ, \top) and (Φ, \bot) are two topological spaces and let $\pi GSO(\Psi)$ be closed under arbitrary unions (or likewise $\pi GSC(\Psi)$ be closed under arbitrary intersections).

$(\alpha_i) \implies (\alpha_{ii})$: Let $\Theta \in C(\Phi)$. Then $\Phi \setminus \Theta$ is open in Φ. Since Δ is contra πgs-continuous, $\Psi \setminus \Delta^{-1}(\Theta) = \Delta^{-1}(\Phi \setminus \Theta)$ is πgs-closed in Ψ. Therefore, $\Delta^{-1}(\Theta)$ is πgs-open in Ψ.

$(\alpha_{ii}) \implies (\alpha_i)$: Obvious.

$(\alpha_{iv}) \implies (\alpha_{ii})$: Let $\nu \in \Psi$ and $\Theta \in C(\Delta(\nu), \Phi)$. Then by (α_i), we have $\Delta^{-1}(\Theta) \in \pi GSO(\Psi)$. Choosing $F = \Delta^{-1}(\Theta)$ we obtain that $F \in \pi GSO(\nu, \Psi)$ and $\Delta(F) \subset \Theta$.

$(\alpha_{v}) \implies (\alpha_{ii})$: Let $\Theta \in C(\Phi)$ and $\nu \in \Delta^{-1}(\Theta)$. Since $\Delta(\nu) \in \Theta$, by (α_{v}) there exist a πgs-open set $F_\nu \in \pi GSO(\nu, \Psi)$ such that $\Delta(F_\nu) \subset \Theta$. So we have $\nu \in F_\nu \subset \Delta^{-1}(\Theta)$ and hence $\Delta^{-1}(\Theta) = \bigcup \{F_\nu : \nu \in \Delta^{-1}(\Theta)\}$ is πgs-open in Ψ since $\pi GSO(\Psi)$ is closed under arbitrary unions.

$(\alpha_{vi}) \implies (\alpha_{iv})$: Let Ψ be any subset of Ψ. Suppose that there exist an element $\mu \in \Delta(cl_{\pi g}s(\mathbb{N}))$ such that $\mu \notin \ker(\Delta(\mathbb{N}))$. Then there exists an open set F of Φ such that $\Delta(\mathbb{N}) \subset F$ and $\mu \notin F$. Hence, there exists $\Theta = \Phi \setminus F \in C(\mu, \Phi)$ such that $\Delta(\mathbb{N}) \cap \Theta = \emptyset$ and $cl_{\pi g}s(\mathbb{N}) \subset \Delta^{-1}(\Theta) = \emptyset$. From here we obtain that $\Delta(cl_{\pi g}s(\mathbb{N})) \cap \Theta = \emptyset$ and $\mu \notin \Delta(cl_{\pi g}s(\mathbb{N}))$ which is a contradiction.

$(\alpha_{v}) \implies (\alpha_{iv})$: Let $\exists \in \Psi$. Then $\Delta^{-1}(\exists) \subset \Psi$. By (α_{v}), $\Delta(cl_{\pi g}s(\Delta^{-1}(\exists))) \subset \ker(\Delta^{-1}(\exists)) \subset \ker(\exists)$.

$(\alpha_{v}) \implies (\alpha_i)$: Let F be any open subset of Φ. Then by (α_{iv}) and by Lemma 2.2, $cl_{\pi g}s(\Delta^{-1}(F)) \subset \Delta^{-1}(\ker(F)) = \Delta^{-1}(F)$. So we have $cl_{\pi g}s(\Delta^{-1}(F)) = \Delta^{-1}(F)$. Since $\pi GSO(\Psi)$ is closed under arbitrary unions, $\pi GSC(\Psi)$ is closed under arbitrary intersections and hence $\Delta^{-1}(F) = cl_{\pi g}s(\Delta^{-1}(F))$ is πgs-closed.

Remark 3.1. Statements (α_i) and (α_{ii}) in Theorem 3.1 are identical even if $\pi GSO(\Psi)$ is not closed under arbitrary unions (or likewise, $\pi GSC(\Psi)$ is not closed under arbitrary intersections).

Definition 3.2. $\Delta: (\Psi, \top) \to (\Phi, \bot)$ is categorized as:

(θ_1) perfectly continuous [36] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in \top \cap C(\Psi))$;

(θ_2) RC-continuous [9] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in RC(\Psi))$;

(θ_3) strongly continuous [37] $\iff (F \in \top \implies \Delta^{-1}(F) \in \top \cap C(\Psi))$ (identically $\mathbb{N} \subset \Psi \implies \Delta(cl(\mathbb{N})) \subset \Delta(\mathbb{N}))$;

(θ_4) contra-continuous [6] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in C(\Psi))$;

(θ_5) contra-super-continuous [38] $\iff (\forall \nu \in \Psi)(\forall \Theta \in C(\Delta(\nu), \Phi))(\exists F \in RO(\nu, \Psi))(\Delta(F) \subset \Theta)$;

(θ_6) contra-semicontinuous [9] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in SC(\Psi))$;

(θ_7) contra g-continuous [39] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in GC(\Psi))$;

(θ_8) contra gs-continuous [9] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in GSC(\Psi))$;

(θ_9) contra πgs-continuous [7] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in \pi GCS(\Psi))$;

(θ_{10}) contra we*-continuous [16] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in we^*C(\Psi))$;

(θ_{11}) contra e*-continuous [40] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in e^*C(\Psi))$;

(θ_{12}) contra e*-continuous [41] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in e^*C(\Psi))$;

(θ_{13}) almost contra e*-continuous [42] $\iff (F \in RO(\Phi) \implies \Delta^{-1}(F) \in e^*C(\Psi))$;

(θ_{14}) almost contra e*-continuous [42] $\iff (F \in RO(\Phi) \implies \Delta^{-1}(F) \in e^*C(\Psi))$;

(θ_{15}) contra bgs-continuous [25] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in b\Delta(C(\Psi)))$;

(θ_{16}) contra sbgs-continuous [43] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in sb\Delta(C(\Psi)))$;

(θ_{17}) contra πgp-continuous function [8] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in \pi GPC(\Psi))$;

(θ_{18}) contra $\pi g\gamma$-continuous function [20] $\iff (F \in \downarrow \implies \Delta^{-1}(F) \in \pi G\gamma C(\Psi))$.

Remark 3.2.

\[
\begin{array}{c}
\iota_6 \leftarrow \iota_4 \leftarrow \iota_5 \leftarrow \iota_1 \leftarrow \iota_3 \\
\downarrow \downarrow \\
\iota_8 \leftarrow \iota_7 \\
\downarrow \downarrow \\
\text{contra } \pi gs\text{-continuous} \leftarrow \iota_9 \\
\downarrow \downarrow \\
\iota_{18} \leftarrow \iota_{17}
\end{array}
\]

Remark 3.3. As can be seen from the samples below, reversibility of the consequences in the above diagram need not to be true.

Example 3.1. \(T = \{\emptyset, \nu_2, \nu_1, \nu_4, \nu_2, \nu_3, \nu_1, \nu_2, \nu_3, \nu_4\}, \Psi\) is the topology on \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}\). Since mappings under \(\Delta : \Psi \rightarrow \Psi\) are listed as \(\Delta(\nu_1) = \nu_1, \Delta(\nu_2) = \nu_2, \Delta(\nu_3) = \nu_3, \Delta(\nu_4) = \nu_4\) the contra \(\pi gs\)-continuity of \(\Delta\) is evident. However, it is neither contra \(\pi g\)-continuous nor contra gs-continuous since \(\Delta^{-1}(\{\nu_2\}) = \{\nu_2\} \notin \pi GC(\Psi)\) and \(\Delta^{-1}(\{\nu_2\}) = \{\nu_2\} \notin \pi GSC(\Psi)\).

Example 3.2. Let \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}, \ T = \{\emptyset, \nu_1, \nu_2, \nu_1, \nu_2, \nu_4\}\). Match-ups for \(\Delta : \Psi \rightarrow \Psi\) are

\[\Delta(\nu_1) = \Delta(\nu_2) = \Delta(\nu_3) = \nu_1, \Delta(\nu_4) = \nu_3.\]

\(\Delta\) is contra \(\pi gs\)-continuous, but it is not contra \(e^*\theta\)-continuous since \(\Delta^{-1}(\{\nu_1\}) = \Delta^{-1}(\{\nu_1, \nu_2\}) = \{\nu_1, \nu_2, \nu_3\}\) is not \(e^*\theta\)-closed w.r.t. \(T\).

Example 3.3. Given \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}, \ T = \{\emptyset, \nu_1, \nu_2, \nu_1, \nu_2, \nu_4\}\). Match-ups for \(\Delta : \Psi \rightarrow \Psi\) are

\[\Delta(\nu_1) = \nu_3, \Delta(\nu_2) = \nu_1, \Delta(\nu_3) = \Delta(\nu_4) = \nu_4.\]

Although \(\Delta\) is contra \(\pi gs\)-continuous, it is not almost contra \(e^*\theta\)-continuous, since \(\{\nu_1, \nu_3\}\) is regular open and \(\Delta^{-1}(\{\nu_1, \nu_3\}) = \{\nu_1, \nu_2\}\) is not an \(e^*\)-closed. By checking the connections between these class of functions in [42] we can easily state that \(\Delta\) cannot be almost contra \(e^*\theta\)-continuous, contra \(e^*\theta\)-continuous and contra \(e^*\theta\)-continuous.

Example 3.4. \(T = \{\emptyset, \nu_1, \nu_2, \nu_1, \nu_3, \nu_1, \nu_1, \nu_3, \nu_2, \nu_1, \nu_2, \nu_4\}\) is a topology on \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}\). Match-ups of \(\Delta : \Psi \rightarrow \Psi\) are

\[\Delta(\nu_1) = \nu_3, \Delta(\nu_2) = \nu_2, \Delta(\nu_3) = \Delta(\nu_4) = \nu_4.\]

Since \(\Delta^{-1}(\{\nu_1, \nu_2\}) = \{\nu_1, \nu_2, \nu_3\}\) is not \(\pi GSC(\Psi)\), \(\Delta\) is not contra \(\pi gs\)-continuous. However, it is contra \(e^*\theta\)-continuous. So it is contra \(e^*\)-continuous, almost contra \(e^*\theta\)-continuous and almost contra \(e^*\theta\)-continuous.

As seen from the examples above contra \(\pi gs\)-continuity does not require almost contra \(e^*\theta\)-continuity, almost contra \(e^*\)-continuity, contra \(e^*\theta\)-continuity and contra \(e^*\)-continuity. It is also clear that almost contra \(e^*\theta\)-continuity, almost contra \(e^*\)-continuity, contra \(e^*\theta\)-continuity and contra \(e^*\)-continuity does not require contra \(\pi gs\)-continuity. As another result we can state that contra \(we^*\)-continuity does not require contra \(\pi gs\)-continuity.

Research Question Does contra \(\pi gs\)-continuity require contra \(we^*\)-continuity?

Example 3.5. \(T = \{\emptyset, \nu_1, \nu_2, \nu_1, \nu_3, \nu_1, \nu_4, \nu_2, \nu_1, \nu_4\}\) is a topology on \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}\). Match-ups of \(\Delta : \Psi \rightarrow \Psi\) are

\[\Delta(\nu_1) = \nu_3, \Delta(\nu_2) = \nu_2, \Delta(\nu_3) = \nu_1, \Delta(\nu_4) = \nu_2.\]

\(\Delta\) is contra \(\pi gs\)-continuous, but it is not contra \(bg\)-continuous since \(\Delta^{-1}(\{\nu_1, \nu_3\}) = \{\nu_1, \nu_3\}\) is not \(bg\)-closed. So it cannot be contra \(bg\)-continuous.

Example 3.6. \(T = \{\emptyset, \nu_1, \nu_5, \nu_2, \nu_4, \nu_1, \nu_2, \nu_4, \nu_5\}\) is a topology on \(\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4, \nu_5\}\). Match-ups of \(\Delta : \Psi \rightarrow \Psi\) are

\[\Delta(\nu_1) = \nu_1, \Delta(\nu_2) = \nu_2, \Delta(\nu_3) = \Delta(\nu_4) = \nu_3, \Delta(\nu_5) = \nu_5.\]

\(\Delta\) is contra \(bg\)-continuous. However, since \(\Delta^{-1}(\{\nu_1, \nu_2, \nu_5\}) = \{\nu_1, \nu_2, \nu_5\} \notin \pi GSC(\Psi)\), it is not contra \(\pi gs\)-continuous.
As seen from the examples above there is no relation between contra $b\hat{g}$-continuity and contra πgs-continuity. As another result we see that a contra πgs-continuity does not require contra $sb\hat{g}$-continuity.

Research Question Does contra $sb\hat{g}$-continuity require contra πgs-continuity?

Example 3.7. [8] Let $\mathcal{T} = \{\emptyset, \{\nu_1\}, \{\nu_2\}, \{\nu_2, \nu_1\}, \{\nu_3, \nu_2\}, \{\nu_3, \nu_2, \nu_1\}, \Psi\}$ and $\perp = \{\emptyset, \{\nu_1\}, \Psi\}$ be two topologies on $\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}$. The identity function $\Delta : (\Psi, \mathcal{T}) \to (\Psi, \perp)$ is contra πgs-continuous, but it is not contra πgp-continuous.

Example 3.8. [8] Let $\mathcal{T} = \{\emptyset, \{\nu_2\}, \{\nu_2, \nu_1\}, \{\nu_1, \nu_4\}, \{\nu_2, \nu_4, \nu_4\}, \Psi\}$ and $\perp = \{\emptyset, \{\nu_4\}, \Psi\}$ be two topologies on $\Psi = \{\nu_1, \nu_2, \nu_3, \nu_4\}$. The identity function $\Delta : (\Psi, \mathcal{T}) \to (\Psi, \perp)$ is contra πgp-continuous and contra $\pi g\gamma$-continuous, but it is not contra πgs-continuous.

As seen from Example 3.7 and Example 3.8 there is no connection between contra πgp-continuity and contra πgs-continuity. Example 3.8 also shows that contra $\pi g\gamma$-continuity does not require contra πgs-continuity.

Theorem 3.2. [4] Let $\mathcal{K} \subset \Psi$, afterwards $\mathcal{K} \in RO(\Psi)$ if and only if $\mathcal{K} \in \pi O(\Psi) \cap \pi GSC(\Psi)$.

Definition 3.3. $\Delta : \Psi \to \Phi$ is called as:
1. π-continuous [3] $\iff (F \in \perp \Rightarrow \Delta^{-1}(F) \in \pi O(\Psi))$,
2. πg-continuous [3] $\iff (F \in \perp \Rightarrow \Delta^{-1}(F) \in \pi GO(\Psi))$,
3. πgs-continuous [4] $\iff (F \in C(\Phi) \Rightarrow \Delta^{-1}(F) \in \pi GSC(\Psi))$,
4. completely continuous [44] $\iff (F \in \perp \Rightarrow \Delta^{-1}(F) \in RO(\Psi))$.

Theorem 3.3. Whenever $\Delta : \Psi \to \Phi$, afterwards the statement below is satisfied; Δ is contra πgs-continuous and π-continuous if and only if Δ is completely continuous.

Proof. Obvious from Theorem 3.2.

Theorem 3.4. Under the circumstance $\pi GSO(\Psi)$ is closed under arbitrary unions, it can be stated that whenever $\Delta : \Psi \to \Phi$ is contra πgs-continuous and Φ is regular, afterwards Δ is πgs-continuous.

Definition 3.4. Whenever $\pi GSC(\Psi) \subset SC(\Psi)$ afterwards Ψ is accepted as $\pi gs-T_2$ [4].

Theorem 3.5. Whenever Ψ is considered as $\pi gs-T_2$ space afterwards, contra πgs-continuity, contra-semicontinuity and contra gs-continuity of $\Delta : \Psi \to \Phi$ are identical.

Proof. Assume that Ψ as a $\pi gs-T_2$ space. Since $SC(\Psi) \subset \pi GSC(\Psi)$, we have $SC(\Psi) = \pi GSC(\Psi)$. Using the relation $SC(\Psi) \subset GSC(\Psi)$, we obtain $\pi GSC(\Psi) \subset GSC(\Psi)$. Since $GSC(\Psi) \subset \pi GSC(\Psi)$, we have $GSC(\Psi) = \pi GSC(\Psi)$. Therefore $\pi GSC(\Psi) = SC(\Psi) = GSC(\Psi)$.

Theorem 3.6. For each $i \in I$, p_i stands for projection of $\prod \Phi_i$ onto Φ_i. If $\Delta : \Psi \to \prod \Phi_i$ is contra πgs-continuous, then $p_i \circ \Delta : \Psi \to \Phi_i$ is contra πgs-continuous for each $i \in I$.

Proof. Since p_i is continuous and Δ is contra πgs-continuous, we can state that $p_i^{-1}(U_i)$ is open in $\prod Y_i$ for any $U_i \in \perp_i$ and $(p_i \circ \Delta)^{-1}(U_i) = \Delta^{-1}(p_i^{-1}(U_i)) \in \pi GSC(\Psi)$. Hereby, $p_i \circ \Delta$ is contra πgs-continuous.

Definition 3.5. A topological space Ψ is said to be locally πgs-indiscrete if $\pi GSO(\Psi) \subset C(\Psi)$.

Theorem 3.7. The fact that Ψ is locally πgs-indiscrete for contra πgs-continuous $\Delta : \Psi \to \Phi$ requires that Δ is continuous.

Proof. Allow $F \in \perp$. Since Δ is contra πgs-continuous, $\Delta^{-1}(F) \in \pi GSC(\Psi)$. Since Ψ is locally πgs-indiscrete, $\Delta^{-1}(F) \in \top$.

Theorem 3.8. Whenever Ψ is a $\pi gs-T_2$ for any $\Delta : \Psi \to \Phi$, afterwards following are equivalent:
1. Δ is completely continuous;
2. Δ is π-continuous and contra πgs-continuous;
3. Δ is π-continuous and contra gs-continuous;
4. Δ is π-continuous and contra-semicontinuous.
Proof. Equivalence of (i_2), (i_3) and (i_4) is obvious from Theorem 3.5 and the equivalence of (i_1) and (i_2) can be easily seen from Theorem 3.2. □

Definition 3.6. The topological space (Ψ, τ) is called:

(i) submaximal [45] if $\forall N \subset \Psi (\text{cl}(N) = \Psi \Rightarrow N \in \tau)$,
(ii) extremally disconnected [45] if $\forall N \subset \Psi (N \in \tau \Rightarrow \text{cl}(N) \in \tau)$.

Definition 3.7. $\Delta : \Psi \to \Phi$ is called contra α-continuous [46] (correspondingly contra precontinuous [46], contra β-continuous [47], contra γ-continuous [48]) if the preimage of every open subset of Φ is α-closed (correspondingly preclosed, β-closed, γ-closed) in Ψ.

Lemma 3.1. For any (Ψ, τ), if $\pi GSC(\Psi)$ is closed under finite unions then, $\pi gs - \tau = \{ U \subset \Psi : \text{cl}_{\pi gs}(\Psi \setminus U) = \Psi \setminus U \}$.

Theorem 3.9. Whenever Ψ is extremally disconnected, submaximal and πgs-T_2 for any $\Delta : \Psi \to \Phi$, afterwards the following are equivalent:

(i) Δ is contra πgs-continuous;
(ii) Δ is contra gs-continuous;
(iii) Δ is contra-semicontinuous;
(iv) Δ is contra-continuous;
(v) Δ is contra precontinuous;
(vi) Δ is contra β-continuous;
(vii) Δ is contra α-continuous;
(viii) Δ is contra γ-continuous.

Proof. In an extremally disconnected submaximal space (Ψ, τ),

$$\tau = \alpha O(\Psi) = SO(\Psi) = PO(\Psi) = \gamma O(\Psi) = \beta O(\Psi).$$

From this fact we can say that (i_3), (i_4), (i_5), (i_6), (i_7), (i_8) are equivalent. The equivalence of (i_1), (i_2), (i_3) is obvious from Theorem 3.5. □

Theorem 3.10. Whenever Ψ is said to be extremally disconnected, afterwards any $\Delta : \Psi \to \Phi$ is contra πgs-continuous and πgs-continuous.

Definition 3.8. $\Delta : \Psi \to \Phi$ is said to be πgs-irresolute [4] if $\Delta^{-1}(F) \in \pi GSO(\Psi)$ for each $F \in \pi GSO(\Phi)$.

Theorem 3.11. For $\Delta : \Psi \to \Phi$ and $\rho : \Phi \to \zeta$ following properties hold:

(i) If Δ is πgs-irresolute and ρ is contra πgs-continuous, then $\rho \circ \Delta$ is contra πgs-continuous;
(ii) If Δ is contra πgs-continuous and ρ is continuous, then $\rho \circ \Delta$ is contra πgs-continuous;
(iii) If Δ is πgs-continuous and ρ is RC-continuous, then $\rho \circ \Delta$ is πgs-continuous;
(iv) If Δ is πgs-continuous and ρ is contra continuous, then $\rho \circ \Delta$ is contra πgs-continuous;
(v) If Δ is πgs-irresolute and ρ is RC-continuous (correspondingly contra π-continuous, contra-continuous, contra g-continuous, contra π-continuous, contra g-continuous, contra π-continuous, contra g-continuous), then $\rho \circ \Delta$ is contra πgs-continuous.

Definition 3.9. $\Delta : \Psi \to \Phi$ is characterized as πgs-open if $\Delta(8)$ is πgs-open in Φ for each πgs-open subset 8 of Ψ.

Theorem 3.12. $\Delta : \Psi \to \Phi$ and $\rho : \Phi \to \zeta$ be two functions and suppose that $\pi GSC(\Phi)$ is closed under arbitrary intersections. Whenever Δ is surjective πgs-open function and $\rho \circ \Delta$ is contra πgs-continuous, afterwards ρ is contra πgs-continuous.

Proof. Suppose $\mu \in \Phi$ and $\Theta \in C(\rho(\mu), \zeta)$. Since Δ is surjective, existence of $\nu \in \Psi$ satisfying $\Delta(\nu) = \mu$ is clear. Naturally, $\Theta \in C(\rho \circ \Delta(\nu), \zeta)$. Since $\rho \circ \Delta$ is contra πgs-continuous, $\zeta \in \pi GSO(\nu, \Phi)$ naturally appears satisfying $\rho \circ \Delta(\zeta) \subset \Theta$ relation. Since Δ is πgs-open, $\Delta(\zeta)$ is an element of $\pi GSO(\mu, \Phi)$. Hence, for each $\mu \in \Phi$ and for each $\Theta \in C(\rho(\mu), \zeta)$, existence of $\Delta(\zeta) = F \in \pi GSO(\mu, \Phi)$ is natural satisfying $\rho(F) \subset \Theta$. By Theorem 3.1 ρ is contra πgs-continuous. □

Corollary 3.1. Whenever $\pi GSC(\Phi)$ is closed under arbitrary intersections and $\Delta : \Psi \to \Phi$ is surjective πgs-irresolute and πgs-open, afterwards for any $\rho : \Phi \to \zeta$, $\rho \circ \Delta$ is contra πgs-continuous if and only if ρ is contra πgs-continuous.

Proof. Obvious from Theorems 3.11 and 3.12. □
Definition 3.10. \(\Delta : \Psi \to \Phi \) is characterized as weakly contra \(\pi_{gs} \)-continuous whenever \(\nu \in \Psi \) and \(\Theta \in C(\Delta(\nu), \Phi) \), afterwards a set \(F \in \pi \text{GSO}(\nu, \Psi) \) exists satisfying \(\text{int}(\Delta(F)) \subset \Theta \).

Definition 3.11. A function \(\Delta : \Psi \to \Phi \) is called as \((\pi_{gs}s) \)-open whenever \(\Delta(F) \in \text{SO}(\Phi) \) for all \(F \in \pi \text{GSO}(\Psi) \).

Theorem 3.13. Whenever \(\Delta : \Psi \to \Phi \) is a weakly contra \(\pi_{gs} \)-continuous and \((\pi_{gs}s) \)-open and \(\pi \text{GSO}(\Psi) \) is closed under arbitrary unions, afterwards \(\Delta \) is contra \(\pi_{gs} \)-continuous.

Proof. Whenever \(\nu \in \Psi \) and \(\Theta \in C(\Delta(\nu), \Phi) \), with the weakly contra \(\pi_{gs} \)-continuity of \(\Delta \), as a result the set \(F \in \pi \text{GSO}(\nu, \Psi) \) appears satisfying \(\text{int}(\Delta(F)) \subset \Theta \). Since \(\Delta \) is \((\pi_{gs}s) \)-open, \(\Delta(F) \) is semi-open in \(\Phi \). Hence, \(\Delta(F) \subset \text{cl}(\text{int}(\Delta(F))) \subset \text{cl}(\Theta) = \Theta \). \(\square \)

Definition 3.12. \(\text{fr}_{\pi_{gs}}(\Psi) \) stands for \(\pi_{gs} \)-frontier of \(\Psi \) and characterized as \(\text{cl}_{\pi_{gs}}(\Psi) \cap \text{cl}_{\pi_{gs}}(\Psi \setminus \Psi) \).

Theorem 3.14. Let \(\Delta : \Psi \to \Phi \) be a function. Whenever \(\pi \text{GSC}(\Psi) \) is closed under arbitrary intersections then, the set of whole points \(\nu \in \Psi \) at which \(\Delta \) is not contra \(\pi_{gs} \)-continuous is equal to \(\bigcup \{ \text{fr}_{\pi_{gs}}(\Delta^{-1}(\Theta)) : \Theta \in C(\Delta(\nu), \Phi) \} \).

Proof. Let \(\nu \) be any element of \(\Psi \) at which \(\Delta \) is not contra \(\pi_{gs} \)-continuous. Then, there exists a closed subset \(\Theta \) of \(\Phi \) comprising \(\Delta(\nu) \) such that \(\Delta(F) \) is not contained in \(\Theta \) for every \(F \in \pi \text{GSO}(\nu, \Psi) \). So \(F \cap (\Psi \setminus \Delta^{-1}(\Theta)) \neq \emptyset \). Then, we have \(\nu \in \text{cl}_{\pi_{gs}}(\Psi \setminus \Delta^{-1}(\Theta)) \). Since \(\nu \in \Delta^{-1}(\Theta) \subset \text{cl}_{\pi_{gs}}(\Delta^{-1}(\Theta)), \nu \in \text{fr}_{\pi_{gs}}(\Delta^{-1}(\Theta)) \).

For the converse, assume that \(\Delta \) is contra \(\pi_{gs} \)-continuous at \(\nu \in \Psi \) and \(\Theta \in C(\Delta(\nu), \Phi) \). Naturally a set \(F \in \pi \text{GSO}(\nu, \Psi) \) appears satisfying \(F \subset \Delta^{-1}(\Theta) \). Therefore, \(\nu \in \text{int}_{\pi_{gs}}(\Delta^{-1}(\Theta)) \). Hence, \(\nu \notin \text{fr}_{\pi_{gs}}(\Delta^{-1}(\Theta)) \). \(\square \)

Corollary 3.2. For any \(\Delta : \Psi \to \Phi \), whenever \(\pi \text{GSC}(\Psi) \) is closed under arbitrary intersections, afterwards \(\Delta \) is not contra \(\pi_{gs} \)-continuous at \(\nu \) if and only if \(\Theta \in C(\Delta(\nu), \Phi) \) appears satisfying \(\nu \in \text{fr}_{\pi_{gs}}(\Delta^{-1}(\Theta)) \).

4. Preservation theorems

In this section, new separation axioms, connected spaces, compact spaces, covers and graphs related to \(\pi_{gs} \)-open sets are defined and various results are presented by examining the properties of these new concepts.

Definition 4.1. \(\Psi \) is said to be \(\pi_{gs} \)-T\(_1\) whenever \(\nu \) and \(\mu \) is in \(\Psi \) are distinct points, sets \(F \in \pi \text{GSO}(\nu, \Psi) \) and \(\tilde{U} \in \pi \text{GSO}(\mu, \Psi) \) naturally appears satisfying \(\mu \notin F \) and \(\nu \notin \tilde{U} \).

Definition 4.2. \(\Psi \) is said to be \(\pi_{gs} \)-T\(_2\) whenever \(\nu \) and \(\mu \) in \(\Psi \) are distinct points, sets \(F \in \pi \text{GSO}(\nu, \Psi) \) and \(\tilde{U} \in \pi \text{GSO}(\mu, \Psi) \) naturally appears satisfying \(F \cap \tilde{U} = \emptyset \).

Theorem 4.1. Under the assumption \(\tilde{U} \) is an Urysohn space, whenever \(\nu \) and \(\mu \) is distinct points in \(\Psi \) a function \(\Delta : \Psi \to \Phi \) naturally appears that is contra \(\pi_{gs} \)-continuous at \(\nu \) and \(\mu \) for which \(\Delta(\nu) \neq \Delta(\mu) \), afterwards \(\Psi \) is \(\pi_{gs} \)-T\(_2\).

Proof. Assume that \(\nu \) and \(\mu \) is distinct points in \(\Psi \). Also, let \(\Delta : \Psi \to \Phi \) be contra \(\pi_{gs} \)-continuous at \(\nu \) and \(\mu \) such that \(\Delta(\nu) \neq \Delta(\mu) \). Letting \(\nu' = \Delta(\nu) \) and \(\mu' = \Delta(\mu) \) with the knowledge of \(\Phi \) is Urysohn, existence of \(\tilde{Z} \in O(\nu', \Phi) \) and \(F \in O(\mu', \Phi) \) guaranteed such that \(\text{cl}(\tilde{Z}) \cap \text{cl}(F) = \emptyset \). Since \(\Delta \) is contra \(\pi_{gs} \)-continuous at \(\nu \) and \(\mu \), there exist \(\pi_{gs} \)-open subsets \(\Psi \) and \(\Omega \) of \(\Psi \) comprising \(\nu \) and \(\mu \), correspondingly, such that \(\Delta(\Psi) \subset \text{cl}(\tilde{Z}) \) and \(\Delta(\Omega) \subset \text{cl}(F) \). Hereby, \(\Delta(\Psi \cap \Omega) \subset \Delta(\Psi) \cap \Delta(\Omega) \subset \text{cl}(\tilde{Z}) \cap \text{cl}(F) = \emptyset \) which implies that \(\Psi \cap \Omega = \emptyset \). Hence, \(\Psi \) is \(\pi_{gs} \)-T\(_2\). \(\square \)

Corollary 4.1. Whenever \(\Delta : \Psi \to \Phi \) is contra \(\pi_{gs} \)-continuous injection and \(\Phi \) is an Urysohn space, afterwards \(\Psi \) is \(\pi_{gs} \)-T\(_2\).

Definition 4.3. The topological space \(\Psi \) is called as,
(\(i_1 \)) \(\pi_{gs} \)-connected space \(\Leftrightarrow \Psi \) is not the union of two disjoint non-empty \(\pi_{gs} \)-open sets,
(\(i_2 \)) \(gs \)-connected space [15] \(\Leftrightarrow \Psi \) is not the union of two disjoint non-empty \(gs \)-open sets.

Remark 4.1. Although \(\pi_{gs} \)-connected spaces are \(gs \)-connected, the contrary implication is not valid in general.

Example 4.1. Let \(\Psi = \{\nu, \mu\} \) and \(T = \{\emptyset, \{\nu\}, \{\mu\}\} \). \(\Psi \) is \(gs \)-connected, but it is not \(\pi_{gs} \)-connected since \(\{\nu\} \) and \(\{\mu\} \) are non-empty disjoint \(\pi_{gs} \)-open subsets of \(\Psi \).

Theorem 4.2. For a topological space \(\Psi \) the following are equivalent:
(\(i_1 \)) \(\Psi \) is \(\pi_{gs} \)-connected;
(\(i_2 \)) The only subsets of \(\Psi \) which are both \(\pi_{gs} \)-open and \(\pi_{gs} \)-closed are \(\emptyset \) and \(\Psi \);
(\(i_3 \)) Each \(\pi_{gs} \)-continuous function of \(\Psi \) into a discrete space \(\Phi \) with at least two points is a constant function.
Whenever the product space of two non-empty spaces is connected.

Theorem 4.6. The projection functions \(p_{\Phi} : \Psi \times \Phi \to \Psi \) and \(p_{\Psi} : \Psi \times \Phi \to \Phi \) are \(\pi gs \)-irresolute.

Proof. Let \(p_{\Psi} : \Psi \times \Phi \to \Psi \) be the projection function from \(\Psi \times \Phi \) onto \(\Psi \) and \(\mathcal{N} \) be any \(\pi gs \)-closed subset of \(\Psi \). Then, \(\mathcal{N} \times \Phi \) is a \(\pi gs \)-closed subset of \(\Psi \times \Phi \). Therefore, \(\mathcal{N} \times \Phi \) is connected in \(\Psi \times \Phi \). Hence, \(\mathcal{N} \times \Phi \) is connected in \(\Psi \times \Phi \).

Theorem 4.7. Whenever \(\Delta : \Psi \to \Phi \) is a \(\pi gs \)-irresolute surjection and \(\Psi \) is \(\pi gs \)-connected, afterwards \(\Phi \) has to be \(\pi gs \)-connected.

Proof. Assume that \(\Phi \) is not \(\pi gs \)-connected. Naturally, two non-empty disjoint \(\pi gs \)-open subsets \(F \) and \(\Omega \) of \(\Phi \) appear so that \(F \cup \Omega = \Phi \). Then \(\Delta^{-1}(F) \) and \(\Delta^{-1}(\Omega) \) are both \(\pi gs \)-open subsets of \(\Psi \), since \(\Delta \) is surjective and \(\pi gs \)-irresolute. Besides, \(\emptyset = \Delta^{-1}(F \cap \Omega) = \Delta^{-1}(F) \cap \Delta^{-1}(\Omega) \) and \(\Psi = \Delta^{-1}(F) \cup \Delta^{-1}(\Omega) \). Therefore, we reach the result that \(\Psi \) is not \(\pi gs \)-connected which is a contradiction. Hereby, \(\Phi \) is \(\pi gs \)-connected.

Theorem 4.8. Whenever the product space of two non-empty spaces is \(\pi gs \)-connected, each factor space has to be \(\pi gs \)-connected.
Proof. Accept Ψ and Φ as non-empty topological spaces and the product space $\Psi \times \Phi$ as π_{gs}-connected. Since the projection functions are π_{gs}-irresolute and surjective, by Theorem 4.7, Ψ and Φ are π_{gs}-connected. □

Definition 4.4. A topological space Ψ is called as:

(i) π_{gs}-compact if every π_{gs}-open cover of Ψ has a finite subcover,

(ii) countably π_{gs}-compact if every countable cover of Ψ by π_{gs}-open sets has a finite subcover,

(iii) π_{gs}-Lindelöf if every π_{gs}-open cover of Ψ has a countable subcover.

Definition 4.5. $\aleph \in \Psi$ is characterized to be π_{gs}-compact relative to Ψ whenever every π_{gs}-open cover of \aleph by π_{gs}-open sets of Ψ has a finite subcover.

Theorem 4.9. Whenever $\Delta : \Psi \to \Phi$ is contra π_{gs}-continuous and $\aleph \subseteq \Psi$ is π_{gs}-compact relative to Ψ, afterwards $\Delta(\aleph)$ has to be strongly S-closed.

Proof. Let $\{\Theta_i : i \in I\}$ be a closed cover of $\Delta(\aleph)$ by closed subsets of the subspace $\Delta(\aleph)$. Then for each $i \in I$, there exists a closed set Θ_i, in Φ such that $\Delta(\aleph) = \bigcap \{\Theta_i : i \in I\} = \bigcap \{\Theta_i \cap \Delta(\aleph) : i \in I\} = \bigcup \{\Theta_i : i \in I\} \cap \Delta(\aleph)$ and $\Theta_i = \Theta_i \cap \Delta(\aleph)$. Since for each $\nu \in \aleph$, we have $\Delta(\nu) \in \Delta(\aleph)$ and since Δ is contra π_{gs}-continuous, for each $\nu \in \aleph$ there exists $i(\nu) \in I$ and there exists $F(\nu) \in \pi_{GSO}(\nu, \Psi)$ such that $\Delta(\nu) \in \Theta_{i(\nu)}$ and $\Delta(F(\nu)) \subset \Theta_{i(\nu)}$. Then, $\{F(\nu) : \nu \in \aleph\}$ is a cover of \aleph by π_{gs}-open sets of Ψ. Since \aleph is π_{gs}-compact relative to Ψ, there exists a finite subset \aleph_0 of \aleph such that $\aleph \subset \bigcup \{F(\nu) : \nu \in \aleph_0\}$. Then, we obtain $\Delta(\aleph) \subset \bigcup \{\Theta_{i(\nu)} : \nu \in \aleph_0\}$. Therefore, $\Delta(\aleph) = \Delta(\aleph) \cap \bigcup \{\Theta_{i(\nu)} : \nu \in \aleph_0\} = \bigcup \{\Delta(\Theta_i) : \nu \in \aleph_0\} = \bigcup \{\Theta_{i(\nu)} : \nu \in \aleph_0\}$ and this means that $\{\Theta_{i(\nu)} : \nu \in \aleph_0\}$ is a finite subcover of $\{\Theta_i : i \in I\}$. Hence, $\Delta(\aleph)$ is strongly S-closed. □

Corollary 4.2. Whenever $\Delta : \Psi \to \Phi$ is a contra π_{gs}-continuous surjection and Ψ is π_{gs}-compact, afterwards Φ has to be strongly S-closed.

Theorem 4.10. Whenever the product space of two non-empty spaces is π_{gs}-compact, afterwards each factor space has to be π_{gs}-compact.

Proof. Let $\Psi \times \Phi$ be the product space of the non-empty topological spaces Ψ and Φ and $\Psi \times \Phi$ be π_{gs}-compact. Let $\{\Delta_i : i \in I\}$ be any π_{gs}-open cover of Ψ. Then, $\Psi \times \Phi = \pi_{gs}^{-1}(\Psi) = \pi_{gs}^{-1}(\bigcup \{\Delta_i : i \in I\}) = \bigcup \{\pi_{gs}^{-1}(\Delta_i) : i \in I\}$. Since π_{gs} is π_{gs}-irresolute, $\pi_{gs}^{-1}(\Delta_i) = \Delta_i \times \Phi$ is π_{gs}-open in $\Psi \times \Phi$ for each $i \in I$. Therefore, $\{\Delta_i \times \Phi : i \in I\}$ is a π_{gs}-open cover of $\Psi \times \Phi$. Since $\Psi \times \Phi$ is π_{gs}-compact, there exists a finite subset I_0 of I such that $\bigcup \{\Delta_i \times \Phi : i \in I_0\} = \Psi \times \Phi$. Then, $\Psi = \pi_{gs}(\Psi \times \Phi) = \pi_{gs}(\bigcup \{\Delta_i \times \Phi : i \in I_0\}) = \pi_{gs}(\bigcup \{\Delta_i : i \in I_0\}) \times \Phi = \bigcup \{\Delta_i : i \in I_0\}$. Hence, Ψ is π_{gs}-compact. The proof for the space Φ is similar. □

Theorem 4.11. Contra π_{gs}-continuous images of π_{gs}-Lindelöf (correspondingly countably π_{gs}-compact) spaces are strongly S-Lindelöf (correspondingly strongly countably S-closed).

Proof. Let Ψ be a π_{gs}-Lindelöf space and $\Delta : \Psi \to \Phi$ be a surjective contra π_{gs}-continuous function. Let $\{\Theta_i : i \in I\}$ be a closed cover of Φ. Since Δ is contra π_{gs}-continuous, $\{\Delta^{-1}(\Theta_i) : i \in I\}$ is a π_{gs}-open cover of Ψ. Since Ψ is π_{gs}-Lindelöf, there exists a countable subset I_0 of I such that $\bigcup \{\Delta^{-1}(\Theta_i) : i \in I_0\} = \Psi$. Since Δ is surjective, $\Phi = \Delta(\Psi) = \Delta(\bigcup \{\Delta^{-1}(\Theta_i) : i \in I_0\}) = \bigcup \{\Delta(\Delta^{-1}(\Theta_i)) : i \in I_0\} = \bigcup \{\Theta_i : i \in I_0\}$ and $\Phi = \bigcup \{\Theta_i : i \in I_0\}$. Hence, Φ is strongly S-Lindelöf. The proof for the contra π_{gs}-continuous images of countably π_{gs}-compact spaces is similar. □

Definition 4.6. The graph $G(\Delta)$ of $\Delta : \Psi \to \Phi$ is said to be a contra π_{gs}-graph if for each (ν, μ) in $(\Psi \times \Phi) \setminus G(\Delta)$, there exist a set \aleph in $\pi_{GSO}(\nu, \Psi)$ and a set Ω in $C(\mu, \Phi)$ such that $(\aleph \times \Omega) \cap G(\Delta) = \emptyset$.

Theorem 4.12. The following are equivalent for the graph $G(\Delta)$ of any $\Delta : \Psi \to \Phi$.

(i) $G(\Delta)$ is a contra π_{gs}-graph;

(ii) for all $(\nu, \mu) \in (\Psi \times \Phi) \setminus G(\Delta)$, there exist a π_{gs}-open set $\aleph \subset \Psi$ comprising ν and a closed set $\Omega \subset \Phi$ comprising μ such that $\Delta(\aleph) \cap \Omega = \emptyset$.

Theorem 4.13. Whenever $\Delta : \Psi \to \Phi$ is contra π_{gs}-continuous and Φ is an Uryshon space, afterwards $G(\Delta)$ has to be a contra π_{gs}-graph.

Proof. For all $(\nu, \mu) \in (\Psi \times \Phi) \setminus G(\Delta)$, it is clear that $\Delta(\nu) \neq \mu$. Since Φ is Uryshon space, there exist open sets $\Delta(\nu)$ and $\Delta(\mu)$ in Φ comprising $\Delta(\nu)$ and μ, correspondingly, such that $\text{cl}(\Delta(\nu)) \cap \text{cl}(\Delta(\mu)) = \emptyset$. Since Δ is contra π_{gs}-continuous, a $\aleph \in \pi_{GSO}(\nu, \Psi)$ appears so that $\Delta(\aleph) \subset \text{cl}(\Delta(\nu))$. Then, $\Delta(\aleph) \cap \text{cl}(\Delta(\mu)) = \emptyset$. Hereby, $G(\Delta)$ is contra π_{gs}-graph. □
Theorem 4.14. Let $\Delta : \Psi \to \Phi$ be a function and $\rho : \Psi \to \Psi \times \Phi$ be the graph function of Δ defined as $\rho(\nu) = (\nu, \Delta(\nu))$ for every $\nu \in \Psi$. If ρ is contra πgs-continuous, then Δ is contra πgs-continuous.

Proof. For all open set $F \subseteq \Phi$, it is clear that $\Psi \times F$ is open in $\Psi \times \Phi$. Since ρ is a contra πgs-continuous function, $\Delta^{-1}(F) = \rho^{-1}(\Psi \times F)$ is πgs-closed in Ψ. Hence, Δ is contra πgs-continuous. □

Theorem 4.15. Let $\Delta : \Psi \to \Phi$ and $\rho : \Psi \to \Phi$ be two contra πgs-continuous functions. If Φ is an Uryshon space and $\pi GSO(\Psi)$ is closed under finite intersections then, the set $E = \{ \nu \in \Psi : \Delta(\nu) = \rho(\nu) \}$ is πgs-closed in Ψ.

Proof. If we show that $\nu \notin E \Rightarrow \nu \notin cl_{\pi gs}(E)$, then the theorem will be proved. Let $\nu \in \Psi \setminus E$. Then, $\Delta(\nu) \neq \rho(\nu)$. Since Φ is Uryshon, there exist open subsets F and G of Φ comprising $\Delta(\nu)$ and $\rho(\nu)$, correspondingly, such that $cl(F) \cap cl(G) = \emptyset$. Since Δ and ρ are contra πgs-continuous, $\Delta^{-1}(cl(F))$ and $\rho^{-1}(cl(G))$ are πgs-open in Ψ. Let $\Delta^{-1}(cl(F)) = D_1$ and $\rho^{-1}(cl(G)) = D_2$. Then, $\nu \in D_1 \cap D_2$. Since $\pi GSO(\Psi)$ is closed under finite intersections, ν is a πgs-open set in Ψ comprising ν. So, $\Delta(\nu) \cap \rho(\nu) = \emptyset$. Hence, $\nu \cap E = \emptyset$. By Lemma 2.1, $\nu \notin cl_{\pi gs}(E)$. □

Definition 4.7. For a subset \mathcal{N} of space Ψ, if $cl_{\pi gs}(\mathcal{N}) = \Psi$ then \mathcal{N} is said to be πgs-dense in Ψ.

Theorem 4.16. Let $\Delta : \Psi \to \Phi$ and $\rho : \Psi \to \Phi$ be two functions. If
1. Φ is an Uryshon space and $\pi GSO(\Psi)$ is closed under finite intersections,
2. Δ and ρ are contra πgs-continuous,
3. $\Delta = \rho$ on a πgs-dense subset \mathcal{N} of Ψ, then $\Delta = \rho$ on \mathcal{N}.

Proof. By Theorem 4.15, the set $E = \{ \nu \in \Psi : \Delta(\nu) = \rho(\nu) \}$ is πgs-closed in Ψ. Since $\Delta = \rho$ on a πgs-dense subset \mathcal{N}, we have $\mathcal{N} \subseteq E$. Then, $\Psi = cl_{\pi gs}(\mathcal{N}) \subseteq cl_{\pi gs}(E) = E$. Hence, $\mathcal{N} = \Psi$. □

Definition 4.8. Ψ is characterized to be weakly Hausdorff [49] if each element of Ψ is an intersection of regular closed sets.

Theorem 4.17. Let $\Delta : \Psi \to \Phi$ be an injective contra πgs-continuous function. If Φ is weakly Hausdorff then, Ψ is πgs-T_1.

Proof. Let ν and μ be any two elements in Ψ such that $\nu \neq \mu$. Since Δ is injective, $\Delta(\nu) \neq \Delta(\mu)$. If Φ is weakly Hausdorff, regular closed subsets Θ_1 and Θ_2 of Φ comprising $\Delta(\nu)$ and $\Delta(\mu)$, correspondingly, appears such that $\Delta(\nu) \not\in \Theta_2$ and $\Delta(\mu) \not\in \Theta_1$. Since regular closed sets are closed and Δ is contra πgs-continuous, $\Delta^{-1}(\Theta_1)$ and $\Delta^{-1}(\Theta_2)$ are πgs-open subsets of Ψ comprising ν and μ, correspondingly, such that $\mu \not\in \Delta^{-1}(\Theta_1)$ and $\nu \not\in \Delta^{-1}(\Theta_2)$. Hence, Ψ is πgs-T_1. □

Theorem 4.18. If $\Delta : \Psi \to \Phi$ is an injective function whose graph $G(\Delta)$ is contra πgs-graph then, Ψ is πgs-T_1.

Proof. Let ν and μ be any two elements in Ψ such that $\nu \neq \mu$. Since Δ is injective, $(\nu, \Delta(\mu)) \in (\Psi \times \Phi) \setminus G(\Delta)$. Since $G(\Delta)$ is contra πgs-graph, there exists a πgs-open subset Ω of Ψ and a closed subset Θ of Φ comprising ν and μ, correspondingly, such that $\Delta(\Omega) \cap \Theta = \emptyset$. Then $\Delta^{-1}(\Theta) \cap \Omega = \emptyset$ and $\mu \not\in \Omega$. Similarly, since $(\Delta(\nu), \mu) \in (\Psi \times \Phi) \setminus G(\Delta)$, there exists a πgs-open subset Ω of Ψ comprising μ such that $\nu \notin \Omega$. Hence, Ψ is πgs-T_1. □

Theorem 4.19. Let $\Delta : \Psi \to \Phi$ be an injective contra πgs-continuous function. Whenever Φ is an ultra Hausdorff space, Ψ has to be πgs-T_2.

Proof. Let ν and μ be any two elements in Ψ such that $\nu \neq \mu$. Since Δ is injective, $\Delta(\nu) \neq \Delta(\mu)$. If Φ is an ultra Hausdorff space, there exist disjoint clopen subsets Θ_1 and Θ_2 of Φ comprising $\Delta(\nu)$ and $\Delta(\mu)$, correspondingly. Then, $\Delta^{-1}(\Theta_1)$ and $\Delta^{-1}(\Theta_2)$ are disjoint subsets of Ψ comprising ν and μ, correspondingly, which are both πgs-open and πgs-closed in Ψ since Δ is contra πgs-continuous. Hence, Ψ is πgs-T_2. □

Definition 4.9. A space Ψ is said to be πgs-normal if each pair of non-empty disjoint closed sets can be separated by disjoint πgs-open sets.

Theorem 4.20. Let $\Delta : \Psi \to \Phi$ be an injective closed contra πgs-continuous function. If Φ is ultra normal, then Ψ is πgs-normal.

Proof. Let Θ_1 and Θ_2 be any two non-empty disjoint closed subsets of Ψ. Since Δ is injective and closed, $\Delta(\Theta_1)$ and $\Delta(\Theta_2)$ are non-empty disjoint closed subsets of Φ. Since Φ is ultra normal, there exist disjoint clopen subsets Θ_1 and Θ_2 of Φ such that $\Delta(\Theta_1) \subseteq \Theta_1$ and $\Delta(\Theta_2) \subseteq \Theta_2$. Since Δ is contra πgs-continuous, $\Delta^{-1}(\Theta_1)$ and $\Delta^{-1}(\Theta_2)$ are disjoint πgs-open subsets of Ψ such that $\Theta_1 \subseteq \Delta^{-1}(\Theta_1)$ and $\Theta_2 \subseteq \Delta^{-1}(\Theta_2)$. Hence, Ψ is πgs-normal. □
5. Conclusion

It is understood from the studies of many researchers on contra continuity, which is one of the types of continuity that has been frequently studied recently as in the past, still arouses curiosity today. Researchers have not only examined various properties of the different types of contra continuous functions they have identified, but also examined the relationships between different contra continuities. In this study, we not only share the concept of contra \(\pi gs \)-continuity [8] related with \(\pi gs \)-open sets defined by Çaksu [4], but also investigated various properties of contra \(\pi gs \)-continuous functions and examined the relationships between different contra continuities. Remark 3.2 clearly shows that the concept of contra \(\pi gs \)-continuity is weaker than the concepts of contra \(\pi g \)-continuity [7], contra \(gs \)-continuity [9], contra \(g \)-continuity [39], contra semicontinuity [9], contra super continuity [38], contra continuity [6], strong contra continuity [37], perfect continuity [35] and RC continuity [9]. We also obtained important results by examining various properties related to separation axioms, connectedness, compactness, cover and graph concepts. We believe that our study will shed light on the studies researchers interested in contra continuous functions.

Article Information

Acknowledgements: The author would like to thank the editors who worked diligently throughout the process and the referees who carefully reviewed this article and provided valuable suggestions.

Author’s contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Author owns the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

Affiliations

Nebiye Korkmaz

Address: Muğla Sıtkı Koçman University, Education Faculty, Dept. of Mathematics and Science Education, 48000, Menteşe-Muğla/TURKEY

E-mail: nkorkmaz@mu.edu.tr

ORCID ID: 0000-0003-2248-4280