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Abstract 

 

Lung infections, such as pneumonia, bronchitis, tuberculosis, and notably COVID-19 caused by the SARS-CoV-2 virus, have caused 

widespread devastation globally, resulting in a significant loss of life. Timely and precise diagnosis of these respiratory diseases is 

crucial in controlling their spread and reducing their deadly impact. However, diagnostic errors can occur due to factors like 

physician workload and the need for a second opinion. To address these challenges, artificial intelligence-based diagnostic systems, 

utilizing deep learning algorithms, particularly in the radiology field, have been proposed. In this research, we introduced a novel 

model based on Multi-Axis Vision Transformer (MaxViT), which boasts a reduced parameter count, decreased GPU computational 

load, real-time diagnostic capabilities, and improved accuracy. Furthermore, we conducted a detailed performance comparison of 

optimization algorithms, including SGD, Adam, and Lion, with higher results indicating that the Lion optimizer notably enhances 

the diagnostic capabilities of the proposed MaxViT model, especially in detecting lung infections. Our proposed approach underwent 

rigorous experimentation using the COVID-QU-Ex dataset, recognized as the most current, comprehensive, and balanced dataset 

for lung infections and COVID-19. Our method achieved diagnostic accuracy of 97.14%, surpassing existing models while 

maintaining significantly fewer parameters. 
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Öz  
 

Pnömoni, bronşit, tüberküloz ve özellikle SARS-CoV-2 virüsü tarafından neden olan COVID-19 gibi akciğer enfeksiyonları, küresel 

olarak yaygın yıkıma neden oldu ve önemli bir can kaybına yol açtı. Bu solunum yolu hastalıklarının zamanında ve doğru teşhisi, 

yayılmanın kontrol altına alınması ve ölümcül etkisinin azaltılması açısından hayati öneme sahiptir. Ancak, hekim iş yükü ve ikinci 

bir görüşe duyulan ihtiyaç gibi faktörler nedeniyle teşhis hataları ortaya çıkabilir. Bu zorlukları ele almak için, özellikle radyoloji 

alanında derin öğrenme algoritmalarını kullanan yapay zeka tabanlı teşhis sistemleri önerilmiştir. Bu araştırmada, Çok-Eksenli 

Görüntü Dönüştürücüler temelli yeni bir model sunduk, bu model, azaltılmış parametre sayısı, azaltılmış GPU hesaplama yükü, 

gerçek zamanlı teşhis yetenekleri ve artan doğruluk gibi özelliklere sahiptir. Ayrıca, SGD, Adam ve Lion dahil olmak üzere 

optimizasyon algoritmalarının detaylı bir performans karşılaştırmasını yaptık ve etkili sonuçlar, Lion optimizatörünün MaxViT 

modelinin teşhis yeteneklerini özellikle akciğer enfeksiyonlarını tespitte önemli ölçüde artırdığını göstermektedir. Önerdiğimiz 

yaklaşım COVID-QU-Ex veri kümesi kullanılarak sıkı bir şekilde deneyime tabi tutuldu ve bu veri kümesi, akciğer enfeksiyonları 

ve COVID-19 için en güncel, kapsamlı ve dengeli veri kümesi olarak kabul edilmektedir. Yöntemimiz, mevcut modelleri aşarak 

%97,14'lük bir teşhis doğruluğuna ulaştı ve bunu yaparken belirgin şekilde daha az parametre kullandı.  
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1. Introduction 

 

Lung infections are a frequent disease that may be brought on by a number of microorganisms, including bacteria, viruses, fungi, and 

parasites (Cookson et al., 2018). Pneumonia, bronchitis, and tuberculosis are the most typical lung infections (Cookson et al., 2018). 

Numerous fatalities have recently been brought on by COVID-19 and COVID-19-induced lung infections. COVID-19 is a respiratory 

disease that emerged in the Chinese city of Wuhan in 2019 and caused by a virus called SARS-CoV-2 (Platto et al., 2020). This virus 

is airborne between humans and usually produces mild or moderate symptoms. However, the elderly and people with chronic diseases 

can have serious complications. COVID-19 symptoms contain weakness, runny nose, sore throat, nasal congestion, weakness, skin 

rash, nausea, diarrhea, headache, fever, cough, or visual disturbances (Ciotti et al., 2020). However, symptoms do not occur in everyone, 

and some people may not experience symptoms. 

 

A significant detrimental effect of the COVID-19 epidemic has been felt globally, and many countries, albeit slightly (Velavan & 

Meyer, 2020). Health systems have been under a great burden to combat the pandemic and countries have implemented different 

measures to combat the pandemic. These include measures such as maintaining social distance, wearing masks, staying at home, 

avoiding going to public places, and businesses that are kept open on a limited basis. PCR tests are generally employed to identify the 

pathogen causing COVID-19, but these tests can sometimes be misleading (Yuki et al., 2020). X-rays are primarily used to effectively 

diagnose COVID-19 and measure the degree of infection in the lungs, and if necessary, computed tomography (CT) images are used 

(Yuki et al., 2020). Thus, the definitive diagnosis of the patient is made. X-ray images are both less harmful to health and an economical 

and faster technique compared to CT. 

 

Physicians and radiologists who are experts in their fields can diagnose diseases using x-rays or other imaging modalities. X-ray images 

are widely used for the detection of lung infections and COVID-19 due to their efficiency (Soomro et al., 2022). Moreover, these 

images are typically easily accessible in the majority of medical institutions and offer a more efficient alternative to traditional 

laboratory examination, thus contributing to their overall benefits. A specialist physician can diagnose a patient's COVID-19 or lung 

infections by looking at the x-ray image (Cleverley et al., 2020). In some cases, it may misdiagnose the patient, especially in cases 

where the physician has an intense work tempo, absent-mindedness, or is not a secondary physician. Therefore, computer-aided 

diagnostic systems (CADx) are developed, especially in the field of radiology (Pacal et al., 2020). Recently, there have been serious 

developments in CAD systems (Aslan, 2024; Ayan et al., 2022; Pacal, 2024a). Particularly with recent advancements in artificial 

intelligence and the growing significance of deep learning algorithms, numerous new developments have emerged in the literature. As 

in the diagnosis of many diseases, it can be said that artificial intelligence has gained the most important place in the diagnosis of lung 

infections and COVID-19 (Tahir et al., 2021). 

 

Artificial intelligence, a continually evolving field, has long been employed in disease diagnosis. Recently, deep learning has become 

particularly prominent in image analysis, securing a significant role in diagnostic systems and yielding successful outcomes (Karaman 

et al., 2022). Currently, deep learning is the most widely used methods, gaining popularity due to its success in various fields, including 

defense industry, autonomous vehicles, natural language processing, object detection, medical image processing (Aslan & Özüpak, 

2024; Dönmez, 2024; Işık & Paçal, 2024; Kılıçarslan et al., 2024). Compared to classical machine learning approaches, deep learning 

is a discipline that provides effective results with large amounts of data, can automatically make feature discoveries, and contains many 

more complex and successful features (PACAL, 2022). While deep learning-based methods are extensively used in medical imaging, 

they have facilitated intense research efforts in combating lung infections and COVID-19 (Subramanian et al., 2022). While deep 

learning reduces the burden of specialist physicians and employees, it can learn the experiences of many specialist physicians and can 

be used effectively in the diagnosis of disease (Pacal & Karaboga, 2021). 

 

1.1. Background 

To evaluate X-ray images and identify lung-related disorders, deep learning can be employed. Deep learning algorithms can be trained 

with learned examples and then recognize images that are like those examples. These algorithms can be used to detect signs of lung 

infections and COVID-19 in X-ray images (Bhattacharyya et al., 2022). For example, algorithms can be used to detect abnormal 

changes or tumors in the lung. Also, deep learning algorithms are used to support radiologists' diagnostic process. These algorithms 

can help radiologists speed up their work and make more accurate diagnoses. The literature features numerous studies that use deep 

learning algorithms on X-ray images to diagnose lung infections and COVID-19. Almost all these studies utilized Convolutional neural 

network (CNN) architects, which is a popular architecture of deep learning algorithms. 

 

CNNs are a robust deep learning architecture that has become widely adopted, particularly in image analysis and medical image 

analysis. Numerous research studies have leveraged CNN techniques to achieve positive outcomes in the diagnosis of lung infections 

and COVID-19. Several of these studies that have employed deep learning techniques are highlighted as follows. Aslani and Jacob 

(2023) reviewed deep learning for detecting COVID-19 utilizing chest radiography. The evaluation examined many articles that 

employed 2D/3D deep CNNs for COVID-19 identification. The study explains how to detect COVID-19 and points out a few 

drawbacks of the suggested techniques. (Podder et al., 2023) proposed a new framework called LDDNet, which is based on the 

DenseNet201 model and is optimized for lung diseases. LDDNet has additional layers of batch normalization, dense and dropout layers, 

and 2D global average pooling compared to the basic DenseNet201 model. Bhattacharyya et al. (2022) proposed an integrated method 
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in order to identify COVID-19 from chest X-ray images. In the presented method, the first step is C-GAN based method to obtain lung 

images, the second step is using CNN networks for discriminant extraction, and the last step is using several machine learning 

algorithms for classification. The presented method provides greater accuracy compared to other approaches. Similarly, Deb et al. 

(2022) proposed a method to diagnose COVID-19 using a method consisting of chest X-ray images. This method is based on ensemble 

learning, and popular networks such as VGGNet, GoogleNet, DenseNet and NASNet have been used in practice.  

 

With the use of pre-processed chest radiography images, Ahmad et al. (2022) demonstrated a cutting-edge multimodal deep learning 

strategy that can identify between infections with and without COVID-19. The model can categorize various types of pneumonia. 

Gafoor et al. (2022) proposed deep learning technologies for the diagnosis of COVID-19. This study has observed that deep learning 

algorithms effectively diagnose patients infected with COVID-19. Nayak et al. (2023) presented a new shallow CNN model called 

LW-CORONet, which extracts significant characteristics from chest X-ray (CXR) images. The model, with just five trainable layers, 

achieves high classification accuracy in both multi-class and binary cases across two large chest X-ray (CXR) datasets. Another study 

proposed an integrated method for the diagnosis of COVID-19 patients on X-rays by effectively using deep learning techniques and 

optimization algorithms together. While this method consists of CNN models such as ResNet, VGG, DenseNet, it has been stated that 

the proposed method in experimental studies is more successful than other studies (Dhiman et al., 2022). Devasia et al. (2023) presented 

a model that fines-tunes and applies transfer learning to the EfficientNetB4 architecture to detect active pulmonary tuberculosis using 

chest X-rays. The approach includes a multilabel methodology to detect lung zone. Sedik et al. (Sedik et al., 2022) proposed a method 

for the diagnosis of COVID-19 patients with a hybrid structure using CNN and LSTM architectures together. In this method, training 

and testing stages were carried out for both CT and X-ray images. The proposed method has yielded successful results in the diagnosis 

of COVID-19 disease. Alshmrani et al. (2023) introduced a deep learning architecture designed for the multi-class classification of 

various lung diseases such as Pneumonia, Lung Cancer, Tuberculosis, Lung Opacity, and COVID-19. The study involved a large 

number of chest X-ray (CXR) images that were resized, normalized, and randomly divided to suit the needs of deep learning. 

 

Vision transformers represent a recent advancement in deep learning, especially within the field of computer vision (Pacal, 2024b). 

These neural networks are a subset of those constructed using the transformer design, which was initially created to address issues with 

natural language processing. Given their remarkable performance in image classification and object detection tasks, vision transformers 

are an interesting development in the world of medical imaging. Vision transformers may be used to examine the images and detect 

the presence of diseases in COVID-19 with X-ray images in the setting of lung infections. The transformer architecture allows the 

network to understand the meaning of the image and make predictions based on that context. This is important in medical imaging, 

where subtle changes in the image may indicate the presence of a disease. 

 

1.2. Contributions 

Deep learning algorithms have had tremendous success in the diagnosis of diseases of the lungs. Nearly all these studies are CNN-

based studies, while a very few and effective part of them are vision transformer-based studies, which is one of the most popular 

architectures of deep learning nowadays. In this research, we present a proficient method using transformers for the diagnosis of lung 

infections and COVID-19 compared to existing studies in the literature. The main differences and contributions that distinguish our 

study from other studies are as follows. 

 We utilize the latest vision transformer models in literature to diagnose lung infections and COVID-19, offering the most 

extensive study available to researchers. 

 We utilize the MaxViT design for the initial time in identifying lung infections related to COVID-19, yielding the most 

promising outcomes. 

 We introduce a unique multi-axis vision transformer model with real-time disease detection that is efficient, has fewer 

parameters, and performs better for lung infections and COVID-19 detection. 

 This study provides a general comparison of CNNs and Vision Transformer architectures. 

 We provided a comprehensive comparison of popular optimization algorithms, including Stochastic Gradient Descent (SGD), 

Evolved Sign Momentum (Lion) and Adaptive Moment Estimation (Adam), and furthermore, through an extensive evaluation 

of these optimization algorithms, this study concludes that the Lion optimizer significantly enhances the diagnostic accuracy 

of the MaxViT model. This contribution underscores the critical importance of selecting the appropriate optimizer for 

effectively fine-tuning deep learning models in medical diagnosis. 

 We apply all these experimental studies to the COVID-QU-Ex dataset, which is the most up-to-date, novel, well balanced and 

large for lung infections and COVID-19. 

 

2. Methodology 

 

2.1. Vision Transformer 

The transformer design, which was first described in the 2017 publication "Attention Is All You Need" by Google researchers, serves 

as the foundation for a particular sort of neural network architecture called a Vision Transformer (Vaswani et al., 2017). Instead of 

processing input sequences sequentially, as is the case with standard recurrent neural networks, the transformer design processes input 

sequences in parallel. The processing of images and the extraction of features from them can be done using a Vision Transformer in 

the context of computer vision (Dosovitskiy et al., 2020). The Vision Transformer model demonstrates remarkable performance in 
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image classification tasks, boasting state-of-the-art results. The model then applies self-attention mechanisms to the sequence of image 

patches to extract features. DeiT (Data-Efficient Image Transformer): This is an extension of the ViT which is specifically designed to 

be more data-efficient. The authors proposed to use a smaller architecture and smaller batch sizes during training to improve the model's 

performance on image classification tasks (Touvron et al., 2020). Swin Transformer: It is a variation of the Vision Transformer where 

the model uses a more complex spatial attention mechanism (Liu et al., 2021). T2T-ViT (Token-to-Token Vision Transformer): T2T-

ViT is an extension of the Vision Transformer that incorporates token-to-token attention mechanisms, which allows the model to better 

capture the spatial relationships (Yuan et al., 2021). These are some of the examples of Vision Transformer architectures that have 

been proposed in recent research. It has been demonstrated that they perform well on computer vision tasks such as image classification. 

Recently, many transformer models have been suggested by many researchers for images because transformer models have become 

more advantageous and effective than CNN architectures in many respects (Tu et al., 2022). 

 

2.2 MaxViT: Multi-Axis Vision Transformer 

MaxViT, a multi-axis vision transformer, exemplifies a machine learning model designed to analyze visual data using transformer 

architecture (Tu et al., 2022). Integrating additional forms of focus, like spatial and channel attention, into the transformer framework 

empowers the model to boost its effectiveness in computer vision tasks. By including attention mechanisms that concentrate on 

particular regions or aspects of the input, the model is created to analyze visual data more efficiently. MaxViT's capability to handle 

massive and complicated visual information, such as high-resolution photos and films, is one of its main features. This makes it suitable 

for many different computer vision applications, including semantic segmentation, object identification, and image categorization. The 

model may also adapt to the unique properties of the input data thanks to its capacity to incorporate numerous attention mechanisms, 

which can enhance performance.  The visual organization of the Vision Transformer-based MaxVit architecture is shown in Figure 1. 

The MaxVit architecture incorporates MBConv, block, and grid attention layers to create a novel form of base structure block in place 

of the conventional hierarchical design found in ConvNet architectures like ResNet. By drawing influence from sparse techniques, the 

MaxVit architecture is a novel sort of attention module. This reduces the secondary complexity of ordinary attention while preserving 

all local knowledge. The sequential design of MaxVit offers more simplicity and flexibility, and it also shows better performance 

compared to previous methods, as one of its biggest advantages is that each module can be combined individually or in any order. On 

the other hand, parallel designs do not provide this benefit. MaxViT's innovative architecture, Max-SA, can be constructed by 

hierarchically stacking various tiers of Max-SA, as depicted in Figure 1 (Tu et al., 2022). This is facilitated by the adaptability and 

scalability inherent in Max-SA. Through the integration of global and local receptive fields spanning the entire network, from shallow 

to deep layers, MaxViT demonstrates superior model capacity and generalization capabilities. Consequently, the MaxViT algorithm 

outperforms its rivals, marking a significant advancement in the field. 

Figure 1. Overview of the Proposed MaxViT-based Lung Infection and COVID-19 Disease Detection Model (Tu et al., 2022). 

2.3. Proposed Model 

Deep learning algorithms for object classification are widely applied in medical image interpretation, demonstrating encouraging 

potential for upcoming advancements. Vision transformer architectures have achieved high success in recent years, surpassing CNN 

architectures in many areas (Pacal, 2024a). Most proposed deep learning algorithms utilize universal datasets such as ImageNet 

(Russakovsky et al., 2015), MS-COCO (Lin et al., 2014), and Pascal-VOC (M. et al., 2010) for image processing. Therefore, to assess 

the effectiveness of a given algorithm or architecture in medical image analysis, training and testing must be performed. In this research, 
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we evaluated the effectiveness of various vision transformer-based designs and a few CNN architectures in detecting COVID-19. 

Taking into account the performance provided by the MaxVit architecture, we suggest re-scaling it to make it more effective for 

COVID-19 detection.  

 

Self-attention works better than local convolution by enabling global interactions in neural networks. However, the quadratic 

complexity of self-attention makes its application across whole space impracticable. The multi-axis approach of the Max-SA method 

is presented as a solution to this problem. By splitting the input feature map into discrete P x P windows, this method allows self-

attention to function just on the local spatial dimension inside each window. This technique, called "block attention," successfully 

reduces the computational burden of implementing self-attention on a global scale. Local interconnections within the network 

framework are facilitated by it. 

 

 

 

 

 

According to equations Eq.1 to Eq.3, for a specified x value, x ∊   the concept of block attention on specific local features is 

elucidated in Eq. 4, whereas Eq. 5 presents the Grid Attention module designed for capturing global features. 

 

 

In the Relative Attention process, we omit the QKV input format. Here, LN stands for Layer Normalization, and GRN denotes a novel 

version of MLP. Grid attention is a method that divides the tensor into a regular GxG grid to produce windows of variable sizes in 

order to achieve sparse global attention. Grid attention is defined by equation 2, wherein when self-attention acts across the grid axis 

(GxG), tokens are blended globally and dilatedly. With the same variables and FLOPs as the current attention module, the suggested 

Max-SA module can easily replace it. It also makes building simpler because it doesn't require cyclic shifting, masking, or padding. 

Figure 2 illustrates the multi-axis approach to self-attention computation with a 4x4 window/grid size (Tu et al., 2022). The grid-

attention module utilizes a sparse, uniform grid spread across the entire 2D space to focus on pixels, while the block-attention module 

conducts self-attention within defined windows. Both strategies, employing fixed attention regions, exhibit linear complexity 

concerning input size. The self-attention operation spatially blends identical colors. 

 

In order to build a single block that incorporates both local and global interaction mechanisms, MaxViT combines components from 

the Maxvit block, grid block attention, and local block attention. The network is organized hierarchically, much like standard ConvNets, 

with Conv3x3 layers being used for downsampling at the beginning (S0 conv-stem). It consists of four body phases, each of which 

doubles the channels but reduces the resolution by half from the step before it. Every stage's initial MBConv block uses downsampling, 

while MaxViT blocks are used throughout the backbone. The default expansion and shrink rates for the inverted bottleneck are 4 and 

0.25, respectively. Attention blocks maintain a fixed attention head size of 32. As blocks per stage (B) and channel dimensions increase, 

the model size grows accordingly.  

 

 
Figure 2. A Depiction of the Method for Calculating Self-attention using a Multi-axis Approach, with a Window/grid size of 4x4 (Tu 

et al., 2022). 

The values indicated by the letters "B" and "C" represent the quantity of blocks and channels, accordingly, at each model's step. The 

model's attention layers are all set up to use 32 attention heads. The MBConv module's Squeeze-and-Excitation (SE) component is 

always run at a 4x expansion rate and a 0.25 shrinking rate. Moreover, the model's original structure comprises two convolutional 
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layers. We adapted the proposed solution relying on the MaxViT model in order to maximize the model's efficacy while reducing the 

number of parameters for the three-class COVID-QU-Ex dataset. In this scaling, the block count was the only thing that was lowered 

in comparison to the smaller model, while the block and channel numbers (B and C) were reduced in comparison to the larger model. 

This basically meant that the repetition counts of layers S1–S4 (which stand for block and channel quantities) were significantly 

reduced, which allowed for a drop in the number of parameters and improved global and local feature extraction from X-ray images. 

Compared to the larger model, we decreased the block count in the Convolutional stem from 2 to 1 and the channel number from 192 

to 64. On the other hand, we kept the same number of channels as the smaller model and merely decreased the block size from two to 

one. These substantial alterations in block and channel numbers led to the proposal of a smaller model than the tiny model, resulting 

in improved accuracy and a higher Frames Per Second (FPS) rate, thereby enhancing inference speed. 

 

2.4. Deep Learning Optimizers 

Deep neural network training relies primarily on two main learning approaches: supervised and unsupervised learning. Supervised 

learning is applied when the network has access to both input data and corresponding output labels, making it suitable for tasks like 

classification and regression. In contrast, unsupervised learning is employed in scenarios where only input data is available, typically 

for clustering and uncovering underlying data structures. The fundamental algorithm used for supervised learning in deep neural 

networks is back-propagation, which comprises forward and backward propagation phases. However, standard gradient descent in 

backpropagation may encounter challenges such as local optima and a high number of iterations. To address these issues, mini-batch 

gradient descent, including stochastic gradient descent (SGD), is often utilized, providing memory efficiency and faster convergence. 

SGD processes individual training samples, making it suitable for large datasets and enabling frequent parameter updates for improved 

optimization. 

 

Due to their critical role in model training, optimizers are essential to deep learning. Finding the best model configurations is made 

easier by them as they assist in overcoming difficulties brought on by high-dimensional parameter spaces. Faster convergence is made 

possible, especially with big and deep networks, by advanced optimizers like Adam and RMSprop with adjustable learning rates and 

momentum approaches. In order to ensure more stable and effective training procedures, optimizers also address gradient-related 

problems including vanishing and bursting gradients. As a result, choosing an optimizer is crucial in deep learning because it directly 

affects model performance as well as training effectiveness. 

 

Adam is a very effective and flexible optimization algorithm that is commonly used in place of more conventional stochastic gradient 

descent techniques. It exhibits high computational effectiveness and low memory requirements by dynamically updating the learning 

rate for each parameter [8]. Adam uses a momentum-based parameter update method that is similar to gradient descent. Adam is a 

flexible and popular option for optimizing complex models, especially in deep learning applications, because to its combination of 

strategies. 

 

SGD is a prevalent optimization technique in deep learning and machine learning. Due to its ability to calculate the loss function 

gradient for individual training samples, it requires minimal memory usage and is capable of processing large datasets effectively. The 

main problem with SGD is choosing the right learning rate to avoid oscillations and obtain the global optimum. It is crucial to use 

strategies like learning rate schedules and momentum to enhance its performance because its noisy updates can both help in avoiding 

local minima and impede convergence. Finding the ideal hyperparameter values is frequently a crucial component of efficiently 

implementing SGD in practice. 

 

The Lion optimizer, also known as "EvoLved Sign Momentum," is a substantial improvement in the field of machine learning 

optimization. By elegantly concentrating on momentum monitoring and sign-based updates, it streamlines the procedure while using 

less memory and ensuring consistent update magnitudes across all dimensions. Lion is a potential optimizer for the community at large 

because it performs exceptionally well across a range of machine learning models and applications. For bigger batch sizes, its memory-

efficient stochastic gradient-descent method different from adaptive optimizers like Adam offers efficiency and magnitude control, 

which is depicted in the Algorithm 1. 
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2.5. Dataset 

The significance of the data set in demonstrating the desired success of a deep learning architecture is undoubtedly beyond question. 

While classic machine learning approaches focus on manual feature extraction and small data, the main difference between the two 

approaches is that deep learning architectures require large-scale data sets and automatic feature extraction. The increasing number of 

medical images in hospitals and research centers in recent years has made deep learning the most effective method in medical image 

processing, as deep learning architectures have a naturally data-hungry characteristic for features. In this study, the use of a publicly 

available COVID-19 data set is aimed at making the experimental results and discussions more objective. Although there are several 

public data sets in the literature, there is no common evaluation criterion. Considering this situation, COVID-QU-Ex (Tahir et al., 2021) 

includes both a common evaluation criterion and X-ray images that are unique to the training, validation, and test folders for lung 

infections and COVID-19. Therefore, it is possible to assess the actual effectiveness of the model through its training and testing 

outcomes on test data and compared with other current methods. Some sample images taken randomly from the dataset is illustrated 

in Figure 3. 

Figure 3. Some Sample Images from the Different Classes in the COVID-QU-Ex Dataset. 

3. Results and Discussion 

The findings and analyses of several CNN and Transformer-based models for the identification of lung infections and disorders linked 

to COVID-19 are presented in this section. Along with the outcomes of the proposed approach, experimental findings pertaining to 

well-known optimizers are also presented. 

 

3.1. Experimental Design 

For optimal outcomes, deep learning algorithms necessitate training on a computer equipped with GPU capabilities. GPUs have the 

ability to perform parallel processing and tensor operations faster than CPUs due to the CUDA cores within them. This research 

involved conducting experiments on a computer with specific configurations: utilizing a Linux-based Ubuntu 22.04 OS, an NVIDIA 

RTX 3090 GPU, and 32 GB of DDR5 RAM. Python served as the primary programming language, coupled with PyTorch as the chosen 

deep learning framework for executing the experiments. 
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3.2. Data Pre-Processing and Transfer Learning 

This study uses a publicly available COVID-19 dataset to improve the objectivity of our research findings. COVID-QU-Ex [9] is 

unique in that it offers a standardized evaluation criterion and includes X-ray images for training, validation, and testing, covering lung 

infections and COVID-19 cases. This dataset enables a fair assessment of our model's performance and facilitates comparisons with 

other methods. Table 1 provides an overview of the dataset's image distribution across training, validation, and test sets. 

 

Table 1. Details of the COVID-QU-Ex data set 

Class Type Training Validation  Test Total 

COVID-19  7658 1903 2395 11956 

Non-COVID infections (viral or bacterial pneumonia) 7208 1802 2253 11263 

Normal (healthy) 6849 1712 2140 10701 

Total 21715 5417 6788 33920 

The COVID-QU-Ex dataset's primary advantage lies in its predefined training and evaluation image partitions, facilitating 

straightforward comparisons and precise assessments of model performance vis-à-vis other research studies. Comprising an extensive 

amalgamation of images from diverse datasets, it encompasses 11,956 COVID-19 cases, 11,263 instances of COVID infections (viral 

or bacterial pneumonia), and 10,701 normal (healthy) cases. Notably, as illustrated in Table 2, the class distributions within the training, 

validation, and test datasets are meticulously balanced, eliminating any data imbalance issues. This equilibrium fosters optimal learning 

of each class by the model and minimizes the risk of bias towards any category. 

 

To improve the robustness and flexibility of our models in this work, we utilized methods for data augmentation.  Data augmentation 

includes altering the original images in various ways, producing fresh synthetic instances, and lowering the danger of overfitting. 

During model training, we notably used cropping, flipping, rotation, copy-paste, shearing, and scaling. This significantly increased the 

dataset and improved the model's capacity to generalize to examples that hadn't been seen before. The goal of this augmentation was 

to improve the precision and dependability of our models for detecting lung infections, which would ultimately lead to more effective 

screening and diagnosis. By exploiting the model's acquired information and representations from millions of various images, the pre-

trained weights from the ImageNet dataset were also utilized in transfer learning. The performance of the pre-trained model dataset 

was further enhanced through fine-tuning, which reduced training time and processing requirements. 

 

3.2. Performance Metrics 

Object classification algorithms or architectures utilize various criteria to assess the efficacy of a model from diverse angles. Commonly 

employed metrics encompass accuracy, precision, recall, and the F1-score. These metrics are prevalent in scholarly discourse for 

comparative analysis and comprehensive evaluation of deep learning models. Computation of these metrics necessitates the utilization 

of the true positive, true negative, false positive, and false negative data constituting the confusion matrix. True positives denote 

accurately predicted instances of the positive class, whereas true negatives signify appropriately anticipated instances of the negative 

class. False positives and false negatives denote instances where the prediction is erroneously labeled as positive or negative, 

respectively. While accuracy gauges the proportion of correct predictions relative to all predictions, precision assesses the ratio of true 

positive predictions to all positive predictions.  Recall, also referred to as sensitivity, displays the proportion of predictions for a 

particular class that are actually true positive predictions. The weighted average of recall and precision, on the other hand, makes up 

the F1-score.  These metrics can be formally stated in Table 2. 

Table 2. Performance Metrics  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correct predictions

Number of total predictions
    

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                       

  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   

  

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

 

 

3.3. Training Procedure 

To optimize the efficiency and precision of training deep learning models, several strategies and components are employed. These are 

transfer learning and methods for enhancing data. Furthermore, factors like input image dimensions, batch size, epochs, optimizer 
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selection, learning rate, and repetition of data augmentation are pivotal. To enhance diagnostic accuracy of the models and make their 

comparability objective, we employed the most fundamental data augmentation techniques in this work, including scale, smoothing, 

mixup, color jitter, and flip, in the same way for each model. The data augmentation technique was carried out only during the training, 

that is, offline data augmentation was not used. For transfer learning, weights of the ImageNet dataset were used in all models. Transfer 

learning is the most important machine learning technique used to offer faster convergence of training and higher accuracy. Other 

parameters used in the study are as follows. The training input value of each model is selected as 3x224x224, but a fixed 299x299 size 

is selected for Xception and 240x240 is selected for FlexiViT architectures because of the nature of these architectures. Briefly, 

224x224 resolution was used for almost all the models. An example batch of X-ray images entered in the training is depicted in Figure 

4. The optimization algorithm used was Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01. Each model underwent 
300 epochs with a momentum of 0.9. Additionally, a warm-up stage was included, where the weight decay gradually increased from 

2.0e-05 to 1.0e-05. 

Figure 4. A Batch of X-ray Images Used During the Training Process. 

 

3.4. Experimental Results 

Deep learning models have outperformed other methods in object classification and detection so far. Performance comparison typically 

relies on commonly used datasets in the fields of object classification and detection, like ImageNet and MSCOCO, and the models' 

performance is ranked accordingly. It is only through experimental results that we can determine which model will offer better 

performance for more specific areas. While the SOTA models generally offer the best performance, in some cases, popular models can 

perform better. 

 

Table 3. Experimental Results for CNN Models 
Model Accuracy Precision Recall F1-score 

ResNet18 0.9553 0.9549 0.9549 0.9549 

ResNet34 0.9580 0.9576 0.9574 0.9575 

ResNet50 0.9454 0.9449 0.9454 0.9451 

VGG13 0.9571 0.9565 0.9568 0.6566 

VGG16 0.9583 0.9578 0.9577 0.9577 

VGG19 0.9537 0.9532 0.9531 0.9531 

EfficientNetv2-Small 0.9646 0.9645 0.9641 0.9643 

EfficientNetv2-Medium 0.9592 0.9587 0.9584 0.9586 

MobileNetv3-Small 0.9216 0.9223 0.9215 0.9219 

MobileNetv3-Large 0.9135 0.9132 0.9138 0.9135 

DenseNet121 0.9574 0.9569 0.9569 0.9569 

DenseNet169 0.9582 0.9576 0.9580 0.9578 

DenseNet201 0.9602 0.9596 0.9599 0.9597 

Inception_v3 0.9601 0.9597 0.9591 0.9594 

Xception 0.9630 0.9624 0.9622 0.9623 

Vovnet39a 0.9396 0.9392 0.9397 0.9394 

Vovnet57a 0.9381 0.9376 0.9381 0.9378 
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In this study, we utilized the most popular and current CNN architectures to date, including ResNet (He et al., 2016), DenseNet (Huang 

et al., 2016), Xception (Chollet, 2017), VGG (Simonyan & Zisserman, 2015),  EfficientNet (Tan & Le, 2019), MobileNets (Howard et 

al., 2017), Inception (Szegedy et al., 2014) and VovNet (Lee et al., 2019) structures. Additionally, we used vision transformer 

architectures, which have become as popular as CNNs in image analysis since 2021 and have produced more successful results than 

CNNs in many areas. We conducted a comprehensive comparison of nearly all vision transformer architectures in the literature, such 

as ViT (Dosovitskiy et al., 2020), Swin (Liu et al., 2021), MaxViT (Tu et al., 2022) , DeiT (Touvron et al., 2020), CoaT (Xu et al., 

2021) , MobileViT (Mehta & Rastegari, 2021), CrossViT (Chen et al., 2021), PiT (Heo et al., 2021), BeiT (Bao et al., 2021), and 

FlexiViT (Beyer et al., 2022). Table 3 provides experimental results for CNN models. Experimental results were obtained by running 

the codes of each model in github repositories such as Facebook, Google, Microsoft, Apple and Huggingface. 

 

Table 3 presents performance metrics of popular CNN models for diagnosing lung infections and COVID-19 diseases on the COVID-

QU-Ex dataset. Upon examination of Table 3, it can be seen that almost all models demonstrate high performance, with an accuracy 

of over 91%. Upon closer inspection of the CNN models, it is observed that the EfficientNetV2-small model performs significantly 

better than the other models, while the models in the MobileNet architecture, which are shallower compared to other architectures, 

exhibit lower performance. The VGG architecture, which is older than other models, still appears to be powerful and provides similar 

results to newer architectures. On the other hand, it can be seen that the ResNet architecture still offers high performance. When the 

models for each architecture are ranked in terms of their performance, it can be said that shallower models show better performance. 

Based on accuracy and other metrics, the EfficientNetV2-small architecture is found to provide the most successful results with values 

such as accuracy: 0,9646, precision: 0,9645, recall: 0.9641, and F1-score: 0.9643, while the MobileNetv3-Large model exhibits the 

lowest performance with values such as accuracy: 0.9135, precision: 0.9132, recall: 0.9138, and F1-score: 0.9135 across all metrics. 

Following the EfficientNet_v2-small model, Xception, Inception_v3, and DenseNet-201 models showed an accuracy of over 96%, 

providing results that were closest to and most successful compared to the EfficientNet_v2-small model. The outcomes of the vision 

transformer models are shown in Table 4, which have recently become more popular deep learning architectures compared to other 

architectures.  

 

Table 4. Experimental Results for Vision Transformer Models 
Model Accuracy Precision Recall F1-score 

ViT-L_32 0,9504 0,9498 0,9496 0,9497 

ViT-L_16 0,9596 0,9593 0,9591 0,9592 

ViT-B_32 0,9645 0,9640 0,9637 0,9638 

ViT-B_16 0,9648 0,9642 0,9638 0,9640 

Swin-B 0,9634 0,9632 0,9624 0,9628 

Swin-T 0,9671 0,9666 0,9667 0,9666 

MaxVit-L 0,9629 0,9626 0,9622 0,9624 

MaxVit-B 0,9624 0,9621 0,9616 0,9618 

MaxVit-S 0,9642 0,9635 0,9636 0,9635 

MaxVit-T 0,9636 0,9629 0,9629 0,9629 

DeiT3-H 0,9658 0,9652 0,9653 0,9652 

DeiT3-L 0,9577 0,9579 0,9564 0,9571 

DeiT3-B 0,9589 0,9583 0,9579 0,9581 

DeiT3-S 0,9619 0,9615 0,9613 0,9614 

CoaT-T 0,9487 0,9488 0,9484 0,9486 

DeiT-B 0,9653 0,9647 0,9647 0,9647 

DeiT-S 0,9636 0,9630 0,9632 0,9631 

DeiT-T 0,9579 0,9572 0,9573 0,9572 

MobileVit-S 0,9614 0,9611 0,9607 0,9609 

MobileVit-xS 0,9626 0,9615 0,9621 0,9618 

CrossVit-S 0,9602 0,9598 0,9596 0,9597 

CrossVit-T 0,9595 0,9589 0,9590 0,9589 

PiT-S 0,9576 0,9569 0,9572 0,9570 

PiT-B 0,9643 0,9641 0,9634 0,9637 

PiT-T 0,9499 0,9494 0,9498 0,9496 

BeiT-B 0,9582 0,9576 0,9576 0,9576 

BeiT-L 0,9664 0,9659 0,9658 0,9658 

FlexiViT-B 0,9554 0,9552 0,9548 0,9550 

FlexiViT-L 0,9646 0,9641 0,9639 0,9640 

MaxViT-Proposed 0,9692 0,9688 0,9687 0,9687 
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Table 4 presents performance metrics for the diagnosis of lung infections and COVID-19 diseases on the COVID-QU-Ex dataset using 

deep learning architectures, specifically the vision transformer architecture which is the most popular architecture lately. We provide 

the widest experimental results in the literature for almost all vision transformer models ranging from the oldest and first vision 
transformer architecture, ViT, to the newest and most powerful architectures such as MaxViT, DeiT-3, and FlexiViT for the diagnosis 

of lung infections and COVID-19. While the success of these architectures can be found only on the ImagNet dataset, comparing their 

performance on medical images such as X-rays is quite difficult. This study particularly presents the performance of vision transformer 

models on a very wide range of medical X-ray images. Table 4 shows that almost all models have an accuracy of greater than 94%, 

showing a much higher performance compared to CNN models. When examining the vision transformers, the proposed MaxViT model 

is seen to be more successful than other models, while the Swin-T model is the second most successful model with a small difference. 

Models belonging to ViT architecture with 16 patch numbers showed higher performance compared to models with 32 patch numbers. 

The DeiT model is seen to be more successful than the DeiT-3 model, while the most current transformer model, FlexiViT, is less 

successful than some other transformer models. On the other hand, it is observed that architectures such as ViT, BeiT, and Swin are 

still among one of the most successful architectures. In short, it can be said that the most current transformer models are not the most 

successful models for medical datasets, and this situation is generally valid only for the ImageNet dataset. The proposed MaxViT 

model has the best performance metrics, scoring 0.9692 accuracy, 0.9688 precision, 0.9687 recall, and 0.9687 F1-score, compared to 

0.9671 accuracy, 0.9666 precision, 0.9667 recall, and 0.9666 F1-score for the Swin-T model. After these models, it is observed that 

models such as BeiT-L, DeiT-B, DeiT3-H, MaxViT-S, and ViT-B_16 provide similar and successful results, while on the other hand, 

the lowest performance belongs to the CoaT-T model. However, it can be said that all transformer models show much higher 

performance compared to CNNs. 

Figure 5. Performance of the Proposed Model with Various Optimizers. 

 

 

3.5. Results for Optimizers 

The experimental findings are presented in this section concerning the performance of various optimizers, SGD, Adam, and Lion 

optimizer, when applied to our Proposed Model. These optimizers play a critical role in training machine learning models, 

influencing their convergence speed and overall effectiveness. Through a series of experiments, we aim to assess how each of these 

optimizers impacts the performance of our model, shedding light on their respective strengths and weaknesses in optimizing the 

Proposed Model. Table 5 provides results and valuable insights into the choice of optimizer for achieving the best results in our 

detection of lung related diseased. 
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Table 5. Proposed Model with Various Optimizers 
Optimizer Accuracy F1-score Convergence epoch 

Adam 0.9692 0,9687 81 

SGD 0.9698 0.9693 79 

Lion 0.9714 0.9709 55 

 

As seen in the Figure 5 and Table 5, we introduce our novel proposed model, thoughtfully enhanced with the cutting-edge Lion 

optimizer, tailored to address the critical task of diagnosing lung infections and COVID-19. Our study encompasses a meticulous 

examination of this model's performance, comparing it against established optimizers like Adam and SGD, within the context of 

medical diagnostics. Remarkably, the Lion optimizer emerges as the star performer, demonstrating remarkable accuracy at 0.9714 and 

an F1-score of 0.9709. Equally noteworthy is its expeditious convergence, requiring just 55 epochs to reach optimal results. These 

findings underscore the Lion optimizer's potential to revolutionize the field of medical diagnostics, particularly in the crucial arena of 

lung infection and COVID-19 diagnosis, elevating it to a prominent position within our research contribution. Furthermore, it is worth 

noting that the Lion optimizer achieves a stable level of accuracy around the 200th epoch, whereas in the case of SGD and Adam, 

stability in accuracy is achieved after the 250th epoch. As a result, the proposed model demonstrates a more effective performance 

when coupled with the Lion optimizer. 

 

3.6. Proposed Model Over Pure Maxvit Variants 

We provide a thorough comparison of the proposed MaxViT model with the original models found in the MaxViT paper. The MaxViT-

Xlarge, MaxViT-Large, MaxViT-Small, MaxViT-Base, MaxViT-Small, and MaxViT-Tiny models are presented in the MaxViT paper, 

which are obtained by scaling the S0-Convolutional Stem and MaxViT blocks based on the MaxViT architecture. Following these 

rules, we propose a model that is smaller than the MaxViT-Tiny model. Table 6 provides a detailed comparison of the proposed model 

and other MaxViT models.  

 

Table 6. The Effectiveness of the Proposed Model versus Pure MaxViT Models (GPU: 1xRTX 3090, Batch-size: 16). 
Model Name Img-size Accuracy Model Parameters (M) GPU Usage (GB) Training time  

MaxViT-Large 224x224 0.9629 210.8 21.24 (%86) 545s/epoch 

MaxViT-Base 224x224 0.9624 118.7 15.62 (%64) 382s/epoch 

MaxViT-Small 224x224 0.9642 68.2 9.690 (%39) 213s/epoch 

MaxViT-Tiny 224x224 0.9636 30.4 6.997 (%28) 144s/epoch 

MaxViT-Proposed 224x224 0.9714 16.8 5.857 (%24) 98s/epoch 

 

In Table 6, the Img-size column indicates the resolution of the training and test pictures, the accuracy and F1-score columns indicate 

how well each model performed on the COVID-QU-Ex dataset, and the model parameters column indicates number of parameters per 

each model in millions. In addition, the batch-size was fixed at 16, and the GPU consumption for each model and the time taken for 

each model to be trained for one epoch in seconds were provided in the table. Upon examining Table 5, it can be seen that the proposed 

method outperforms other models in terms of both high F1 and accuracy values, as well as much lower GPU consumption and training 

time compared to other models. Additionally, when considering complexity in terms of total parameter count, it is seen that the proposed 

method offers higher performance with up to 80% fewer parameters compared to the closest model, MaxViT-Tiny. Moreover, when 

considering inference speed, the proposed method processes a 224x224 image at a speed of 5ms or 200FPS, while the closest model, 

MaxViT-Tiny, processes it at a speed of 8ms or 125 FPS. This indicates that the proposed model is much faster than all other models 

in terms of inference speed and is 60% faster than the closest model. The class-wise performance of the proposed MaxViT model is 

shown in confusion chart in Figure 7.  

 

As depicted in the Figure 6, the proposed model's performance evaluation was marked by a robust and rigorous class-wise comparison, 

illuminating its remarkable accuracy and precision in classifying instances across three vital categories: COVID-19, Infections, and 

Normal. Impressively, in the case of COVID-19, the model accurately identified 2361 cases while making only 10 and 24 

misclassifications as Infections and Normal, showcasing its exceptional sensitivity and specificity. Likewise, within the Infections 

class, the model's prowess shone through, with 2159 correct predictions and only 13 and 81 instances erroneously categorized as 

COVID-19 and Normal, demonstrating its ability to discern subtle nuances in medical data. Furthermore, the Normal class exhibited 

strong performance, with the model correctly assigning 2074 instances and committing just 9 and 57 misclassifications as COVID-19 

and Infections, emphasizing its reliability in distinguishing between health states. 
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Figure 6. Confusion chart for Proposed Model 

 

3.7. Comparison with SOTA Methods 

This section provides a thorough evaluation of the suggested model in comparison to the most recent methodologies described in the 

literature. Evaluation measures, datasets, and imaging modalities for each model are provided in order to compare how well each model 

performs compared to the others. Data on the suggested method's comparison with other approaches on the COVID-QU-Ex dataset are 

presented in Table 7. Since the COVID-QU-Ex dataset is a new and novel largest dataset, there are limited studies on this dataset in 

the literature. In a comparative analysis of models on the COVID-QU-Ex dataset, it is evident that the proposed "MaxViT" model, our 

model, stands out significantly with an impressive accuracy of 0.9714. Notably, our model is also distinguished by its lightweight 

nature compared to several state-of-the-art (SOTA) methods such as VGG16, DenseNet201, Inception_v3, DeiT3-S, CrossVit-T, and 

PiT-S, which, while achieving commendable accuracies, most of them are not considered lightweight models. Even when compared to 

recent advances like the models by Ibrokhimov and Kang (0.9660) and Yue et al. (0.9617), our MaxViT model surpasses their 

performance, showcasing its efficacy in COVID-19 classification tasks while maintaining a lightweight design, which is crucial for 

practical deployment and resource efficiency. In contrast, other models, such as those presented by Nafisah et al., Kuzinkovas and 

Clement, Ahmet and Lin, and Constantinou et al., fall behind in terms of accuracy, further emphasizing the superiority of our 

lightweight MaxViT model. 
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Table 7. Proposed Model with SOTA Methods on COVID-QU-Ex Dataset 
Study Method Accuracy 

VGG16 CNN-VGG 0,9583 

DenseNet201 CNN-DenseNet 0,9602 

Inception_v3 CNN-Inception 0,9601 

DeiT3-S Transformer-DeiT3 0,9619 

CrossVit-T Transformer-CrossViT 0,9595 

PiT-S Transformer-PiT 0,9576 

Ibrokhimov and Kang, (2022) VGG19, ResNet50 0.9660 

Yue et al. (2022) LRA-Net 0.9617 

Nafisah et al. (2023) EfficientNet 0.9313 

Kuzinkovas and Clement, (2023) CNN-based 0.9468 

Ahmet and Lin, (2023) CNN-based 0.8800 

Constantinou et al. (2023) CNN-based 0.9600 

Our Model MaxViT 0.9714 

 
4. Conclusion and Future Directions 

 

Considering the profound global impact of lung infections, notably exemplified by the unprecedented challenges posed by the COVID-

19 pandemic, there exists an urgent imperative for the development of timely and precise diagnostic tools. This comprehensive study 

has responded to this pressing need by exploring the potential of deep learning algorithms within CAD systems for respiratory diseases.  

 

Introducing an innovative approach, we present the MaxViT model, strategically engineered with reduced parameters and real-time 

diagnostic capabilities. Our findings demonstrate an impressive accuracy rate of 97.14% on the COVID-QU-Ex dataset, marking a 

significant advancement in diagnostic precision. Notably, the lightweight design of the MaxViT model positions it as a transformative 

asset in the field. Moreover, the integration of the Lion optimizer has further amplified its diagnostic efficacy, particularly in identifying 

lung infections with exceptional accuracy. In addition, this study offers a comprehensive comparison between CNNs and ViT-based 

architectures, shedding light on their respective strengths and weaknesses. These insights lay the groundwork for the development of 

highly efficient diagnostic tools for the early detection and containment of lung infections, including the formidable COVID-19, thereby 

mitigating their global impact and fostering proactive healthcare strategies. 

 

Future research endeavors aim to further evaluate the performance of the MaxViT model across larger datasets and diverse populations. 

Additionally, exploring the integration of various data sources, such as imaging and clinical records, could serve as a pivotal step in 

assessing the clinical success of the MaxViT model. Enhancing the interpretability of deep learning models remains a primary focus, 

with the development of methodologies to elucidate decision-making processes, fostering trust among healthcare professionals and 

facilitating seamless integration into clinical practice. Furthermore, the tailored development of the Lion optimizer and exploration of 

novel optimization techniques hold promise in advancing diagnostic performance and efficiency. Finally, examining how the MaxViT 

model adapts to evolving healthcare demands and technological advancements is paramount for future investigation. 
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