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ABSTRACT 
In this study, the effects of bentonite-substituted cement mortar, cement compressive strength, cement 
quantity, spread values, water absorption percentages by weight, and porosity values on the 28-day 
compressive strength were investigated using Multiple Regression, Adaptive Neuro-Fuzzy Inference 
System and the intuitive optimization method known as Particle Swarm Optimization. Based on the 
results obtained from 18 data points, with 4 of them used for testing and 14 for training, effective and 
ineffective input parameters were identified in comparison to Multiple Regression. Subsequently, 
Particle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System main models were designed 
according to the obtained results. As a result of the study, it was determined that cement compressive 
strength, cement quantity and water absorption parameters have a higher impact on compressive strength 
compared to other parameters. It was found that the best accuracy model was achieved with the Particle 
Swarm Optimization model, and the results of the Multiple Regression model can also be used in 
predicting outcomes. 

  
Keywords: Bentonite-Substituted Cement Mortar, Cement Compressive Strength, Multiple Regression, 
Particle Swarm Optimization. 
 

 
1. INTRODUCTION 
Due to its porous structure, concrete absorbs 
water, leading to permeability within the 
concrete. Various mineral and chemical 
additives are used to mitigate the water 
permeability of concrete. One of these mineral 
additives is bentonite. Bentonite is a type of 
montmorillonite mineral formed through the 
weathering of volcanic ash deposits over 
millions of years [1]. Bentonites are classified 
into three groups: sodium bentonite, calcium 
bentonite, and active sodium-calcium Bentonite 
[2]. Bentonite finds applications in civil 
engineering, pelletizing iron ores, clarifying 
wine and fruit juices, animal feed, 
pharmaceuticals, rubber industry, paper 
industry, ceramic industry, petroleum refining, 
wastewater treatment, paint industry, fire 
extinguishers, fertilizer production, soil 
improvement, and drilling operations. One of 
the most significant characteristics of bentonite 

is its high silica content, which imparts its 
binding properties. 
 
When bentonite undergoes hydration, it swells, 
creating a gel-like structure, and this condition 
imparts excellent water absorption and water 
retention properties to Bentonite [3]. Due to this 
property, bentonite can be used in the 
construction industry to create impermeable 
surfaces. Yang et al. [1], observed that by 
substituting natural sodium bentonite at a rate of 
8% by weight in cement, after drying it in an 
oven at 105°C for 6 hours, it exhibited superior 
performance in terms of compressive strength, 
flexural strength, and impermeability compared 
to the reference sample. Wei et al. [4], have 
indicated that metakaolin and bentonite-
substituted cements can effectively reduce 
concrete deterioration caused by ASR (Alkali-
Silica Reaction). Memon et al. [5], found that 
bentonite-substituted cements perform 
effectively on surfaces exposed to acidity. 
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In addition, there is a need for the use of 
applications that predict concrete properties to 
ensure the safe utilization of materials 
incorporated into concrete mixtures [6]. In the 
literature, various studies exist where concrete's 
compressive strength [6–11], flexural strength 
[12], service life [13], workability [14] and 
creep behavior [15] have been predicted using 
different methods. 
 
The most common methods among these 
include ANN (Artificial Neural Network) [16–
30], SVM (Support Vector Machine) [31–37], 
GPR (Gaussian Process Regression) [38–44], 
RSM (Response Surface Methodology) [16, 18, 
45], ANFIS (Adaptive Neuro-Fuzzy Inference 
System) [46–55] FL (Fuzzy Logic) [56–65] and 
also statistical methods such as [7, 32, 53, 66–
72] and others.  
 
In this context, the mechanical property of 
compressive strength of bentonite-substituted 
cement mortar was attempted to be determined 
in the study. Parameters such as cement type 
and substitution rate, as well as fresh property 
represented by the spread diameter and physical 
properties including hardened density, porosity, 
and water absorption by weight were 
considered. Among these properties, the 
significant ones were identified, and models 
were created using both these significant 
properties and all the properties combined. 
Models used for prediction were generated 
using MR (Multiple Regression), ANFIS, and 
the heuristic optimization method known as 
PSO (Particle Swarm Optimization). The 
prediction values obtained from these models 
were compared using R² and RMS (Root Mean 
Square), and the model that predicted the 
compressive strength of bentonite-substituted 
cement mortar without conducting destructive 
testing such as a compressive strength test was 
determined. 
 
2. MATERIAL AND METHOD 
2.1. Material 
In the study, materials such as water, CEN 
standard sand, and cement types CEM I 42.5 R 
and CEM I 52.5 R, along with the cement 
substitute material bentonite, were used. The 
bentonites used in the preparation of bentonite-
substituted cement mortar samples were ground 
and sieved. In order to determine the physical 
properties of the mixtures, sieve analysis, 

specific gravity, and specific surface area 
(Blaine fineness) tests were conducted 
according to the EN 196-6 standard. 
Subsequently, chemical analyses were carried 
out. Chemical data for the binding materials 
used in cement production are provided in Table 
1, while physical data can be found in Table 2. 
 
Table 1. Chemical properties of binding materials 

Components CEM I  
42.5 R 

(%) 

CEM I   
52.5 R 

(%) 

Bentonite 
 

(%) 
SiO2 (S) 21.12 20.57 63.2 
Al2O3 (A) 6.03 4,6 14.27 
Fe2O3 (F) 3.2 2.5 0,55 
CaO 62.11 64.8 3.91 
MgO 2.2 1.28 4.02 
SO3 2.69 3.25 - 
Na2O 0.35 0.21 0.17 
K2O 1.1 0.36 0,61 
Cl– 0.0068 0.01 - 
TiO2 - - 0.03 
LOI 2.79 3.18 14.46 
S+A+F 30.35 27.67 78.02 

 
Table 2. Physical properties of binding materials 

Materials Grain size 
(plus sieve) 

>40μm>90μm 
(%) 

Specific 
gravity 

 
(g/cm3) 

Specific 
surface 
(Blaine) 
(cm2/g) 

CEMI 42.5 15.6 7.9 3.08 3526 

CEMI 52.5 1 0.1 3.11 4480 

Bentonite 1.2 0.1 2.80 4700 

 
Bentonite was substituted in bentonite-
substituted cement mortar in proportions of 0%, 
2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 
20%, 22.5%, 25%, 27.5%, and 30%, instead of 
CEM I 42.5 R and CEM I 52.5 R type cements. 
The codes and mixture information of 
bentonite-substituted cement mortar samples 
are provided in Table 3. 
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Table 3. Codes and mixture ınformation of mortar samples 
Mixture code Water 

 
(g) 

CEM I 42.5 
(g) 

CEM I 52.5 
(g) 

Bentonite 
 

(g) 

Standard sand 
(g) 

A0  450.00 - -  
A2.5  438.75 - 11.25  
A5  427.50 - 22.50  
A7.5  416.25 - 33.75  
A10  405.00 - 45.00  
A12.5 
A15 

 393.75 
382.50 

- 
- 

56.25 
67.50 

 

A17.5  371.25 - 78.75  
A20 
B0 
B2.5 
B5 
B7.5 
B10 
B12.5 

225.00 360.00 
- 
- 
- 
- 
- 
- 

- 
450.00 
438.75 
427.50 
416.25 
405.00 
393.75 

90.00 
- 

11.25 
22.50 
33.75 
45.00 
56.25 

1350.00 

B15  - 382.50 67.50  
B17.5  - 371.25 78.75  
B20  - 360.00 90.00  

 
The statistical analysis of the training 
parameters used in the model is provided in 
Table 4, while the statistical analysis of the test 

parameters used in the model is presented in 
Table 5. 

 
Table 4. Statistical analysis of the training parameters used in the model 

 Cement 
strength 
(MPa) 

Cement 
amount 

(g) 

Spread 
 

(cm) 

Water 
absorption 

(%) 

Porosity 
 

(%) 

Density 
 

(g/cm3) 

Compressive 
strength 
(MPa) 

Average 47,50 405,00 16,72 7,70 15,20 2,17 49,38 
Standard error 1,39 8,75 0,19 0,16 0,31 0,00 1,53 
Median 47,50 405,00 16,60 7,67 15,21 2,17 49,95 
Standard deviation 5,19 32,72 0,72 0,60 1,18 0,01 5,73 
Sample variance 26,92 1070,91 0,52 0,35 1,38 0,00 32,87 
Kurtosis -2,36 -1,48 0,24 -0,76 -1,62 -0,63 -0,75 
Skewness 0,00 0,00 0,88 0,45 0,09 -0,08 -0,35 
Range 10,00 90,00 2,41 1,87 3,37 0,04 17,95 
Minimum 42,50 360,00 15,80 6,95 13,62 2,15 39,20 
Maximum 52,50 450,00 18,21 8,82 16,99 2,19 57,15 
Confidence level (95,0%) 3,00 18,89 0,42 0,34 0,68 0,01 3,31 

 
Table 5. Statistical analysis of the test parameters used in the model 

 Cement 
strength 
(MPa) 

Cement 
amount 

(g) 

Spread 
 

(cm) 

Water 
absorption 

(%) 

Porosity 
 

(%) 

Density 
 

(g/cm3) 

Compressive 
strength 
(MPa) 

Average 47,50 405,00 16,58 7,61 15,33 2,17 49,81 
Standard error 2,89 10,27 0,21 0,21 0,54 0,01 2,99 
Median 47,50 405,00 16,55 7,57 15,41 2,17 49,91 
Standard deviation 5,77 20,54 0,41 0,42 1,09 0,02 5,97 
Sample variance 33,33 421,88 0,17 0,18 1,19 0,00 35,66 
Kurtosis -6,00 -3,30 1,28 0,56 -0,95 -3,90 -3,79 
Skewness 0,00 0,00 0,36 0,57 -0,34 -0,37 -0,06 
Range 10,00 45,00 1,00 1,01 2,53 0,03 12,84 
Minimum 42,50 382,50 16,10 7,15 13,99 2,15 43,28 
Maximum 52,50 427,50 17,10 8,16 16,52 2,18 56,12 
Confidence level (95,0%) 9,19 32,68 0,65 0,68 1,73 0,02 9,50 
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2.2. Methods 
2.2.1. Production Method 
In the Hobart mixer's bowl, water, binding 
material (cement with bentonite admixture), 
and CEN standard sand were sequentially 
added, and the device was operated until the 
mixture became homogeneous. Then, the 
device was stopped, and the portion that was not 
well mixed under the bowl and adhered to the 
mixer blade was scraped into the bowl to ensure 
homogeneity. The mixture was then operated 
for a sufficient duration. After the mortar was 
subjected to the spread test, hardened mortar 
specimens were produced in 4x4x16 cm molds. 
The specimens were removed from the molds 
24 hours after production and placed in a curing 
tank. After a curing period of 28 days, physical 
tests (water absorption, porosity, and density) 
and mechanical tests (compressive strength) of 
the specimens were completed. 
 
2.2.2. Multiple Regression 
MR is used to predict or model a dependent 
variable (output) using one or more independent 
variables (input).  
 
MR is expressed as a linear function, as 
specified in Equation 1 [73]. (In the equation; Y 
represents the dependent variable, A represents 
the constant coefficient, B represents the 
regression coefficients, X represents the 
independent variables, and n represents the 
number of inputs.) 
 
𝑌𝑌 = 𝐴𝐴 + 𝐵𝐵1𝑋𝑋1 + 𝐵𝐵2𝑋𝑋2 + 𝐵𝐵3𝑋𝑋3+. . . + 𝐵𝐵𝑛𝑛𝑋𝑋𝑛𝑛 (1) 
 
2.2.3. Particle Swarm Optimization 
PSO is a metaheuristic optimization algorithm 
used for the purpose of optimizing a problem, 
based on the movement of birds flying in flocks. 
In PSO, the position of each particle in the 
swarm (Equation 2), the velocity of each 
particle in the swarm (Equation 3), and the 
velocities of all particles are updated based on 
their fitness within the boundary values of 
particles (Equation 4) (Equation 5). The 
obtained velocity is then updated by adding it to 
the previous particle position (Equation 6), and 
in this way, an optimization algorithm is formed 
[74]. (In the equations, the symbol 𝑋𝑋𝑖𝑖𝑖𝑖 
represents the position, 𝑉𝑉𝑖𝑖𝑖𝑖  represents the 
velocity, 𝑊𝑊 represents the inertia weight, and 𝐶𝐶1 
and 𝐶𝐶2 represent the scaling factors.) 
 

𝑋𝑋11 𝑋𝑋12 𝑋𝑋1𝑛𝑛
′ ′ ′

𝑋𝑋𝑚𝑚1 𝑋𝑋𝑚𝑚2 𝑋𝑋𝑚𝑚𝑛𝑛
                           (2) 

 
𝑉𝑉11 𝑉𝑉12 𝑉𝑉1𝑛𝑛
′ ′ ′

𝑉𝑉𝑚𝑚1 𝑉𝑉𝑚𝑚2 𝑉𝑉𝑚𝑚𝑛𝑛

                          (3) 

 

�𝑓𝑓
(1) = 𝑓𝑓(𝑋𝑋11,𝑋𝑋12 … . .𝑋𝑋1𝑛𝑛)

𝑓𝑓(𝑚𝑚) = 𝑓𝑓(𝑋𝑋𝑚𝑚1,𝑋𝑋𝑚𝑚2 …𝑋𝑋𝑚𝑚𝑛𝑛)�                  (4) 

 
𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑊𝑊 ∗ 𝑉𝑉𝑖𝑖𝑖𝑖 + 𝐶𝐶1 𝑥𝑥 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 −
𝑋𝑋𝑖𝑖𝑖𝑖) + 𝐶𝐶2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑋𝑋𝑖𝑖𝑖𝑖)                    (5) 
 
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑖𝑖𝑖𝑖                                           (6) 
 
2.2.4. Adaptive Neuro-Fuzzy Inference 
System 
ANFIS is an artificial intelligence model 
designed for solving prediction problems by 
combining fuzzy logic and artificial neural 
networks, enabling data-driven and optimized 
inference. 
 
The ANFIS model consists of five layers 
(fuzzification rule normalization fuzzyfication 
sum) and If-then rules are applied as in Equation 
7 and Equation 8 [75-78]. (In the equations, the 
symbols x and y represent input parameters, A1, 
A2, B1, and B2 represent fuzzy sets, p1, p2, q1, q2, 
r1, and r2 represent output parameters, and f 
represents the output parameter of the ANFIS 
model.) 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 1: 𝑖𝑖𝑓𝑓 𝑥𝑥 𝑖𝑖𝑝𝑝 𝐴𝐴1 𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦 𝑖𝑖𝑝𝑝 𝐵𝐵1, 𝑝𝑝ℎ𝑝𝑝𝑟𝑟 𝑓𝑓1 =
𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1                                              (7) 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 2: 𝑖𝑖𝑓𝑓 𝑥𝑥 𝑖𝑖𝑝𝑝 𝐴𝐴2 𝑟𝑟𝑟𝑟𝑟𝑟 𝑦𝑦 𝑖𝑖𝑝𝑝 𝐵𝐵2, 𝑝𝑝ℎ𝑝𝑝𝑟𝑟 𝑓𝑓2 =
𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2                                              (8) 
 
2.2.5. The Wilcoxon Test 
The Wilcoxon test is a statistical method used 
to compare data when the normal distribution 
assumption is not met or when the data does not 
follow a normal distribution. To achieve this 
objective, the absolute values are computed 
using Equation (10), while the discrepancies 
between quasi-observations are determined 
based on Equation (9) [79]. T+ represents the 
sum of rows marked with plus signs, while T- 
represents the sum of rows marked with minus 
signs (Equation 11) [80]. 
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𝐷𝐷İ = 𝑋𝑋İ − 𝑌𝑌İ          (9) 
 
|𝐷𝐷İ| = |𝑋𝑋İ − 𝑌𝑌İ|                    (10) 
 
𝑇𝑇 =  𝑇𝑇+ − 𝑇𝑇−        (11) 
 
The difference between the first half of the data, 
Xi, and the second half, Yi, is represented by the 
value Di, which serves as the test statistic for 
Wilcoxon, defining the trend conditions, 
indicated by Zw Zα/2 value in Equation (12)  
(for two tails) [80]. The numerical mean is 
denoted by μT, and the standard deviation is 
denoted by μT, both assumed to be zero [81]. 
T+= T-, indicating that the amount of difference 
between trial outcomes, both good and bad, is 
equal [80]. 
 
𝑍𝑍𝑊𝑊 = 𝑇𝑇−𝜇𝜇𝑇𝑇

𝜎𝜎𝑇𝑇
= 𝑇𝑇

𝜎𝜎𝑇𝑇
       (12) 

 
 
3. RESULTS AND DISCUSSION  
In the experimental results, out of the 18 values 
obtained from the samples, four were set aside 
for testing, and the remaining 14 were used for 
training. In the study, first, an MR model was 
created. Based on the results obtained from this 
model, PSO and ANFIS main models were 
designed. 
 

Based on the available training data, an MR 
model was constructed, and adjusted R² values 
were examined at each stage (Table 6). 
Consequently, effective and ineffective input 
parameters were determined relative to MR. 
While R² values may increase with each new 
parameter, adjusted R² values can remain 
constant or decrease. Parameters associated 
with a constant or decreasing value can be 
considered as having no effect. In this study, 
based on this analysis, both MR, ANFIS, and 
PSO models including all input parameters 
were created, and models excluding parameters 
based on adjusted R² values were also 
constructed. In a single-input, single-output 
model, the input parameter was chosen as 
cement strength, and an adjusted R² value of 
0.598 was found. Then, when the cement 
quantity was added, it was observed that this 
value increased to 0.983. However, with the 
addition of the third parameter, due to the 
decrease in the adjusted R² value to 0.982, it was 
determined that the spread table value might not 
be used in the model. The water absorption 
value was introduced in the fourth step, and 
because it raised the value to 0.989, it was 
concluded that this parameter is significant. 
Subsequently, the inclusion of porosity and 
density in the following step was found to have 
no effect on the results. 

 
Table 6. The contributions of the parameters included in the model to R² and adjusted R² 

Model Added R2 adjusted 
R2 

Cement strength  
 
Cement strength + cement amount  
 
Cement strength + cement amount + spread 
 
Cement strength + cement amount + spread 
+ water absorption  
 
Cement strength + cement amount + spread 
+ water absorption + porosity 
 
Cement strength + cement amount + spread 
+ water absorption + porosity + density 

Cement strength 
 

Cement amount 
 

Spread 
 

Water absorption 
 
 

Porosity 
 
 

Density 

0.629 
 

0.986 
 

0.986 
 

0.993 
 
 

0.993 
 
 

0.993 

0.598 
 

0.983 
 

0.982 
 

0.989 
 
 

0.988 
 
 

0.987 

 
Due to the results of the adjusted R² values, it 
was determined that cement strength, cement 
quantity, and water absorption were more 
important among the 6 input parameters. 
Therefore, in both MR, PSO, and ANFIS, 
models were created with both 6-parameters 

and 3-parameters. The formulas for the models 
created with MR were determined as shown in 
Equation 13 and Equation 14. 
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𝐵𝐵𝐷𝐷 = 0.714𝑋𝑋1 + 0.019𝑋𝑋2 − 0.126𝑋𝑋3 −
4.138𝑋𝑋4 − 0.273𝑋𝑋5 + 26.127𝑋𝑋6 − 17.88 (13) 
 
𝐵𝐵𝐷𝐷 = 0.789𝑋𝑋1 + 0.034𝑋𝑋2 − 4.032𝑋𝑋4 +
29.004                                                          (14) 
 

Table 7. The comparison of MR models 
Model Training 

R2 
Error 
(%) 

Test 
R2 

Error  
(%) 

3-parameter MR  
6-parameter MR 

0.9925 
0.9881 

0.84 
2.62 

0.9987 
0.9931 

0.88 
2.36 

 
When examining the R² values and error values 
in both models, it was observed that the 3-
parameter regression model yielded better 
results (Table 7). As seen in this model as well, 
instead of using all available parameters in the 
model, conducting a preliminary evaluation to 
identify effective parameters is crucial. 
 
In the second part of the study, models created 
with PSO were developed. In these models, a 
six-input model was used, and a three-input 
model was created based on the adjusted R² 
value (Equation 15-16). 
 
𝐵𝐵𝐷𝐷 = 0.838𝑋𝑋1 + 0.059𝑋𝑋2 − 0.298𝑋𝑋3 −
3.11𝑋𝑋4 + 0.085𝑋𝑋5 + 3.76𝑋𝑋6 + 4.85          (15) 
 
𝐵𝐵𝐷𝐷 = 0.79𝑋𝑋1 + 0.033𝑋𝑋2 − 4.189𝑋𝑋4 +
29.294                                                           (16) 
 

Table 8. The comparison of PSO models 
Model Training 

R2 
Error 
(%) 

Test 
R2 

Error 
(%) 

3-parameter PSO  
6-parameter PSO 

0.9925 
0.9925 

0.75 
0.84 

0.9987 
0.9931 

0.78 
0.85 

 
When Table 8 is examined, it is observed that 
there is not a significant difference between 
both the 3-parameter and 6-parameter PSO 
models. Therefore, it is considered that both 
models can be used. The proximity of the results 
indicates that predictions can be made with 
fewer parameters, which is important both in 
terms of time and cost. 
 
Finally, in the study, ANFIS models were 
constructed by varying the cluster numbers of 
input parameters, and these models are 
summarized in Table 9. In addition to the 6-
parameter models for ANFIS, 3-parameter 
models were also constructed (determined 
based on adjusted R² values in MR). A common 
characteristic of all ANFIS models is that the 

training results come out close to perfection. 
However, in the test results, it has been revealed 
that most ANFIS models tend to memorize and 
cannot generalize. In ANFIS models, having a 
large number of subsets and parameters does 
not necessarily imply a more accurate model. In 
the study, it is important to identify the ideal 
parameters and models divided into subsets. It 
can be said that in the study, the model with 2-
4-3 subsets, using cement strength, cement 
quantity, and water absorption parameters in 
that order, is the most suitable among ANFIS 
models. 

 
Table 9. The comparison of ANFIS models 

Number of 
clusters 

Training 
R2 

Error 
(%) 

Test 
R2 

Error 
(%) 

2,3,3 
2,3,4 
2,3,5 
2,4,3 
2,4,4 
2,4,5 
2,5,3 
2,5,4 
2,5,5 
2,7,7 

2,3,4,3,3,3 
2,3,5,3,3,4 
2,4,3,3,3,5 
2,5,4,3,3,3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.0005 
0.0002 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 
0.0005 
0.0005 
0.0004 
0.0005 

0.8213 
0.5899 
0.6729 
0.9946 
0.7800 
0.7383 
0.4493 
0.1302 
0.1847 
0.1045 
0.3019 
0.3019 
0.8279 
0.1439 

3.7063 
6.6289 

14.9330 
2.4057 
5.0333 

10.4069 
9,7674 

13,4016 
25,0392 
66.4502 
15.3642 
15.3642 
15.1278 
23.0605 

 
In the study, the best results obtained in all 
models were compared in Table 10 and Figure 
1. When examining the results, it is observed 
that the 3-parameter PSO model is better than 
all other models, but it is also possible to 
achieve very close results when the MR model 
is used. The results of the ANFIS model also 
approach the truth (Figure 1), but it is seen that 
there is a significant deviation when the correct 
ANFIS model cannot be established (Table 9). 
In addition, Wilcoxon values were also 
examined for the best results of each model in 
Table 10. According to these values, all results 
were found to be significant. 
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Table 10. The comparison of the best models 

Model Training R2 Error (%) ZW Test 
R2 

Error 
(%) 

ZW 

3-parameter MR 
3-parameter PSO 

ANFIS (2,4,3) 

0.9925 
0.9925 

1 

0.84 
0.75 

0.0002 

-1.16 
-0.09 
-1.44 

0.9987 
0.9987 
0.9946 

0.88 
0.78 

2.4057 

-0.73 
0.01 
-1.83 

 
Figure 1. Comparison of scatter plots of prediction models (a-3-parameter MR training b-3-parameter 
MR test c-3-parameter PSO training d-3-parameter PSO test e-ANFIS (2-4-3) training f-ANFIS (2-4-3) 
test) 
 
4. CONCLUSION 
In this study, three models, namely MR, 
ANFIS, and PSO were employed to predict the 
compressive strength of bentonite-substituted 
cement mortar. The input parameters used in the 
models were cement strength, cement quantity, 
spread, water absorption, porosity, and density. 
The results obtained from the models indicated 
that both PSO and MR models could be used to 
predict the outcomes. However, it can be stated 
that cement strength, cement quantity, and 

water absorption parameters have a greater 
influence on compressive strength compared to 
other parameters. The results also demonstrated 
that PSO provided the highest accuracy in 
predicting the compressive strength of 
bentonite-substituted cement mortar. The 
developed PSO model can serve as a valuable 
database to facilitate the design of cement 
mortar mixtures. 
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