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Abstract
In this work, a novel form of contra continuity entitled as contra πgs-continuity is examined, which has
connections to πgs-closed sets. Furthermore, correlations between contra πgs-continuity and several
previously established forms of contra continuous functions are further explored, as well as basic features
of contra πgs-continuous functions are disclosed.
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1. Introduction
After defining semi-open sets [1] in 1963, Levine introduced the concept of g-closed sets [2] in 1970. This

interesting new set type has led to the emergence of different types of generalized closed sets. Dontchev and Noiri
defined πg-closed sets [3] in 2000. In 2006, Aslım et al. introduced the πgs-closed set [4] definition, which has an
important place in this study, to the literature.

The idea of LC-continuous functions was first introduced and analyzed by Ganster and Reilly [5] in 1989.
Dontchev [6] produced contra-continuity, as a more robust variant of LC-continuity in 1996. As a very interesting
subject, contra continuous functions have continued to attract the attention of many researchers over the years. After
Ekici gave the definition of contra πg-continuous functions [7] in 2008, contra πgs-continuous [8] functions were
also defined in Caldas et al.’s studies in 2010, which essentially introduced and examined contra πgp-continuous
functions [8].

The requirement that every open set in the codomain possesses a preimage that is πgs-closed in the domain
identifies contra πgs-continuous functions [8]. A milder version of contra-continuity [6] and contra gs-continuity [9]
is contra πgs-continuity. Crucial characteristics of contra πgs-continuous functions are also examined.

2. Preliminaries
Unless otherwise specified, topological spaces in this work always refer to on which no separation axioms are

required; Ψ will stand for the topological space (Ψ,>) and Φ will stand for the topological space (Φ,⊥); ℵ will
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stand for any subset of the space Ψ. The interior of ℵ is indicated as int(ℵ) and the closure of ℵ in indicated as cl(ℵ).
Whenever ℵ = int(cl(ℵ)) (correspondingly, ℵ = cl(int(ℵ))), afterwards ℵ is a regular closed set (correspondingly,
regular open set) [10]. Whenever ℵ ⊂ cl(int(ℵ)), afterwards ℵ is considered as a semi-open set [1]. Whenever ℵ
could be expressed as union of regular open sets, afterwards it is accepted as a δ-open set [11]. Complementary of
semi-open set (correspondingly δ-open set) is introduced as semi-closed (correspondingly δ-closed). The intersection
of whole semi-closed sets involving ℵ is known as semi-closure [12] of ℵwhich is expressed by scl(ℵ). Dually the
semi-interior [12] of ℵ is characterized as union of whole semi-open sets involved in ℵ and indicated by sint(ℵ).

ν ∈ Ψ is termed δ-cluster point [11] of ℵ, when int(cl(z)) ∩ ℵ 6= ∅ for every z ∈ O(ν,Ψ), where O(ν,Ψ) stands
for all open subsets of Ψ containing the point ν. Whole δ-cluster points of ℵ composes δ-closure [11] of ℵ that is
shown with clδ(ℵ).

When ℵ ⊂ cl(int(clδ(ℵ))), then ℵ is named as an e∗-open set [13]. We speak of an e∗-closed [13] set as comple-
mentary of an e∗-open. The e∗-closure [13] of ℵ is the intersection of whole e∗-closed sets involving subset ℵ and it
is symbolized by e∗-cl(ℵ).

Whenever e∗-cl(z) ∩ ℵ 6= ∅ for each e∗-open set z involving point ν, afterwards ν is identified as e∗-θ-cluster
point [14] of ℵ. The e∗-θ-closure [14] of ℵ is the set of whole e∗-θ-cluster points of ℵ, and is expressed by e∗-clθ(ℵ).
For ℵ = e∗-clθ(ℵ), then ℵ is e∗-θ-closed [15]. e∗-θC(Ψ) is the notion for the collection of whole e∗-θ-closed subsets of
space Ψ.

When for every ν in ℵ, if there exists an e∗-open set z comprising ν such that z \ℵ is countable, then ℵ is termed
we∗-open [16]. A we∗-closed [16] set is the complementary of an we∗-open.

When ℵ ⊂ cl(int(ℵ)) ∪ int(cl(ℵ)), subsequently ℵ is named as b-open [17] (or sp-open [18] or γ-open [19]).
A b-closed [17] (or γ-closed [20, 21]) set is the complementary of a b-open (or γ-open). The b-closure [17] (or
γ-closure [20]) of ℵ is expressed as bcl(ℵ) (or γcl(ℵ)) and it is the intersection of whole b-closed (or γ-closed) sets
comprising ℵ. The set ℵ is said to be pre-closed [22] if cl(int(ℵ)) ⊂ ℵ. The intersection of all pre-closed sets
containing ℵ is called pre-closure [20] of ℵ and denoted by pcl(ℵ).

A subset ℵ of a space Ψ is characterized as a ĝ-closed [23] set, if cl(ℵ) ⊂ z, whenever z is a semi-open set
satisfying the condition ℵ ⊂ z. ĝ-open sets [23] are the complement of ĝ-closed sets. When bcl(ℵ) ⊂ z whenever
ℵ ⊂ z and z is a ĝ-open set in Ψ, ℵ is a bĝ-closed [24] set. A bĝ-open [25] is the complementary of a bĝ-closed set.
When scl(ℵ) ⊂ z whenever ℵ ⊂ z and z is a bĝ-open set in Ψ, ℵ is called as a sbĝ-closed [26] set.

π-open [27] corresponds to the finite union of regular open sets. π-closed represents the complementary of a
π-open. When ℵ ⊂ z and z is open (correspondingly, π-open), afterwards ℵ is regarded as a generalized closed
(briefly, g-closed) [2] (correspondingly, πg-closed [17]) if cl(ℵ) ⊂ z. g-open [24] (correspondingly, πg-open [7]) is the
complementary of g-closed (correspondingly, πg-closed). While ℵ ⊂ z and z is open (correspondingly, π-open),
afterwards ℵ is regarded to be generalized semi-closed (briefly, gs-closed) [28] (correspondingly, πgs-closed [4]) if
scl(ℵ) ⊂ z. gs-open [24] (correspondingly, πgs-open) constitutes the complementary of a gs-closed (correspond-
ingly, πgs-closed) set. If pcl(ℵ) ⊂ z for all z which are π-open sets containing ℵ, then ℵ is called as πgp-closed [29].
The set ℵ is called as πgγ-closed [20], if γcl(ℵ) ⊂ z for all π-open sets z containing ℵ.

The entire πgs-closed (correspondingly, πgs-open, πgp-closed, πgγ-closed, gs-closed, gs-open, closed, semi-
closed, semi-open, γ-open, π-open, πg-open, regular open, regular closed, g-closed, πg-closed, we∗-closed, e∗-closed,
e∗θ-closed, bĝ-closed, sbĝ-closed) subsets of Ψ are expressed by πGSC(Ψ) (correspondingly, πGSO(Ψ), πGPC(Ψ),
πGγC(Ψ), GSC(Ψ), GSO(Ψ), C(Ψ), SC(Ψ), SO(Ψ), γO(Ψ), πO(Ψ), πGO(Ψ), RO(Ψ), RC(Ψ), GC(Ψ), πGC(Ψ),
we∗C(Ψ), e∗C(Ψ), e∗θC(Ψ), bĝC(Ψ), sbĝC(Ψ)).

πGSC(ν,Ψ) (correspondingly, πGSO(ν,Ψ), RO(ν,Ψ), C(ν,Ψ), SO(ν,Ψ), O(ν,Ψ)) means the collection of whole
πgs-closed (correspondingly, πgs-open, regular open, closed, semi open, open) sets of Ψ comprising point ν ∈ Ψ.

πgs-closure of the set ℵ is denoted by clπgs(ℵ), which is the intersection of whole πgs-closed sets involving ℵ. On
the other hand, πgs-interior of a set ℵ is expressed by intπgs(ℵ), which corresponds to the union of whole πgs-open
sets included in ℵ.

Definition 2.1. A topological space Ψ is said to be:
(ιi) strongly S-closed [6] while a finite subcover matching could found for each closed cover of Ψ,
(ιii) strongly countably S-closed [7] when a finite subcover matching found for each countable cover of Ψ consisting
of closed sets,
(ιiii) strongly S-Lindelöf [7] when a countable subcover matching could found for each closed cover of Ψ,
(ιiv) ultra normal [30] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets,
(ιv) ultra Hausdorff [30] if for each couple of distinct points, ν1 and ν2 in Ψ there exist clopen sets ℵ1 and ℵ2

comprising ν1 and ν2 correspondingly, providing N1 ∩N2 = ∅ equality.

Definition 2.2. When ℵ in Ψ is strongly S-closed as a subspace, then ℵ is named strongly S-closed [6].
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Definition 2.3. ℵ in Ψ is called:
(ιi) α-open [31] whenever ℵ ⊂ int(cl(int(ℵ))),
(ιii) preopen [22] or nearly open [5] whenever ℵ ⊂ int(cl(ℵ)),
(ιiii) β-open [32] or semi-preopen [33] whenever ℵ ⊂ cl(int(cl(ℵ))).

Complement of an α-open (correspondingly, preopen, β-open) set is introduced as α-closed (correspondingly,
preclosed, β-closed) set [7]. αO(Ψ) (correspondingly, PO(Ψ), βO(Ψ)) stands for the collection of whole α-open
(correspondingly, preopen, β-open) subsets of Ψ.

Lemma 2.1. Whenever ℵ ⊂ Ψ,
(ιi) clπgs(Ψ\ℵ) = Ψ\intπgs(ℵ);
(ιii) ν ∈ clπgs(ℵ)⇔ ∀z ∈ πGSO(ν,Ψ),ℵ ∩z 6= ∅.

Proof. Before starting the proof, let’s remind the definitions of πgs-interior and πgs-closure of a set in a topological
space. Let (Ψ,>) be a topological space, ℵ ⊂ Ψ. Then, πgs-closure of ℵ is clπgs(ℵ) =

⋂
{Θ : ℵ ⊂ Θ,Θ ∈ πGSC(Ψ)}

and πgs-interior of ℵ is intπgs(ℵ) =
⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)}. Now we can start the proof.

(ιi): We will complete the proof by showing that the sets claimed to be equal include each other.
Let (Ψ,>) be a topological space and ℵ ⊂ Ψ.
(⇒): Let ν ∈ clπgs(Ψ\ℵ). Assume that ν /∈ Ψ\intπgs(ℵ). Since ν ∈ intπgs(ℵ) =

⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)},

it can be said that there exists a set z ∈ πGSO(ν,Ψ) such that z ⊂ ℵ. So Θ = Ψ\z ∈ πGSC(Ψ), ν /∈ Θ and
Ψ\ℵ ⊂ Θ. This brings us to the contradiction ν /∈ clπgs(Ψ\ℵ) contrary to our assumption. Hence as a result
clπgs(Ψ\ℵ) ⊂ Ψ\intπgs(ℵ).
(⇐): Let ν ∈ Ψ\intπgs(ℵ). So it can be clearly seen that ν /∈ intπgs(ℵ) =

⋃
{a : a ⊂ ℵ,a ∈ πGSO(Ψ)}. Then for all

of the sets a ∈ πGSO(Ψ) such that a ⊂ ℵ we have ν /∈ a. This means that for all sets Ψ\a ∈ πGSC(Ψ) such that
Ψ\ℵ ⊂ Ψ\a we have ν ∈ Ψ\a. So ν ∈ clπgs(Ψ\ℵ). Hence as a result Ψ\intπgs(ℵ) ⊂ clπgs(Ψ\ℵ).
Now we will give the proof of (ιii).
(ιii):
(⇒): Let ν ∈ clπgs(ℵ). Assume that there exists a set a ∈ πGSO(ν,Ψ) such that a ∩ ℵ = ∅. Under this assumption,
for the set Θ = Ψ\a it can be said that ν /∈ Θ and ℵ ⊂ Θ. These results brings us to the contradiction ν /∈ clπgs(ℵ)
contrary to our assumption.
(⇐): Let ν ∈ Ψ and let for all sets a ∈ πGSO(ν,Ψ) we have a ∩ ℵ 6= ∅. Assume that ν /∈ clπgs(ℵ). Then using
(ιi) we have ν ∈ Ψ\clπgs(ℵ) = Ψ\(Ψ\intπgs(Ψ\ℵ)) = intπgs(Ψ\ℵ). So there exists a set z ∈ πGSO(ν,Ψ) such that
z ⊂ Ψ\ℵ, which means that z ∩ ℵ = ∅which is a contradiction. So ν ∈ clπgs(ℵ).
Thus the proof is completed.

While ℵ is πgs-closed, then clπgs(ℵ) = ℵ. Typically, the opposite of this implication doesn’t hold true, as
demonstrated in the subsequent example:

Example 2.1. Consider the subset ℵ = {ν1, ν2} of the set Ψ = {ν1, ν2, ν3, ν4, ν5} and the topological space (Ψ,>),
where> = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν1, ν2, ν3},Ψ}. Then the set ℵ is an acceptable sample that fits the given situation
just above, since ℵ = clπgs(ℵ), while ℵ /∈ πGSC(Ψ).

ker(0) [34] means
⋂
{z ∈ > : 0 ⊂ z}which is known as the kernel of 0.

Lemma 2.2. [35] The subsequent characteristics apply to subsets z and 0 of Ψ:
(ιi) ν ∈ ker(z)⇔ (∀Θ ∈ C(ν,Ψ))(z ∩Θ 6= ∅);
(ιii) z ⊂ ker(z);
(ιiii) z ∈ Ψ⇒ z = ker(z);
(ιiv) z ⊂ 0⇒ ker(z) ⊂ ker(0).

3. Contra πgs-continuous functions

In this section, first the characterization of contra πgs-continuous functions is presented. Afterwards, the
relationships between some types of contra continuous functions and contra πgs-continuous functions were
examined. In addition, some new definitions in relation with πgs-open sets are given in order to examine various
properties of contra πgs-continuous functions, and these properties are presented through theorems and results.

Definition 3.1. ∆ : (Ψ,>) → (Φ,⊥) is referred as contra πgs-continuous [8], whenever ∆
−1

(0) ∈ πGSC(Ψ) for
each 0 ∈ ⊥.
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Theorem 3.1. Under the assumption πGSO(Ψ) is closed under arbitrary unions (or likewise πGSC(Ψ) is closed under
arbitrary intersections), subsequent statements are coequal for ∆ : (Ψ,>)→ (Φ,⊥).
(ιi) ∆ is contra πgs-continuous;
(ιii) 0 ∈ C(Φ)⇒ ∆−1(0) ∈ πGSO(Ψ);
(ιiii) (∀ν ∈ Ψ)(∀Θ ∈ C(∆(ν),Φ))(∃z ∈ πGSO(ν,Ψ))(∆(z) ⊂ Θ);
(ιiv) ℵ ⊂ Ψ⇒ ∆(clπgs(ℵ)) ⊂ ker(∆(ℵ));
(ιv) Ω ⊂ Φ⇒ clπgs(∆

−1(Ω)) ⊂ ∆−1(ker(Ω)).

Proof. Let ∆ : (Ψ,>)→ (Φ,⊥) be a function, where (Ψ,>) and (Φ,⊥) are two topological spaces and let πGSO(Ψ)
be closed under arbitrary unions (or likewise πGSC(Ψ) be closed under arbitrary intersections).
(ιi) ⇒ (ιii): Let Θ ∈ C(Φ). Then Φ\Θ is open in Φ. Since ∆ is contra πgs-continuous, Ψ\∆−1

(Θ) = ∆
−1

(Φ\Θ) is
πgs-closed in Ψ. Therefore, ∆

−1

(Θ) is πgs-open in Ψ.
(ιii)⇒ (ιi): Obvious.
(ιi)⇒ (ιiii): Let ν ∈ Ψ and Θ ∈ C(∆(ν),Φ). Then by (ιi), we have ∆

−1

(Θ) ∈ πGSO(Ψ). Choosing z = ∆
−1

(Θ) we
obtain that z ∈ πGSO(ν,Ψ) and ∆(z) ⊂ Θ .
(ιiii)⇒ (ιii): Let Θ ∈ C(Φ) and ν ∈ ∆

−1

(Θ). Since ∆(ν) ∈ Θ, by (ιiii) there exist a πgs-open set zν ∈ πGSO(ν,Ψ)

such that ∆(zν) ⊂ Θ. So we have ν ∈ zν ⊂ ∆
−1

(Θ) and hence ∆
−1

(Θ) =
⋃
{zν : ν ∈ ∆

−1

(Θ)} is πgs-open in Ψ
since πGSO(Ψ) is closed under arbitrary unions.
(ιii)⇒ (ιiv): Let ℵ be any subset of Ψ. Suppose that there exist an element µ of ∆(clπgs(ℵ)) such that µ /∈ ker(∆(ℵ)).
Then there exists an open set z of Φ such that ∆(ℵ) ⊂ z and µ /∈ z. Hence, there exists Θ = Φ\z ∈ C(µ,Φ) such
that ∆(ℵ) ∩Θ = ∅ and clπgs(ℵ) ∩∆

−1

(Θ) = ∅. From here we obtain that ∆(clπgs(ℵ)) ∩Θ = ∅ and µ 6∈ ∆(clπgs(ℵ))
which is a contradiction.
(ιiv)⇒ (ιv): Let Ω be any subset of Φ. Then ∆

−1

(Ω) ⊂ Ψ. By (ιiv), ∆(clπgs(∆
−1

(Ω))) ⊂ ker(∆(∆
−1

(Ω))) ⊂ ker(Ω).
Hence, clπgs(∆

−1

(Ω)) ⊂ ∆−1(ker(Ω)).
(ιv)⇒ (ιi): Let z be any open subset of Φ. Then by (ιv) and by Lemma 2.2, clπgs(∆

−1

(z)) ⊂ ∆
−1

(ker(z)) = ∆
−1

(z).
So we have clπgs(∆

−1

(z)) = ∆
−1

(z). Since πGSO(Ψ) is closed under arbitrary unions, πGSC(Ψ) is closed under
arbitrary intersections and hence ∆

−1

(z) = clπgs(∆
−1

(z)) is πgs-closed.

Remark 3.1. Statements (ιi) and (ιii) in Theorem 3.1 are identical even if πGSO(Ψ) is not closed under arbitrary
unions (or likewise, πGSC(Ψ) is not closed under arbitrary intersections).

Definition 3.2. ∆ : (Ψ,>)→ (Φ,⊥) is categorized as:
(ι1) perfectly continuous [36] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ > ∩ C(Ψ)),
(ι2) RC-continuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ RC(Ψ)),
(ι3) strongly continuous [37] :⇔ (z ⊂ Φ⇒ ∆

−1

(z) ∈ > ∩ C(Ψ)) (identically (ℵ ⊂ Ψ⇒ ∆(cl(ℵ)) ⊂ ∆(ℵ))),
(ι4) contra-continuous [6] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ C(Ψ)),
(ι5) contra-super-continuous [38]:⇔ (∀ν ∈ Ψ)(∀Θ ∈ C(∆(ν),Φ)(∃z ∈ RO(ν,Ψ))(∆(z) ⊂ Θ),
(ι6) contra-semicontinuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ SC(Ψ)),
(ι7) contra g-continuous [39] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ GC(Ψ)),
(ι8) contra gs-continuous [9] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ GSC(Ψ)),
(ι9) contra πg-continuous [7] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGC(Ψ)),
(ι10) contra we∗-continuous [16] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ we∗C(Ψ)),
(ι11) contra e∗θ-continuous [40] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ e∗θC(Ψ)),
(ι12) contra e∗-continuous [41] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ e∗C(Ψ)),
(ι13) almost contra e∗-continuous [42] :⇔ (z ∈ RO(Φ)⇒ ∆

−1

(z) ∈ e∗C(Ψ)),
(ι14) almost contra e∗θ-continuous [42] :⇔ (z ∈ RO(Φ)⇒ ∆

−1

(z) ∈ e∗θC(Ψ)),
(ι15) contra bĝ-continuous [25] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ bĝC(Ψ)),
(ι16) contra sbĝ-continuous [43] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ sbĝC(Ψ)).
(ι17) contra πgp-continuous function [8] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGPC(Ψ)),
(ι18) contra πgγ-continuous function [20] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGγC(Ψ)).
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Remark 3.2.
ι6←− ι4 ←− ι5←− ι2←− ι1←− ι3
↓ ↓
ι8←− ι7
↓ ↓

contra πgs-continuous← ι9
↓ ↓
ι18← ι17

Remark 3.3. As can be seen from the samples below, reversibility of the consequences in the above diagram need not
to be true.

Example 3.1. > = {∅, {ν2}, {ν1, ν4}, {ν2, ν3}, {ν1, ν2, ν4}, {ν1, ν2, ν3, ν4},Ψ} is the topology on Ψ = {ν1, ν2, ν3, ν4, ν5}.
Since mappings under ∆ : Ψ → Ψ are listed as ∆(ν1) = ν1, ∆(ν2) = ν2, ∆(ν3) = ν3, ∆(ν4) = ν5, ∆(ν5) = ν4 the
contra πgs-continuity of ∆ is evident. However, it is neither contra πg-continuous nor contra gs-continuous since
∆
−1

({ν2}) = {ν2} /∈ πGC(Ψ) and ∆
−1

({ν2}) = {ν2} /∈ πGSC(Ψ).

Example 3.2. Let Ψ = {ν1, ν2, ν3, ν4}, > = {∅, {ν1}, {ν2}, {ν1, ν2},Ψ}. Match-ups for ∆ : Ψ→ Ψ are

∆(ν1) = ∆(ν2) = ∆(ν3) = ν1,∆(ν4) = ν3.

∆ is contra πgs-continuous, but it is not contra e∗θ-continuous since ∆
−1

({ν1}) = ∆
−1

({ν1, ν2}) = {ν1, ν2, ν3} is not
e∗θ-closed w.r.t. >.

Example 3.3. Given Ψ = {ν1, ν2, ν3, ν4}, > = {∅, {ν1}, {ν2}, {ν1, ν2},Ψ}. Match-ups for ∆ : Ψ→ Ψ are

∆(ν1) = ν3,∆(ν2) = ν1,∆(ν3) = ∆(ν4) = ν4.

Although ∆ is contra πgs-continuous, it is not almost contra e∗-continuous,since {ν1, ν3} is regular open and
∆
−1

({ν1, ν3}) = {ν1, ν2} is not an e∗-closed. By checking the connections between these class of functions in [42] we
can easily state that ∆ cannot be almost contra e∗θ-continuous, contra e∗θ-continuous and contra e∗-continuous.

Example 3.4. > = {∅, {ν1}, {ν2}, {ν2, ν1}, {ν3, ν1}, {ν1, ν3, ν2}, {ν1, ν2, ν4},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4}.
Match-ups of ∆ : Ψ→ Ψ are

∆(ν1) = ν1,∆(ν2) = ν2,∆(ν3) = ∆(ν4) = ν4.

Since ∆
−1

({ν1, ν2}) = ∆
−1

({ν1, ν2, ν3}) = {ν1, ν2} /∈ πGSC(Ψ), ∆ is not contra πgs-continuous. However, it is
contra e∗θ-continuous. So it is contra e∗-continuous, almost contra e∗θ-continuous and almost contra e∗-continuous.

As seen from the examples above contra πgs-continuity does not require almost contra e∗θ-continuity, almost
contra e∗-continuity, contra e∗θ-continuity and contra e∗-continuity. It is also clear that almost contra e∗θ-continuity,
almost contra e∗-continuity, contra e∗θ-continuity and contra e∗-continuity does not require contra πgs-continuity.
As another result we can state that contra we∗-continuity does not require contra πgs-continuity.

Research Question Does contra πgs-continuity require contra we∗-continuity?

Example 3.5. > = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν3, ν1}, {ν1, ν3, ν2}, {ν2, ν1, ν4},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4}.
Match-ups of ∆ : Ψ→ Ψ are

∆(ν1) = ν3,∆(ν2) = ν2,∆(ν3) = ν1,∆(ν4) = ν2

∆ is contra πgs-continuous, but it is not contra bĝ-continuous since ∆
−1

({ν1, ν3}) = {ν1, ν3} is not bĝ-closed. So it
cannot be contra sbĝ-continuous.

Example 3.6. > = {∅, {ν1, ν5}, {ν2, ν4}, {ν1, ν2, ν4, ν5},Ψ} is a topology on Ψ = {ν1, ν2, ν3, ν4, ν5}. Match-ups of
∆ : Ψ→ Ψ are

∆(ν1) = ν1,∆(ν2) = ν2,∆(ν3) = ∆(ν4) = ν3,∆(ν5) = ν5

∆ is contra bĝ-continuous. However, since ∆
−1

({ν1, ν2, ν4, ν5}) = {ν1, ν2, ν5} /∈ πGSC(Ψ), it is not contra πgs-
continuous.
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As seen from the examples above there is no relation between contra bĝ-continuity and contra πgs-continuity.
As another result we see that a contra πgs-continuity does not require contra sbĝ-continuity.

Research Question Does contra sbĝ-continuity require contra πgs-continuity?

Example 3.7. [8] Let > = {∅, {ν1}, {ν2}, {ν1, ν2}, {ν3, ν2}, {ν3, ν2, ν1},Ψ} and ⊥ = {∅, {ν1},Ψ} be two topologies
on Ψ = {ν1, ν2, ν3, ν4}. The identity function ∆ : (Ψ,>) → (Ψ,⊥) is contra πgs-continuous, but it is not contra
πgp-continuous.

Example 3.8. [8] Let > = {∅, {ν2}, {ν3, ν2}, {ν1, ν4}, {ν1, ν2, ν4}, {ν1, ν2, ν4, ν3},Ψ} and ⊥ = {∅, {ν4},Ψ} be two
topologies on Ψ = {ν1, ν2, ν3, ν4, ν5}. The identity function ∆ : (Ψ,>)→ (Ψ,⊥) is contra πgp-continuous and contra
πgγ-continuous, but it is not contra πgs-continuous.

As seen from Example 3.7 and Example 3.8 there is no connection between contra πgp-continuity and contra
πgs-continuity. Example 3.8 also shows that contra πgγ-continuity does not require contra πgs-continuity.

Theorem 3.2. [4] Let ℵ ⊂ Ψ, afterwards ℵ ∈ RO(Ψ) if and only if ℵ ∈ πO(Ψ) ∩ πGSC(Ψ).

Definition 3.3. ∆ : Ψ→ Φ is called as:
(ι1) π-continuous [3] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πO(Ψ)),
(ι2) πg-continuous [3] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ πGO(Ψ)),
(ι3) πgs-continuous [4] :⇔ (z ∈ C(Φ)⇒ ∆

−1

(z) ∈ πGSC(Ψ)),
(ι4) completely continuous [44] :⇔ (z ∈ ⊥ ⇒ ∆

−1

(z) ∈ RO(Ψ)).

Theorem 3.3. Whenever ∆ : Ψ→ Φ, afterwards the statement below is satisfied:
∆ is contra πgs-continuous and π-continuous if and only if ∆ is completely continuous.

Proof. Obvious from Theorem 3.2.

Theorem 3.4. Under the circumstance πGSO(Ψ) is closed under arbitrary unions, it can be stated that whenever ∆ : Ψ→ Φ
is contra πgs-continuous and Φ is regular, afterwards ∆ is πgs-continuous.

Definition 3.4. Whenever πGSC(Ψ) ⊂ SC(Ψ) afterwards Ψ is accepted as πgs-T 1
2

[4].

Theorem 3.5. Whenever Ψ is considered as πgs-T 1
2

space afterwards, contra πgs-continuity, contra-semicontinuity and
contra gs-continuity of ∆ : Ψ→ Φ are identical.

Proof. Assume that Ψ as a πgs-T 1
2

space. Since SC(Ψ) ⊂ πGSC(Ψ), we have SC(Ψ) = πGSC(Ψ). Using the relation
SC(Ψ) ⊂ GSC(Ψ), we obtain πGSC(Ψ) ⊂ GSC(Ψ). Since GSC(Ψ) ⊂ πGSC(Ψ), we have GSC(Ψ) = πGSC(Ψ).
Therefore πGSC(Ψ) = SC(Ψ) = GSC(Ψ).

Theorem 3.6. For each i ∈ I , pi stands for projection of
∏

Φi onto Φi. If ∆ : Ψ →
∏

Φi is contra πgs-continuous, then
pi ◦∆ : Ψ→ Φi is contra πgs-continuous for each i ∈ I .

Proof. Since pi is continuous and ∆ is contra πgs-continuous, we can state that p
−1

i (Ui) is open in
∏

Yi for any
Ui ∈ ⊥i and (pi ◦∆)

−1

(Ui) = ∆
−1

(p
−1

i (Ui)) ∈ πGSC(Ψ). Hereby, pi ◦∆ is contra πgs-continuous.

Definition 3.5. A topological space Ψ is said to be locally πgs-indiscrete if πGSO(Ψ) ⊂ C(Ψ).

Theorem 3.7. The fact that Ψ is locally πgs-indiscrete for contra πgs-continuous ∆ : Ψ→ Φ requires that ∆ is continuous.

Proof. Allow z ∈ ⊥. Since ∆ is contra πgs-continuous, ∆
−1

(z) ∈ πGSC(Ψ). Since Ψ is locally πgs-indiscrete,
∆
−1

(z) ∈ >.

Theorem 3.8. Whenever Ψ is a πgs-T 1
2

for any ∆ : Ψ→ Φ, afterwards following are equivalent :
(ι1) ∆ is completely continuous;
(ι2) ∆ is π-continuous and contra πgs-continuous;
(ι3) ∆ is π-continuous and contra gs-continuous;
(ι4) ∆ is π-continuous and contra-semicontinuous.
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Proof. Equivalence of (ι2), (ι3) and (ι4) is obvious from Theorem 3.5 and the equivalence of (ι1) and (ι2) can be
easily seen from Theorem 3.2.

Definition 3.6. The topological space (Ψ,>) is called:
(ι1) submaximal [45] :⇔ (∀ℵ ⊂ Ψ)(cl(ℵ) = Ψ⇒ ℵ ∈ >),
(ι2) extremally disconnected [45] :⇔ (∀ℵ ⊂ Ψ)(ℵ ∈ > ⇒ cl(ℵ) ∈ >).

Definition 3.7. ∆ : Ψ→ Φ is called contra α-continuous [46] (correspondingly contra precontinuous [46], contra
β-continuous [47], contra γ-continuous [48]) if the preimage of every open subsets of Φ is α-closed (correspondingly
preclosed, β-closed, γ-closed) in Ψ.

Lemma 3.1. For any (Ψ,>), if πGSC(Ψ) is closed under finite unions then, πgs-> = {U ⊂ Ψ : clπgs(Ψ\U) = Ψ\U}.

Theorem 3.9. Whenever Ψ is extremally disconnected, submaximal and πgs-T 1
2

for any ∆ : Ψ→ Φ, afterwards the following
are equivalent:
(ι1) ∆ is contra πgs-continuous;
(ι2) ∆ is contra gs-continuous;
(ι3) ∆ is contra-semicontinuous;
(ι4) ∆ is contra-continuous;
(ι5) ∆ is contra precontinuous;
(ι6) ∆ is contra β-continuous;
(ι7) ∆ is contra α-continuous;
(ι8) ∆ is contra γ-continuous.

Proof. In an extremally disconnected submaximal space (Ψ,>),

> = αO(Ψ) = SO(Ψ) = PO(Ψ) = γO(Ψ) = βO(Ψ).

From this fact we can say that (ι3), (ι4), (ι5), (ι6), (ι7), (ι8) are equivalent. The equivalence of (ι1), (ι2), (ι3) is obvious
from Theorem 3.5.

Theorem 3.10. Whenever Ψ is said to be extremally disconnected, afterwards any ∆ : Ψ→ Φ is contra πgs-continuous and
πgs-continuous.

Definition 3.8. ∆ : Ψ→ Φ is said to be πgs-irresolute [4] if ∆
−1

(z) ∈ πGSO(Ψ) for each z ∈ πGSO(Φ).

Theorem 3.11. For ∆ : Ψ→ Φ and ρ : Φ→ ζ following properties hold:
(ι1) If ∆ is πgs-irresolute and ρ is contra πgs-continuous, then ρ ◦∆ is contra πgs-continuous;
(ι2) If ∆ is contra πgs-continuous and ρ is continuous, then ρ ◦∆ is contra πgs-continuous;
(ι3) If ∆ is contra πgs-continuous and ρ is RC-continuous, then ρ ◦∆ is πgs-continuous;
(ι4) If ∆ is πgs-continuous and ρ is contra continuous, then ρ ◦∆ is contra πgs-continuous;
(ι5) If ∆ is πgs-irresolute and ρ is RC-continuous (correspondingly contra π-continuous, contra-continuous, contra g-
continuous, contra πg-continuous, contra-semicontinuous, contra gs-continuous), then ρ ◦∆ is contra πgs-continuous.

Definition 3.9. ∆ : Ψ→ Φ is characterized as πgs-open if ∆(ℵ) is πgs-open in Φ for each πgs-open subset ℵ of Ψ.

Theorem 3.12. ∆ : Ψ → Φ and ρ : Φ → ζ be two functions and suppose that πGSC(Φ) is closed under arbitrary
intersections. Whenever ∆ is surjective πgs-open function and ρ ◦ ∆ is contra πgs-continuous, afterwards ρ is contra
πgs-continuous.

Proof. Suppose µ ∈ Φ and Θ ∈ C(ρ(µ), ζ). Since ∆ is surjective, existence of ν ∈ Ψ satisfying ∆(ν) = µ is clear.
Naturally, Θ ∈ C(ρ ◦∆(ν), ζ). Since ρ ◦∆ is contra πgs-continuous, a ∈ πGSO(ν,Ψ) naturally appears satisfying
ρ ◦∆(a) ⊂ Θ relation. Since ∆ is πgs-open, ∆(a) is an element of πGSO(µ,Φ). Hence, for each µ ∈ Φ and for each
Θ ∈ C(ρ(µ), ζ), existence of ∆(a) = z ∈ πGSO(µ,Φ) is natural satisfying ρ(z) ⊂ Θ. By Theorem 3.1 ρ is contra
πgs-continuous.

Corollary 3.1. Whenever πGSC(Φ) is closed under arbitrary intersections and ∆ : Ψ→ Φ is surjective πgs-irresolute and
πgs-open, afterwards for any ρ : Φ→ ζ, ρ ◦∆ is contra πgs-continuous if and only if ρ is contra πgs-continuous.

Proof. Obvious from Theorems 3.11 and 3.12.
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Definition 3.10. ∆ : Ψ→ Φ is characterized as weakly contra πgs-continuous whenever ν ∈ Ψ and Θ ∈ C(∆(ν),Φ),
afterwards a set z ∈ πGSO(ν,Ψ) exists satisfying int(∆(z)) ⊂ Θ.

Definition 3.11. A function ∆ : Ψ→ Φ is called as (πgs-s)-open whenever ∆(z) ∈ SO(Φ) for all z ∈ πGSO(Ψ).

Theorem 3.13. Whenever ∆ : Ψ→ Φ is a weakly contra πgs-continuous and (πgs-s)-open and πGSO(Ψ) is closed under
arbitrary unions, afterwards ∆ is contra πgs-continuous.

Proof. Whenever ν ∈ Ψ and Θ ∈ C(∆(ν),Φ), with the weakly contra πgs-continuity of ∆, as a result the set
z ∈ πGSO(ν,Ψ) appears satisfying int(∆(z)) ⊂ Θ . Since ∆ is (πgs-s)-open, ∆(z) is semi-open in Φ. Hence,
∆(z) ⊂ cl(int(∆(z))) ⊂ cl(Θ) = Θ.

Definition 3.12. frπgs(ℵ) stands for πgs-frontier of ℵ ∈ Ψ and characterized as clπgs(ℵ) ∩ clπgs(Ψ\ℵ).

Theorem 3.14. Let ∆ : Ψ→ Φ be a function. Whenever πGSC(Ψ) is closed under arbitrary intersections then, the set of
whole points ν ∈ Ψ at which ∆ is not contra πgs-continuous is equal to

⋃
{frπgs(∆

−1

(Θ)) : Θ ∈ C(∆(ν),Φ)}.

Proof. Let ν be any element of Ψ at which ∆ is not contra πgs-continuous. Then, there exists a closed subset Θ of Φ

comprising ∆(ν) such that ∆(z) is not contained in Θ for every z ∈ πGSO(ν,Ψ). So z ∩ (Ψ\∆−1

(Θ)) 6= ∅. Then,
we have ν ∈ clπgs(Ψ\∆

−1

(Θ)). Since ν ∈ ∆
−1

(Θ) ⊂ clπgs(∆
−1

(Θ)), ν ∈ frπgs(∆
−1

(Θ)).
For the converse, assume that ∆ is contra πgs-continuous at ν ∈ Ψ and Θ ∈ C(∆(ν),Φ). Naturally a set z ∈
πGSO(ν,Ψ) appears satisfying z ⊂ ∆

−1

(Θ). Therefore, ν ∈ intπgs(∆
−1

(Θ)). Hence, ν /∈ frπgs(∆
−1

(Θ)).

Corollary 3.2. For any ∆ : Ψ→ Φ, whenever πGSC(Ψ) is closed under arbitrary intersections, afterwards ∆ is not contra
πgs-continuous at ν if and only if Θ ∈ C(∆(ν),Φ) appears satisfying ν ∈ frπgs(∆

−1

(Θ)).

4. Preservation theorems
In this section, new separation axioms, connected spaces, compact spaces, covers and graphs related to πgs-open

sets are defined and various results are presented by examining the properties of these new concepts.

Definition 4.1. Ψ is said to be πgs-T1 whenever ν and µ in Ψ are distinct points, sets z ∈ πGSO(ν,Ψ) and
0 ∈ πGSO(µ,Ψ) naturally appears satisfying µ /∈ z and ν /∈ 0.

Definition 4.2. Ψ is said to be πgs-T2 whenever ν and µ in Ψ are distinct points, sets z ∈ πGSO(ν,Ψ) and
0 ∈ πGSO(µ,Ψ) naturally appears satisfying z ∩ 0 = ∅.

Theorem 4.1. Under the assumption 0 is an Uryshon space, whenever ν and µ are distinct points in Ψ a function ∆ : Ψ→ Φ
naturally appears that is contra πgs-continuous at ν and µ and for which ∆(ν) 6= ∆(µ), afterwards Ψ is πgs-T2.

Proof. Assume that ν and µ as distinct points in Ψ. Also, let ∆ : Ψ→ Φ be contra πgs-continuous at ν and µ such
that ∆(ν) 6= ∆(µ). Letting ν

′
= ∆(ν) and µ

′
= ∆(µ) with the knowlegde of Φ is Urysohn, existence of a ∈ O(ν

′
,Φ)

and z ∈ O(µ
′
,Φ) guaranteed such that cl(a) ∩ cl(z) = ∅. Since ∆ is contra πgs-continuous at ν and µ, there exist

πgs-open subsets ℵ and Ω of Ψ comprising ν and µ, correspondingly, such that ∆(ℵ) ⊂ cl(a) and ∆(Ω) ⊂ cl(z).
Hereby, ∆(ℵ ∩ Ω) ⊂ ∆(ℵ) ∩∆(Ω) ⊂ cl(a) ∩ cl(z) = ∅which implies that ℵ ∩ Ω = ∅. Hence, Ψ is πgs-T2.

Corollary 4.1. Whenever ∆ : Ψ→ Φ is contra πgs-continuous injection and Φ is an Urysohn space, afterwards Ψ is πgs-T2.

Definition 4.3. The topological space Ψ is called as,
(ι1) πgs-connected space :⇔ Ψ is not the union of two disjoint non-empty πgs-open sets,
(ι2) gs-connected space [15] :⇔ Ψ is not the union of two disjoint non-empty gs-open sets.

Remark 4.1. Although πgs-connected spaces are gs-connected, the contrary implication is not valid in general.

Example 4.1. Let Ψ = {ν, µ} and > = {∅, {ν},Ψ}. Ψ is gs-connected, but it is not πgs-connected since {ν} and {µ}
are non-empty disjoint πgs-open subsets of Ψ.

Theorem 4.2. For a topological space Ψ the following are equivalent:
(ι1) Ψ is πgs-connected;
(ι2) The only subsets of Ψ which are both πgs-open and πgs-closed are ∅ and Ψ;
(ι3) Each πgs-continuous function of Ψ into a discrete space Φ with at least two points is a constant function.
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Proof. Firstly let Ψ be a topological space.
(ι1)⇒ (ι2) Suppose that ℵ is a proper non-empty subset of Ψ which is both πgs-open and πgs-closed. Then, Ψ\ℵ is
a proper non-empty subset of Ψ which is both πgs-open and πgs-closed, ℵ ∩ (Ψ\ℵ) = ∅ and ℵ ∪ (Ψ\ℵ) = Ψ. But
this result contradicts with the πgs-connectedness of Ψ. Hence, the only subsets of Ψ which are both πgs-open and
πgs-closed ∅ and Ψ.
(ι2)⇒ (ι1) Suppose that Ψ is not πgs-connected. Then as a result two non-empty disjoint πgs-open subsets ℵ and Ω
of Ψ appears such that ℵ ∪ Ω = Ψ. Since ℵ = Ψ\Ω and Ω = Ψ\ℵ, ℵ and Ω are proper non-empty subsets of Ψ which
are both πgs-open and πgs-closed, but this is a contradiction. Hereby, Ψ is πgs-connected.
(ι2)⇒ (ι3) Let Φ be any discrete space with at least two elements and ∆ : Ψ → Φ be any contra πgs-continuous
function. Since Φ is discrete, {µ} is clopen in Φ for each µ ∈ Φ. Therefore, {µ} is both πgs-open and πgs-closed in Φ
for each µ ∈ Φ. We also have Ψ = ∆−1(Φ) = ∆−1(

⋃
{{µ} : µ ∈ Φ}) =

⋃
{∆−1({µ}) : µ ∈ Φ}. By (ι2), ∆−1({µ}) = ∅

or ∆−1({µ}) = Ψ for each µ ∈ Φ. If ∆−1({µ}) = ∅ for some µ ∈ Φ then, ∆ would not be a function anymore. If
there exist at least two distinct elements a and b in Φ such that ∆−1({a}) = Ψ = ∆−1({b}), then ∆ would not be
a function anymore. Therefore, there exists only one element µ of Φ such that ∆−1({µ}) = Ψ, which means that
∆(Ψ) = {µ}. Hence, ∆ is a constant function.
(ι3)⇒ (ι2) Let P be a non-empty set such that P ∈ πGSO(Ψ) ∩ πGSC(Ψ), Φ be any discrete space with at least two
elements and contra πgs-continuous ∆ : Ψ→ Φ defined as ∆(P ) = {ς} and ∆(Ψ\P ) = {η}, for distinct elements ς
and η of Φ. Since ∆ is constant by (ι3), Ψ\P = ∅. Therefore, P = Ψ.

Theorem 4.3. Let ∆ : Ψ → Φ be a surjective contra πgs-continuous function. While Ψ is πgs-connected, Φ cannot be a
discrete space.

Proof. Assume Φ as a discrete space. Let ℵ be any proper non-empty subset of Φ. Since ℵ is clopen in Φ and
∆ : Ψ→ Φ is contra πgs-continuous surjection, ∆−1(ℵ) ∈ πGSO(Ψ) ∩ πGSC(Ψ) is a proper non-empty subset of Ψ.
But this result contradicts with the πgs-connectedness of Ψ. Hence, Φ is not a discrete space.

Theorem 4.4. While whole contra πgs-continuous functions with a domain Ψ into any T0 space Φ is constant, Ψ has to be
πgs-connected.

Proof. Assume that Ψ is not πgs-connected. So, at least one proper non-empty subset ℵ ∈ πGSO(Ψ) ∩ πGSC(Ψ)
appears. Let Φ = {ς, η} and ⊥ = {∅, {ς}, {η},Φ}. Let ∆ : Ψ → Φ be a function such that ∆(ℵ) = {ς} and
∆(Ψ\ℵ) = {η}. Then, Φ is a T0 space and ∆ is a contra πgs-continuous function which is not constant. But this is a
contradiction. Hereby, Ψ has to be πgs-connected.

Theorem 4.5. Whenever ∆ : Ψ→ Φ is surjective contra πgs-continuous function and Ψ is πgs-connected, afterwards Φ has
to be connected.

Proof. Suppose that Φ as a disconnected space. So two non-empty disjoint open sets ℵ and Ω of Φ appear, so that
ℵ ∪ Ω = Φ. So ∆−1(ℵ) 6= ∅, ∆−1(Ω) 6= ∅, ∆−1(ℵ) ∩∆−1(Ω) = ∅, ∆−1(ℵ) ∪∆−1(Ω) = Ψ since ∆ is surjective. Since
∆ is contra πgs-continuous, ∆−1(ℵ) and ∆−1(Ω) are both πgs-open and πgs-closed in Ψ. Therefore, we reach the
result that Ψ is not πgs-connected which is a contradiction. Hereby, Φ is connected.

Theorem 4.6. The projection functions pΨ : Ψ× Φ→ Ψ and pΦ : Ψ× Φ→ Φ are πgs-irresolute.

Proof. Let pΨ : Ψ×Φ→ Ψ be the projection function from Ψ×Φ onto Ψ and ℵ be any πgs-closed subset of Ψ. Then,
pΨ

−1(ℵ) = ℵ × Φ. Let z be any π-open subset of Ψ× Φ involving ℵ × Φ. Then, there exists a π-open subset 0 of Ψ
involving ℵ such that z = 0× Φ. Since ℵ is πgs-closed in Ψ, scl(ℵ) ⊂ 0. Therefore, scl(ℵ)× Φ ⊂ 0× Φ = z. Since
scl(ℵ × Φ) ⊂ scl(ℵ) × Φ, we have scl(ℵ × Φ) ⊂ z. So ℵ × Φ = p−1

Ψ (ℵ) is πgs-closed in Ψ × Φ. Hence, projection
function pΨ : Ψ×Φ→ Ψ is πgs-irresolute. The proof for the other projection function pΦ : Ψ×Φ→ Φ is similar.

Theorem 4.7. Whenever ∆ : Ψ → Φ is a πgs-irresolute surjection and Ψ is πgs-connected, afterwards Φ has to be
πgs-connected.

Proof. Assume that Φ is not πgs-connected. Naturally, two non-empty disjoint πgs-open subsets z and Ω of Φ
appears so that z ∪ Ω = Φ. Then ∆−1(z) and ∆−1(Ω) are non-empty πgs-open subsets of Ψ, since ∆ is surjective
and πgs-irresolute. Besides, ∅ = ∆−1(z ∩ Ω) = ∆−1(z) ∩∆−1(Ω) and Ψ = ∆−1(z) ∪∆−1(Ω). Therefore, we reach
the result that Ψ is not πgs-connected which is a contradiction. Hereby, Φ is πgs-connected.

Theorem 4.8. Whenever the product space of two non-empty spaces is πgs-connected, each factor space has to be πgs-
connected.
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Proof. Accept Ψ and Φ as non-empty topological spaces and the product space Ψ× Φ as πgs-connected. Since the
projection functions are πgs-irresolute and surjective, by Theorem 4.7, Ψ and Φ are πgs-connected.

Definition 4.4. A topological space Ψ is called as:
(ι1) πgs-compact if every πgs-open cover of Ψ has a finite subcover,
(ι2) countably πgs-compact if every countable cover of Ψ by πgs-open sets has a finite subcover,
(ι3) πgs-Lindelöf if every πgs-open cover of Ψ has a countable subcover.

Definition 4.5. ℵ ∈ Ψ is characterized to be πgs-compact relative to Ψ whenever every πgs-open cover of ℵ by
πgs-open sets of Ψ has a finite subcover.

Theorem 4.9. Whenever ∆ : Ψ→ Φ is contra πgs-continuous and ℵ ⊂ Ψ is πgs-compact relative to Ψ, afterwards ∆(ℵ)
has to be strongly S-closed.

Proof. Let {Θi : i ∈ I} be a closed cover of ∆(ℵ) by closed subsets of the subspace ∆(ℵ). Then for each i ∈ I ,
there exits a closed set ℵi in Φ such that ∆(ℵ) =

⋃
{Θi : i ∈ I} =

⋃
{ℵi ∩∆(ℵ) : i ∈ I} = (

⋃
{ℵi : i ∈ I}) ∩∆(ℵ)

and Θi = ℵi ∩ ∆(ℵ). Since for each ν ∈ ℵ, we have ∆(ν) ∈ ∆(ℵ) and since ∆ is contra πgs-continuous, for
each ν ∈ ℵ there exists i(ν) ∈ I and there exists zν ∈ πGSO(ν,Ψ) such that ∆(ν) ∈ ℵi(ν) and ∆(zν) ⊂ ℵi(ν).
Then, {zν : ν ∈ ℵ} is a cover of ℵ by πgs-open sets of Ψ. Since ℵ is πgs-compact relative to Ψ, there exists a
finite subset ℵ0 of ℵ such that ℵ ⊂

⋃
{zν : ν ∈ ℵ0}. Then, we obtain ∆(ℵ) ⊂

⋃
{ℵi(ν) : ν ∈ ℵ0}. Therefore,

∆(ℵ) = ∆(ℵ) ∩ (
⋃
{ℵi(ν) : ν ∈ ℵ0}) =

⋃
{∆(ℵ) ∩ ℵi(ν) : ν ∈ ℵ0} =

⋃
{Θi(ν) : ν ∈ ℵ0} and this means that

{Θi(ν) : ν ∈ ℵ0} is a finite subcover of {Θi : i ∈ I}. Hence, ∆(ℵ) is strongly S-closed.

Corollary 4.2. Whenever ∆ : Ψ→ Φ is a contra πgs-continuous surjection and Ψ is πgs-compact, afterwards Φ has to be
strongly S-closed.

Theorem 4.10. Whenever the product space of two non-empty spaces is πgs-compact, afterwards each factor space has to be
πgs-compact.

Proof. Let Ψ×Φ be the product space of the non-empty topological spaces Ψ and Φ and Ψ×Φ be πgs-compact. Let
{ai : i ∈ I} be any πgs-open cover of Ψ. Then, Ψ× Φ = p−1

Ψ (Ψ) = p−1
Ψ (

⋃
{ai : i ∈ I}) =

⋃
{p−1

Ψ (ai) : i ∈ I}. Since
pΨ is πgs-irresolute, p−1

Ψ (ai) = ai × Φ is πgs-open in Ψ× Φ for each i ∈ I . Therefore, {ai × Φ : i ∈ I} is a πgs-open
cover of Ψ×Φ. Since Ψ×Φ is πgs-compact, there exists a finite subset I0 of I such that

⋃
{ai ×Φ : i ∈ I0} = Ψ×Φ.

Then, Ψ = pΨ(Ψ × Φ) = pΨ(
⋃
{ai × Φ : i ∈ I0}) = pΨ((

⋃
{ai : i ∈ I0}) × Φ) =

⋃
{ai : i ∈ I0}. Hence, Ψ is

πgs-compact. The proof for the space Φ is similar.

Theorem 4.11. Contra πgs-continuous images of πgs-Lindelöf (correspondingly countably πgs-compact) spaces are strongly
S-Lindelöf (correspondingly strongly countably S-closed).

Proof. Let Ψ be a πgs-Lindelöf space and ∆ : Ψ→ Φ be a surjective contra πgs-continuous function. Let {Θi : i ∈ I}
be a closed cover of Φ. Since ∆ is contra πgs-continuous, {∆−1(Θi) : i ∈ I} is a πgs-open cover of Ψ. Since Ψ
is πgs-Lindelöf, there exists a countable subset I0 of I such that

⋃
{∆−1(Θi) : i ∈ I0} = Ψ. Since ∆ is surjective,

Φ = ∆(Ψ) = ∆(
⋃
{∆−1(Θi) : i ∈ I0}) =

⋃
{∆(∆−1(Θi)) : i ∈ I0} =

⋃
{Θi : i ∈ I0} and then Φ =

⋃
{Θi : i ∈ I0}.

Hence, Φ is strongly S-Lindelöf. The proof for the contra πgs-continuous images of countably πgs-compact spaces
is similar.

Definition 4.6. The graph G(∆) of ∆ : Ψ→ Φ is said to be a contra πgs-graph if for each (ν, µ) in (Ψ× Φ)\G(∆),
there exist a set ℵ in πGSO(ν,Ψ) and a set Ω in C(µ,Φ) such that (ℵ × Ω) ∩G(∆) = ∅.

Theorem 4.12. The following are equivalent for the graph G(∆) of any ∆ : Ψ→ Φ.
(ι1) G(∆) is contra πgs-graph;
(ι2) For all (ν, µ) ∈ (Ψ × Φ)\G(∆), there exist a πgs-open set ℵ ⊂ Ψ comprising ν and a closed set Ω ⊂ Φ comprising µ
such that ∆(ℵ) ∩ Ω = ∅.

Theorem 4.13. Whenever ∆ : Ψ→ Φ is contra πgs-continuous and Φ is an Uryshon space, afterwards G(∆) has to be a
contra πgs-graph.

Proof. For all (ν, µ) ∈ (Ψ×Φ)\G(∆), it is clear that ∆(ν) 6= µ. Since Φ is Uryshon space, there exist open sets aν and
aµ in Φ comprising ∆(ν) and µ, correspondingly, such that cl(aν) ∩ cl(aµ) = ∅. Since ∆ is contra πgs-continuous, a
ℵ ∈ πGSO(ν,Ψ) appears so that ∆(ℵ) ⊂ cl(aν). Then, ∆(ℵ) ∩ cl(aµ) = ∅. Hereby, G(∆) is contra πgs-graph.
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Theorem 4.14. Let ∆ : Ψ→ Φ be a function and ρ : Ψ→ Ψ×Φ be the graph function of ∆ defined as ρ(ν) = (ν,∆(ν)) for
every ν ∈ Ψ. If ρ is contra πgs-continuous, then ∆ is contra πgs-continuous.

Proof. For all open set z ⊂ Φ, it is clear that Ψ×z is open in Ψ× Φ. Since ρ is a contra πgs-continuous function,
∆−1(z) = ρ−1(Ψ×z) is πgs-closed in Ψ. Hence, ∆ is contra πgs-continuous.

Theorem 4.15. Let ∆ : Ψ → Φ and ρ : Ψ → Φ be two contra πgs-continuous functions. If Φ is an Uryshon space and
πGSO(Ψ) is closed under finite intersections then, the set E = {ν ∈ Ψ : ∆(ν) = ρ(ν)} is πgs-closed in Ψ.

Proof. If we show that “ν /∈ E ⇒ ν /∈ clπgs(E)”, then the theorem will be proved. Let ν ∈ Ψ\E. Then, ∆(ν) 6= ρ(ν).
Since Φ is Uryshon, there exist open subsets z and 0 of Φ comprising ∆(ν) and ρ(ν), correspondingly, such that
cl(z) ∩ cl(0) = ∅. Since ∆ and ρ are contra πgs-continuous, ∆−1(cl(z)) and ρ−1(cl(0)) are πgs-open in Ψ. Let
∆−1(cl(z)) = a1 and ρ−1(cl(0)) = a2. Then, ν ∈ a1 ∩ a2. Let ℵ = a1 ∩ a2. Since πGSO(Ψ) is closed under finite
intersections, ℵ is a πgs-open set in Ψ comprising ν. So, ∆(ℵ) ∩ ρ(ℵ) = ∅. Hence, ℵ ∩ E = ∅. By Lemma 2.1,
ν /∈ clπgs(E).

Definition 4.7. For a subset ℵ of space Ψ, if clπgs(ℵ) = Ψ then ℵ is said to be πgs-dense in Ψ.

Theorem 4.16. Let ∆ : Ψ→ Φ and ρ : Ψ→ Φ be two functions. If
(ι1) Φ is an Uryshon space and πGSO(Ψ) is closed under finite intersections,
(ι2) ∆ and ρ are contra πgs-continuous,
(ι3) ∆ = ρ on a πgs-dense subset ℵ of Ψ,
then ∆ = ρ on Ψ.

Proof. By Theorem 4.15, the set E = {ν ∈ Ψ : ∆(ν) = ρ(ν)} is πgs-closed in Ψ. Since ∆ = ρ on a πgs-dense subset ℵ,
we have ℵ ⊂ E . Then, Ψ = clπgs(ℵ) ⊂ clπgs(E) = E. Hence, E = Ψ.

Definition 4.8. Ψ is characterized to be weakly Hausdorff [49] if each element of Ψ is an intersection of regular
closed sets.

Theorem 4.17. Let ∆ : Ψ→ Φ be an injective contra πgs-continuous function. If Φ is weakly Hausdorff then, Ψ is πgs-T1.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, ∆(ν) 6= ∆(µ). Since Φ is weakly
Hausdorff, regular closed subsets Θ1 and Θ2 of Φ comprising ∆(ν) and ∆(µ), correspondingly, appears such that
∆(ν) /∈ Θ2 and ∆(µ) /∈ Θ1. Since regular closed sets are closed and ∆ is contra πgs-continuous, ∆−1(Θ1) and
∆−1(Θ2) are πgs-open subsets of Ψ comprising ν and µ, correspondingly, such that µ /∈ ∆−1(Θ1) and ν /∈ ∆−1(Θ2).
Hence, Ψ is πgs-T1.

Theorem 4.18. If ∆ : Ψ→ Φ is an injective function whose graph G(∆) is contra πgs-graph then, Ψ is πgs-T1.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, (ν,∆(µ)) ∈ (Ψ× Φ)\G(∆). Since
G(∆) is contra πgs-graph, there exists a πgs-open subset a of Ψ and a closed subset Θ of Φ comprising ν and ∆(µ),
correspondingly, such that ∆(a)∩Θ = ∅. Then ∆−1(Θ)∩a = ∅ and µ /∈ a. Similarly, since (∆(ν), µ) ∈ (Ψ×Φ)\G(∆),
there exists a πgs-open subset Ω of Ψ comprising µ such that ν /∈ Ω. Hence, Ψ is πgs-T1.

Theorem 4.19. Let ∆ : Ψ→ Φ be an injective contra πgs-continuous function. Whenever Φ is an ultra Hausdorff space, Ψ
has to be πgs-T2.

Proof. Let ν and µ be any two elements in Ψ such that ν 6= µ. Since ∆ is injective, ∆(ν) 6= ∆(µ). Since Φ is an ultra
Hausdorff space, there exist disjoint clopen subsets a1 and a2 of Φ comprising ∆(ν) and ∆(µ), correspondingly.
Then, ∆−1(a1) and ∆−1(a2) are disjoint subsets of Ψ comprising ν and µ, correspondingly, which are both πgs-open
and πgs-closed in Ψ since ∆ is contra πgs-continuous. Hence, Ψ is πgs-T2.

Definition 4.9. A space Ψ is said to be πgs-normal if each pair of non-empty disjoint closed sets can be seperated
by disjoint πgs-open sets.

Theorem 4.20. Let ∆ : Ψ → Φ be an injective closed contra πgs-continuous function. If Φ is ultra normal, then Ψ is
πgs-normal.

Proof. Let Θ1 and Θ2 be any two non-empty disjoint closed subsets of Ψ. Since ∆ is injective and closed, ∆(Θ1) and
∆(Θ2) are non-empty disjoint closed subsets of Φ. Since Φ is ultra normal, there exist disjoint clopen subsets a1

and a2 of Φ such that ∆(Θ1) ⊂ a1 and ∆(Θ2) ⊂ a2 . Since ∆ is contra πgs-continuous, ∆−1(a1) and ∆−1(a2) are
disjoint πgs-open subsets of Ψ such that Θ1 ⊂ ∆−1(a1) and Θ2 ⊂ ∆−1(a2). Hence, Ψ is πgs-normal.
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5. Conclusion
It is understood from the studies of many researchers on contra continuity, which is one of the types of continuity

that has been frequently studied recently as in the past, still arouses curiosity today. Researchers have not only
examined various properties of the different types of contra continuous functions they have identified, but also
examined the relationships between different contra continuities. In this study, we not only share the concept of
contra πgs-continuity [8] related with πgs-open sets defined by Çaksu [4], but also investigated various properties
of contra πgs-continuous functions and examined the relationships between different contra continuities. Remark
3.2 clearly shows that the concept of contra πgs-continuity is weaker than the concepts of contra πg-continuity [7],
contra gs-continuity [9], contra g-continuity [39], contra semicontinuity [9], contra super continuity [38], contra
continuity [6], strong contra continuity [37], perfect continuity [35] and RC continuity [9]. We also obtained
important results by examining various properties related to separation axioms, connectedness, compactness,
cover and graph concepts. We believe that our study will shed light on the studies researchers interested in contra
continuous functions.
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[23] Veera Kumar, M. K. R. S.: ĝ-closed sets and GLC functions. Indian Journal of Mathematics. 43(2), 231-247 (2001).
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