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In this study we propose a novel method for capacitating multi-UAV 

multi- visit routing problem. Our main focus is on achieving energy 

and cost effectiveness by using an enhanced genetic algorithm. We 

delve into the adjustment of UAV speeds based on payloads and study 

how it impacts energy consumption and operational expenses. Our 

comprehensive model takes into account the relationships between 

payload mass, UAV velocity and power usage providing a roadmap for 

modern UAV delivery networks. Through testing we have demonstrated 

that our approach can handle the challenges posed by real world 

delivery scenarios showcasing its adaptability in managing various 

payload sizes and navigating complex routes. Our research not only 

confirms that our algorithm is flexible and capable of optimizing UAV 

delivery operations but also fills a research gap by incorporating 

speed variability and payload differences in the optimization process. 

The findings show that UAV-1 achieved optimal delivery efficiency 

with an initial high speed of 35.555 m/s and strategic speed 

adjustments based on payload weight, leading to significant energy 

savings. These enhancements underscore the real-world usefulness 

and reliability of our suggested technique. Our method provides a 

scalable solution for enhancing UAV operations, making it well suited 

for a range of uses. 
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1. INTRODUCTION 

The logistics and delivery industry has a transformation with the advent of UAV 

technology. UAVs provide alternative to ground transportation methods by navigating 

through terrains without being limited by road infrastructure. This presents an opportunity 

to expedite deliveries to improve efficiency and reduce impact. However, there are 

challenges associated with using UAVs for delivery purposes. 
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These challenges include optimizing payload capacities for energy efficiency 

addressing safety concerns and developing routing algorithms that can adapt to real time 

variables.  To fully harness the potential of UAV based delivery systems conducting 

research is crucial. The growing interest in drones for logistics and delivery systems from 

the demand for more effective delivery options in urban areas where traffic congestion and 

restricted access can impede traditional delivery methods. Drones offer a way to bypass 

these challenges by utilizing airspace resulting in more deliveries. Furthermore, the 

capability of drones to reach challenging locations makes them invaluable for deliveries 

like medical supplies in disaster affected regions. Despite these benefits there are operational 

obstacles that must be addressed to establish drone delivery systems on a broad scale. 

Key challenges include ensuring the safety and dependability of drone operations in 

populated areas. Drones need to be equipped with navigation and collision avoidance 

systems to prevent accidents. Additionally, the regulatory landscape for drones is still 

evolving, with countries imposing rules on drone flights, particularly those conducted 

beyond visual line of sight (BVLOS). These regulations must be carefully taken into 

account when developing drone delivery systems. Another significant challenge is the 

battery life of drones, which limits their range and payload capacity. Research into energy 

management and battery technologies is crucial to expand operational reach and improve 

overall efficiency of drone delivery systems. 

In our study we have made contributions to addressing these challenges outlined in 

existing literature. Here are the key aspects: 

• We have developed an algorithm specifically designed to solve the capacitated multi-

UAV multi visit routing problem. This approach allows us to optimize both routing 

efficiency and energy consumption in UAV delivery systems. 

• Unlike current studies, we have thoroughly investigated how adjusting UAV speeds 

based on varying payloads can affect energy efficiency and operational costs. This 

factor, which has been largely overlooked in the literature far is carefully considered in 

our research as we are taking an approach, towards modeling delivery systems. 

• We have tackled the problem of linear energy consumption associated with the 

dynamics of UAV payload and speed by introducing a model that accurately represents 

their complex relationship. This model does not enhance the realism of our simulations, 

Also enables us to optimize UAV operations in various conditions more effectively. 

• To validate our proposed algorithm, we conducted computational experiments that 

closely resemble real world delivery challenges. These experiments showcase 

algorithms adaptability, payloads, route complexities and operational requirements 

showing its potential to enhance the efficiency of UAV based delivery services. 

Through these contributions our research fills gaps in existing literature by creating a 

framework for optimizing UAV delivery systems. This framework ensures adjustment to 

needs while simultaneously minimizing energy usage and costs. The sections of the paper 

are structured as follows; In Section II a thorough review of existing literature is presented 

to establish an understanding of the status of UAV assisted delivery systems. Section III 

introduces the problem formulation, including decision variables, constraints and our chosen 

approach. It also provides an explanation of the function and calculations, for various aspects 

such as segment capacity and energy constraints. In Section IV we delve into the 

methodology by elaborating on the steps involved in the Genetic Algorithm (GA) process. 

We also discussed how we integrated K Means Clustering and the 2 Opt Algorithm within 
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the GA framework to adapt it specifically for UAV delivery purposes. Moving on to Section 

V we present results that encompass simulation setup details along with an analysis and 

discussion of these results. Lastly in Section VI we conclude this paper by summarizing our 

contributions highlighting real world applications and benefits suggesting areas for research 

and proposing improvements. 

2. LITERATURE REVIEW 

Dorling and colleagues (Dorling et al., 2017) used the realm of UAV delivery by focusing 

on vehicle routing problems. They provide insights into the derivation of an energy 

consumption model for multirotor UAVs highlighting the correlation between energy 

usage, payload capacity and battery weight. (Otto et al., 2018) conduct a literature survey 

on optimization approaches for aerial vehicles (UAVs) in civil applications. Their research 

offers an overview of optimization strategies specifically tailored to UAVs and their 

applications in remote sensing. There have been studies focusing on UAV routing taking 

into consideration factors like linear energy consumption (Bruni et al., 2023), wind effects 

for energy saving in a truck UAV delivery system (Sorbelli et al., 2023) and power 

consumption rate and wind effects in the vehicle routing problem involving UAVs (Kim & 

Kim, 2022). These studies have made contributions to developing operational models and 

mathematical optimization techniques, for achieving energy efficient UAV routing. The 

field of UAV routing has seen advancements in algorithmic approaches. For instance 

(Zudio et al., 2021) developed a key genetic algorithm to tackle the hybrid vehicle UAV 

routing problem, for pickup and delivery. (G. Wu et al., 2022) proposed a coordinated 

vehicle UAV arc routing approach that leverages improved neighborhood search 

techniques. These studies have primarily focused on devising optimization techniques and 

heuristic algorithms to address complex UAV routing problems. 

(Khan et al., 2022) presented a Dynamic UAV approach tailored for disaster scenarios 

offering energy efficiency through event/weather prediction and efficient path planning 

strategies. (Melo et al., 2021) tackled the challenge of achieving optimality in UAV path 

planning by emphasizing factors such as time, cost and energy efficiency. (J. Li et al., 

2022) highlighted the nature of dynamic path planning and its potential to enhance UAV 

flight efficiency. 
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Recent research has focused on optimizing drone scheduling through multi-objective mixed 

integer programming models. A study by (Nikolić et al., 2023) proposed a mixed integer 

linear programming formulation aimed at minimizing total delays in servicing tasks and the 

total flying time of all drones, taking into account task duration and significance. The study's 

results, obtained using CPLEX to solve the generated MILPs, indicate that task assignments 

on a fleet of drones depend significantly on drone speed and the number of drones analyzed. 

(Meng et al., 2023) propose a novel two-stage heuristic algorithm in which a maximum 

payload method is developed to construct the initial solutions, followed by an improved 

simulated annealing algorithm with problem-specific neighborhood operators and tailored 

acceleration strategies. According to (C. Huang et al., 2018) the importance of dynamic path 

planning, for UAVs, in accomplishing missions was highlighted. Similarly, (Pachayappan & 

Sudhakar, 2021) proposed a solution to address UAV routing challenges by implementing 

docking stations for pickup and delivery services. Specifically, their approach aims to 

optimize both energy efficiency and cost effectiveness. Consequently, these studies 

collectively provide insights into the development of approaches, optimization algorithms 

and energy aware routing strategies for UAVs in dynamic path planning scenarios. The 

capacitated UAV routing problem (CDRP) entails assigning UAVs with carrying capacity to 

cater to a group of customers while minimizing operational costs. For instance,  (Q. Wu et 

al., 2018) proposed a UAV wireless communication system, where multiple UAVs are 

utilized to serve users on the ground within a specified 2D region. Their study underscores 

the collaborative nature of systems. (Sacramento et al., 2019) proposed a neighborhood 

search metaheuristic specifically designed for solving the vehicle routing problem with 

UAVs. Notably, they emphasized the significance of route planning and resource allocation 

in optimizing delivery operations. 

Efficiently managing energy and costs while routing is crucial, for optimizing the efficiency 

of multi-UAV systems. According to (Dorling et al., 2017), developing vehicle routing 

problems (VRPs) for UAV delivery scenarios is significant, therefore highlighting the 

importance of path planning for UAV operations. In the context of UAV systems, the multi 

visit routing problem plays a critical role especially when considering the vehicle routing 

problem with UAVs (Nuryanti, 2023). Nuryanti also emphasizes the importance of 

optimizing multi visit path planning by using the Tabu search algorithm and Analytical 

Hierarchy Process. These approaches address challenges through mapping and mathematical 

optimization techniques. Furthermore (Poikonen & Campbell, 2020) highlighted those new 

contributions, in UAV research should focus on models of UAV types and new UAV 

applications. (Claro et al., 2023) emphasized the significance of factoring in characteristics of 

UAVs such as weight when planning energy paths highlighting the necessity for dynamic 

adjustments to accommodate variations in payload weight. In a publication by (Y. Huang et 

al., 2022), it was highlighted that existing coverage path planning algorithms often make 

assumptions about constant UAV speed. The authors stressed the significance of 

incorporating dynamic speed adjustments to account for factors such as turns, including 

deceleration, turning and acceleration. (Y. Li et al., 2022) proposed an extension to the Q 

learning mechanism to address exploration exploitation dilemma by introducing an 

exploration factor. It is possible to extend this approach to facilitate dynamic path 

adjustments based on variations in payload. 

3. PROBLEM FORMULATION 

In this section, we explained our model that will optimize the process from the central 

warehouse to the delivery points by UAVs to predetermined delivery points, under 

capacity, energy and time constraints. The main purpose of our study is to optimize the 
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total flight time, energy consumption and total subtour distance of each segment separately 

while delivering UAVs to multiple points. In this context, it is aimed to make the overall 

delivery task operationally sustainable by minimizing resources such as energy efficiency 

and total cost minimization. 

Table 1. Notations 
 

3.1. Decision Variables 

The decision variables we used in the formulation of our model are explained below: 

• Route Assignment R{d,p}: It is a binary variable indicating whether the delivery point p is 

on the UAV d subtour route R{d,p} = 1 , it will take the value 1 if the UAV d is assigned 

to the delivery point p, and 0 otherwise R{d,p} = 0. 

• Load Distribution L{d,p}: It is a type of continuous variable that represents the weight of 

the payload carried by the UAV d to the delivery point p. 

• Energy Consumption s}: It is a continuous type of variable that calculates energy 

consumed by the UAV d during the flight segment s. It takes into account the total 

payload, speed and total segment flight distance of the UAV in that flight segment s. 

• Flight Speed V{d,s}: It is a continuous type of variable that represents the flight speed of 

the UAV d in the flight segment s. It aims at energy efficiency by dynamically 

determining the speed of the UAV according to its weight at the beginning of the flight 

segment s. 

The decision variables described above are elements of the optimization process that forms 

the basis of our research. Through these variables, the assignment of delivery points to 

UAVs, payload distribution according to UAV capacity, and dynamic adjustment of UAV 

speeds within the subtour allow energy efficiency to be achieved. By ensuring optimal 

adjustment of these variables, operationally efficient and effective resource use of the UAV 

overall mission will be ensured. In this way, it will offer sustainable and applicable 

solutions in all application areas where last-mile delivery is made. 

This research sets itself apart from studies by incorporating dynamic speed adjustments 

based on payload weight, which is a relatively unexplored aspect within UAV routing 

problems. While past research has mainly focused on fixed speeds and linear models for 

energy consumption our method presents a comprehensive model that considers the 

complex relationship between UAV speed, payload mass and energy usage. This 
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improvement does not enhance efficiency but also ensures that the proposed solution can 

adapt to real world delivery scenarios where payloads and routes may vary significantly. 

Through experiments that replicate real world conditions we validate our model and 

showcase its practical applicability and reliability, in optimizing UAV operations for a 

range of logistical tasks. 

3.2. Methodological Approach 

To achieve these goals, we have implemented an Enhanced Genetic Algorithm (EGA) 

combined with K Means clustering for grouping of delivery points providing a dual 

optimization strategy. 

Initial Clustering: We utilize K Means clustering to group delivery points based on their 

proximity. This step forms the foundation for assigning routes to UAVs aiming to minimize 

the initial distances covered. Genetic Algorithm Optimization: The EGA explores potential 

routing solutions, where each solution represents a set of delivery routes covering all 

designated points. The effectiveness or "fitness" of each solution is evaluated using our 

function prioritizing solutions that minimize overall delivery costs. The solutions in the 

Genetic Algorithm (GA) go through a series of refining steps, including selection, crossover 

and mutation processes. These steps help the GA converge towards a set of delivery routes 

that're either optimal or very close to optimal. Moreover, we also take into account 

adjustments in speed and payload to enhance energy efficiency. We consider the dynamic 

relationship between UAV speed, payload weight and energy consumption to ensure 

optimization. 

This framework represents the challenges faced by real world UAV delivery systems 

taking into account practical limitations such as energy capacity and payload restrictions. 

Our customized approach aims to provide a efficient and scalable solution for autonomous 

UAV-based delivery systems. We emphasize the importance of adaptability to operational 

scenarios and environmental conditions. 

3.3. Objective Function 

The goal of our UAV delivery system is to minimize the total flight duration for all UAVs 

involved in the mission. Considering the variability in UAV speeds and the significance of 

energy consumption we formulate the function as follows. 

𝑚𝑖𝑛𝑧 =  ∑ ∑ ∑ 𝑡𝑖𝑗𝑘 . 𝑥𝑖𝑗𝑘                                                                                                                                                     

𝑁

𝑗=1

𝑁

𝑖=1

𝐾

𝑘=1

(1) 

Where: 

• Z represents the total flight duration that we aim to minimize. 

• K denotes the number of UAVs being used. 

• N corresponds to the number of delivery points, includ- ing the depot. 

• tijk indicates the time taken for UAV k to travel directly from point i to point j, 

considering variable speeds. 

• xijk is a binary variable that equals 1 if UAV k travels directly from point i to point 

j, and 0 otherwise. 
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3.4. Constraints 

Our model addresses several key operational constraints to ensure realistic and viable 

delivery route optimization: 

Payload Capacity: Each UAV is designed with a maximum payload capacity to ensure that 

it doesn't carry more than its safe and optimal load. This helps maintain safety standards 

and compliance with regulations. 

Energy Consumption: It is crucial to optimize the battery life of UAVs. Our model takes into 

account factors such as payload, flight speed and travel distance to minimize energy 

consumption. This does not extend the operational range of the UAVs but also enhances 

overall efficiency. 

Delivery Point Servicing: Ensuring that each package reaches its designated delivery point 

is of importance. Our model guarantees coverage of all delivery points leaving no 

destination overlooked or unattended. 

1.1.1. Capacity Constraint 

The capacity constraint plays a role in the UAV delivery system ensuring that each UAV is 

not overloaded beyond its maximum payload capacity. This constraint is vital for the 

feasibility and safety of the UAV routes. 

Mathematically we can express the capacity constraint for each UAV as follows; 

∑ weight(𝑝)

𝑝∈route𝑑

≤ max_payload,   ∀∈ 𝐷                                                                                    (2) 

Where, 

• ∑ weight(𝑝)
𝑝∈route𝑑

, calculates the weight of all packages in the route of UAV d. 

• max _𝑝𝑎𝑦𝑙𝑜𝑎𝑑, represents the weight that a UAV can carry. 

• ∀𝑑 ∈ 𝐷 , indicates that this constraint applies to every UAV in the set D. 

1.1.2. Energy Constraint 

When it comes to our UAV delivery system, one of the factors we consider is how to 

effectively manage our energy resources. We have implemented a mechanism known as the 

energy constraint to ensure that our UAVs can complete their delivery tasks successfully 

without draining their batteries. 

The energy constraint plays a role in determining which delivery tasks are assigned to each 

UAV and helps with planning the route. We only assign a task to a UAV if it meets the 

energy constraint criteria. If a specific subtask requires than 80% of the UAV’s battery 

capacity, we consider the UAV unsuitable for that particular task. In cases our system. 

Selects another UAV with enough battery capacity or adjusts the route to reduce energy 

demands. This approach guarantees that our UAVs won’t run out of power midway 

through their routes ensuring both efficiency and safety. 
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The following notations used for formulation: 

• Esegment (m, h, d): Represents the energy consumption of a segment, which depends on 

the UAV’s mass m, height h, and distance d. 

• Etotal: Denotes the energy consumption for subtour of the UAV’s route. 

• Bcurrent: Refers to the battery capacity of the UAV. 

• route: represents the collection of segments, in the UAV’s path. 

To calculate the energy for a part of the route we add up all individual segment energies: 

𝐸total = ∑ 𝐸segment(𝑠)

𝑠∈route

                                                                                                                   (3) 

The energy constraint is then expressed as follows: 

𝐸total

≤ 0.8 × 𝐵current                                                                                                                                (4) 

1.1.3. Routing Constraints 

The routing constraints guarantee that every delivery point is visited once by a UAV and that 

each UAV’s route begins and ends at the depot. 

Constraint for Visiting Delivery Points This constraint ensures that each delivery point is 

visited by one UAV. It can be expressed as follows; 

 

∑  𝐾
𝑘=1 ∑ 𝑥𝑖𝑗𝑘 = 1, ∀𝑗 = 1,2, … , 𝑁

𝑁

𝑖=1
𝑖≠𝑗

         (5) 

According to this equation for every delivery point j there should be one route from a 

different point 

i taken by any UAV k. 

Constraint for Depot Start- End This constraint ensures that each UAV’s route starts and 

ends at the depot. It can be formulated as two equations; 

 

∑  

𝑁

𝑖=1

𝑥0𝑖𝑘 = 1, ∀𝑘 = 1,2, … , 𝐾                                                                                                           (6) 

 

∑  

𝑁

𝑗=1

𝑥0𝑗𝑘 = 1, ∀𝑘 = 1,2, … , 𝐾                                                                                                          (7) 

 

These equations ensure that for each UAV k there is one route starting from the depot 

(represented as point ’0’) to a delivery point j and one route returning from a delivery point i 
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back, to the depot. 

1.2. Time Calculation for Each Segment 

We calculate each segments time tijk based on factors such as distance, between points and 

variable speed of the UAV. Calculation is presented in the way; 

 

𝑡𝑖𝑗𝑘 =
𝑑𝑖𝑗

𝑣𝑖𝑗𝑘
           (8) 

Where: 

• dij denotes the Euclidean distance between points i and j. 

• vijk represent the speed of UAV k when traveling from point i to point j. 

1.2.1. Calculation of Distance 

The distance denoted as dij between two points (x1, y1) and (x2, y2) can be determined by 

using the following formula: 

𝑑𝑖𝑗 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                                                                  (9) 

where (x1, y1) and (x2, y2) are the coordinates of points i and j, respectively. 

1.2.2. Calculation of Speed 

The optimal speed vijk of UAV k for the segment from point i to point j is calculated 

considering various factors such as the total mass of the UAV including its payload, 

aerodynamic characteristics, and environmental conditions. Formula used is: 

𝑣𝑖𝑗𝑘 = 𝑉𝑜𝑝𝑡(𝑚𝑘 + payload(𝑖, 𝑗), 𝐴, 𝐶𝑑, 𝜌)                                                                                (10) 

where Vopt represents a function that calculates the optimal speed for minimizing energy 

consumption while maintaining aerodynamic efficiency. In this context: 

• mk is the base weight of the UAV. 

• payload (i, j) is the weight of the payload being carried from point i to point j. 

• A is the cross-sectional area exposed to airflow. 

• Cd is the drag coefficient, which quantifies the UAV’s resistance to motion through air. 

• ρ is the air density, which affects the aerodynamic forces experienced by the UAV. 

The function Vopt is derived from standard principles of aerodynamics, balancing the need 

for speed with energy efficiency to optimize the UAV’s performance across varying 

payloads and environmental conditions. This relationship is fundamental in UAV 
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operations, particularly when efficient route completion is critical under dynamic 

conditions. 

1.3. Calculating Optimal Speed 

Finding the speed for a UAV is essential to ensure flight, where energy consumption and 

aerodynamic efficiency are balanced. In this section we will outline the approach used to 

determine the speed of a UAV taking into account factors such as its weight, aerodynamic 

properties and environmental conditions. 

 

Figure 1. Optimal speed algorithm 

Weight factor: To start off we calculate the weight factor Wf by considering the base 

weight of the UAV Wb. Its maximum payload Mp. This weight factor helps adjust the speed 

range based on the weight of the UAV. 

𝑊𝑓 =
𝑚

𝑊𝑏 + 𝑀𝑝
                                                                                                                             (11) 

Determining Minimum and Maximum Speeds: we determine both theVmin and Vmax speeds 

that our UAV can achieve. We also take into account base minimum Vbmin. Maximum Vbmax 

speeds in this calculation. 

𝑉𝑚𝑖𝑛 = 𝑉𝑏𝑚𝑖𝑛
× 𝑊𝑓                                                                                                                          (12) 

𝑉𝑚𝑎𝑥 = 𝑉𝑏𝑚𝑎𝑥
× 𝑊𝑓                                                                                                                         (13) 

Power Required at a Given Speed: The power required at a given speed, Pr (s), is crucial 

for understanding the energy demands of UAV flight operations. This power is the sum of 

the forces needed to overcome aerodynamic drag and gravitational forces, particularly 
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when changing altitude. The required power at speed s is calculated as follows: 

 𝑃𝑟(𝑠) = 𝐷𝑓(𝑠) + 𝑚 × 𝑔 × 𝑠                            (14) 

 𝐷𝑓(𝑠) = 0.5 × 𝜌 × 𝐶𝑑 × 𝐴 × 𝑠2                     (15) 

where: 

• Df (s) represents the drag force acting on the UAV at speed s. 

• m is the total mass of the UAV, including its payload. 

• g is the acceleration due to gravity, relevant for vertical movement components. 

• s is the speed of the UAV. 

• ρ is the air density. 

• Cd is the drag coefficient. 

• A is the effective cross-sectional area facing the airflow. 

The first equation integrates the drag force, derived from the basic drag equation in fluid 

dynamics, with the gravitational force component when ascending or descending. This 

comprehensive approach to calculating power requirements ensures that the UAV’s battery 

and motor capabilities are adequately specified to handle various flight conditions 

efficiently. 

1.4. Calculating Energy Consumption for UAV Flight Segment 

In this section, we calculated the process of determining the energy needs for each segment 

of a UAVs flight. This calculation is essential for optimizing flight paths maximizing 

energy efficiency and extending the range of UAVs. The section begins by outlining an 

approach that outlines the inputs and outputs for calculating segment energy. This 

algorithm serves as a foundation for calculations and theoretical explanations of the UAVs 

flight dynamics. 

The section breaks down the energy calculation into components each addressing a specific 

aspect of the UAVs flight. It starts by calculating takeoff time, which’s crucial in 

understanding the phase of the UAVs journey. Then it focuses on determining the 

acceleration required to reach the desired altitude, which significantly impacts energy 

consumption during ascent. Next it provides an analysis of takeoff dynamics covering both 

positive and negative acceleration phases to ensure a transition from ground to hover. The 

section also delves into power requirements during takeoff, cruising and landing stages to 

give an encompassing view of energy dynamics throughout the flight. Ultimately these 

calculations culminate in determining segment energy expressed in Watt hours measure, 

for real world applications. The careful method of calculating energy segments highlights 

the significance of accuracy in planning UAV flights. Emphasizes the necessity for 

algorithms to improve operational efficiency. 
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Figure 2. UAV segment energy algorithm 

1.4.1. Take-off Dynamic 

To determine the time needed for takeoff denoted as ttakeoff, we use the altitude change h 

and the optimal speed vopt, in the formula; 

𝑡𝑡𝑎𝑘𝑒𝑜𝑓𝑓 =
ℎ

𝑣𝑜𝑝𝑡
                         (16) 

1.4.2. Acceleration Calculation 

To understand how a UAV takes off it’s important to grasp the significance of the 

acceleration coefficient ε in achieving flight performance. The acceleration coefficient plays 

a role in ensuring that the UAV maintains a speed during both takeoff and landing aligning 

with its constant speed during the cruising phase. This alignment is vital for maintaining 

efficiency and stability throughout the flight. Determining ε involves calculating a speed 

denoted as Vopt , which is considered ideal for the UAVs operation. Since average speeds 

differ across flight segments (takeoff and landing versus cruising) separate calculations are 

made for each segment. This tailored approach allows for management of acceleration to 

efficiently achieve Vopt . 

During takeoff acceleration is divided into negative phases; first accelerating to g + ε to 

gain altitude up to h/2 then decelerating to g ε to reach the desired altitude h. This 

segmentation optimizes the UAVs performance by calculating ε for each phase. By doing 

the UAV, we can maintain an average speed that facilitates seamless transitions between 

different flight modes from takeoff, to cruising and finally landing. The process of taking 

off and landing with a UAV involves two distinct acceleration phases to reach a specific 

altitude h. 
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Take-off Dynamics: During takeoff there are two phases of acceleration; 

• Positive Acceleration Phase (Ground to h/2): The UAV accelerates by applying a 

force to g 

+ ε from the ground to an altitude of h/2 . This phase ensures altitude gain. 

• Negative Acceleration Phase (h/2 to h): From an altitude of h/2 to h the UAV 

decelerates by applying a force to g ε, in order to smoothly transition into a state at 

altitude h. 

 
Figure 3. UAV segment  

flight Landing Dynamics: During landing there are two phases of acceleration; 

• Deceleration Phase (h to h/2): To land the UAV gradually descends from an altitude 

of h by accelerating downwards with a force of g + ε until it reaches an altitude of h/2 

effectively controlling its descent rate. 

• Final Approach Phase (h/2 to Landing): From an altitude of h/2 to the landing point the 

UAV applies a force of g ε to slow down its descent and ensure a controlled and 

smooth landing. 

To ensure an efficient and controlled climb, to a desired height h in a time period t we use a 

two-step acceleration strategy. This technique is based on the core principles of kinematics 

of how objects move with acceleration. 

The fundamental equation in kinematics, for an object starting from rest and experiencing 

acceleration is as follows: 

 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2                                               (17) 

where: 

• s denotes displacement, 
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• u initial velocity, 

• a acceleration, 

• t represents time. 

To determine the required acceleration ε for the UAV to reach an altitude of h within a 

time frame t we utilize the position equation during the half of ascent. This two-phase 

acceleration strategy ensures an efficient climb to the desired altitude. 

 

ℎ

2
=

1

2
𝜀(

𝑡

2
)2                    (18) 

Solving for ε, we get: 

 

𝜀 =
4ℎ

𝑡2
                      (19) 

This two-phase acceleration approach ensures a smooth and efficient ascent to the desired 

altitude. 

 

1.4.3. Take-off, Cruise, and Landing Power Calculations 

Take-off: Building upon the research conducted by (Leishman, 2006) on rotor helicopters 

and further expanded upon (Dorling et al., 2017), we can calculate the power P necessary 

for a single rotor helicopter to maintain hover using the aerodynamic principles described. 

 

𝑃 = √
𝑇3/2

2𝜌𝜎
                   (20) 

The thrust T can be determined as follows: 

𝑇 = (𝑊 + 𝑚)𝑔                                               (21) 

with W represents the weight of the frame, m is the combined weight of the battery and 

payload , g denotes acceleration due, to gravity , ρ represents air density and σ refers to the 

area of the spinning blade disc. 

To calculate the power required for takeoff (Ptakeoff) we need to generate lift to counteract the 

weight of the UAV and provide acceleration. This can be calculated using: 

Lift Force: 𝐹lift = 𝑚 ⋅ (𝑔 + 𝜀)  (22) 

Power to Lift: 𝑃lift =
𝐹lift⋅𝑣air

𝜂
 (23) 

Air Velocity by Rotors: 𝑣air = √
𝐹lift

2⋅𝜌⋅𝐴
 (24) 

where: 
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• m is the mass of the UAV, 

• g is the acceleration due to gravity, 

• ε refers to acceleration, 

• ρ denotes air density, 

• A represents total rotor area and 

• η signifies efficiency of propulsion system. 

By combining these calculations, we can accurately deter- mine the power required for 

takeoff while considering both aerodynamic principles that govern UAV flight. 

Cruise: During the cruise phase of a UAVs flight the total power required is a combination 

of the power needed to maintain hover and the power needed to overcome drag. 

The overall power required for cruising denoted as Pcruise is the sum of the power to sustain 

lift and the power needed to parasitic drag when moving forward. According to 

(Thibbotuwawa et al., 2019), parasitic drag force FP can be modeled as follows: 

𝐹𝑃 =
1

2
𝐶𝐷𝐴𝐷𝜌𝑣2          (25) 

CD represents the drag coefficient, AD is the reference area of the UAV, ρ stands for air 

density and v 

denotes the velocity of the UAV, to the air. 

As a result, we can calculate the power required to overcome this drag Pdrag using; 

𝑃drag = 𝐹𝑃 × 𝑣 =
1

2
𝐶𝐷𝐴𝐷𝜌𝑣3        (26) 

Hover power refers to the energy required for maintaining a stationary position by 

generating lift equal to that of the UAVs weight. It can be approximated by: 

𝑃hover =
(𝑚⋅𝑔)3/2

√2⋅𝜌⋅𝐴
          (27) 

Combine the power of hovering and dragging, get the power needed for cruising: 

𝑃cruise = (
(𝑚⋅𝑔)3/2

√2⋅𝜌⋅𝐴
) + (

1

2
⋅ 𝜌 ⋅ 𝐶𝑑 ⋅ 𝐴front ⋅ 𝑣3)       (28) 

This approach offers an understanding of the power requirements during the cruise phase 

taking into consideration both lifting and aerodynamic resistance. 

Landing: The power necessary for landing Planding is assumed to be equivalent to that 

required for takeoff. 

𝑃𝑙𝑎𝑛𝑑𝑖𝑛g= 𝑃𝑡𝑎𝑘𝑒𝑜𝑓𝑓          (29) 
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1.4.4. Total Energy for the Segment 

Calculating the energy required for a UAVs route involves adding up the energy used 

during takeoff, cruising, and landing. This calculation is crucial, for mission planning and 

resource allocation to ensure that UAVs can complete their tasks efficiently without 

running out of energy. Esegment, is the sum of the energy during takeoff, cruise, and landing: 

 

  𝐸segment = 𝐸takeoff + 𝐸cruise + 𝐸landing                                                                                         (30) 

Calculating flight time and energy plays a role in analyzing our UAV operations. As you 

can see in Algorithm 3, It focuses on determining how time and energy a UAV needs to 

complete a specific route. This calculation is vital, for mission planning and resource 

management ensuring that UAVs can carry out their tasks efficiently without running out 

of energy. 
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Figure 4. UAV flight time and energy algorithm 

 

2. METHODOLOGY 

In this section we have applied a framework that combines different techniques to 

investigate the relationship between payload capacity, flight speed and energy efficiency in 

UAV logistics. Our approach involves three methods; K Means clustering, an enhanced 

genetic algorithm and the 2 opt heuristic. 

To begin with we used K Means clustering to categorize delivery destinations into clusters. 
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This allowed us to assign each cluster to UAVs ensuring a distribution of delivery tasks. 

Once the clusters were established our enhanced genetic algorithm took over. Its main 

objective was to determine the flight routes by considering factors such as distance between 

points, payload capacities of the UAVs and their associated energy requirements. 

To further optimize these routes, we employed the 2 opt heuristic. This technique carefully 

rearranged the stops within each route to minimize travel distance and consequently reduce 

energy consumption. By combining these strategies in a manner, we were able to 

thoroughly explore how UAV based delivery systems operate and gain valuable insights 

into improving UAV performance with regards to payload management speed regulation 

and energy utilization. 

The population size, mutation rate and maximum generation were carefully selected based 

on testing to strike a balance, between efficiency and the thoroughness of our genetic 

algorithms search process. For instance, the population size was chosen to maintain a range 

of solutions without converging quickly. The mutation rate was adjusted to introduce 

variation without disrupting progress towards convergence. Limiting the number of 

generations helped prevent computational time while still allowing the algorithm enough 

chances to discover nearly optimal solutions. These parameters play a role in how the 

algorithm performs by influencing how much exploration, versus exploitation occurs in 

searching for solutions ultimately impacting both speed of convergence and solution quality. 

Figure 5 shows UAV used in application (DroneEngr, 2024). 

 

 

 

Figure 5. UAV 
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Table 2 and table 3 shows package weights, coordinates, and the UAV specifications. 

 

Table 2. Package weights and coordinates 
 

Point ID Coordinates (x, y) Package weight (kg) 

0 (342, 598) 0 

1 (200, 900) 5 

2 (120, 300) 10 

3 (250, 990) 15 

4 (300, 700) 10 

5 (350, 500) 20 

6 (400, 400) 5 

7 (900, 150) 10 

8 (600, 600) 15 

9 (900, 100) 5 

10 (550, 850) 10 

 

Table 3. UAV specifications 
 

Specification Value 
Number of UAVs (D) 4 

Max payload per UAV (Mp) 40 kg 
UAV base weight (Wb) 20 kg 

Air density (ρ) 1.225 kg/m3 
Drag coefficient (Cd ) 1 

Wing area (A) 2 m2 
Gravitational acceleration (g) 9.81 m/s2 
Height for takeoff/landing (h) 50 m 

Base min/max speed (Vbmin , Vbmax) Variable based on payload 

Genetic Algorithm (GA) that we used in our model is a method that draws inspiration from 

natural selection and genetics. It proves to be highly effective when it comes to solving 

optimization problems in the case of dynamic path planning, for multi-UAV systems used 

in last mile delivery. In our research we employ Genetic Algorithm (GA) to optimize the 

routes taken by UAVs (Unmanned Aerial Vehicles) with a focus on achieving energy and 

cost efficiency. This section provides an explanation of how we have adopted GA 

methodology to tackle the challenges faced by UAV-based delivery systems. 

The foundation of our GA methodology lies in Darwin’s theory of evolution, which 

highlights the importance of survival and evolution of the solutions. In our case each 

potential route configuration for UAVs is considered as a chromosome with individual 

segments representing genes that make up these routes. The effectiveness of each solution is 

evaluated based on its efficiency in terms of energy consumption, delivery time and 

adherence to payload constraints. As you can see in Fig. 6. our approach using GA is 

characterized by its nature as it maintains and evolves a population of solutions over 

generations. This method ensures improvement in the search for the efficient routes for 

UAV deliveries. 

2.1. Steps In Genetic Algorithm Process 

The parameters for Population Size and Maximum Generations were determined through 

empirical testing, aimed at balancing the computational efficiency with the depth and 

diversity of the search process in our genetic algorithm. 

The Population Size was established based on iterative trials to identify a size that allows 

sufficient diversity while avoiding both premature convergence and excessive computational 
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load. This size ensures a robust search across the genetic landscape, enhancing the 

algorithm’s ability to find near- optimal solutions without getting trapped in local minimal. 

Maximum Generations were set by observing the point at which improvements in solution 

quality plateaued over successive runs, indicating convergence of the algorithm. This 

parameter helps in terminating the algorithm once additional iterations cease to provide 

significant value, thus optimizing computational resources and time. These parameters were 

adjusted through a series of preliminary simulations, testing various scenarios to strike an 

optimal balance that accommodates the complexities of multi- UAV routing problems while 

maintaining reasonable execution times. 

Initial Population: The starting point of our algorithm (GA) is a set of UAV route 

configurations. Each configuration, called a chromosome consists of routes that represent 

sequences of delivery points. During initialization we aim to cover a range of solutions to 

thoroughly explore the search space. 

Selection: This process is akin to selection based on evaluating fitness. The fittest solutions, 

which optimize delivery routes for time and energy efficiency while adhering to payload 

limits have a chance of being chosen for reproduction. To maintain a balance between 

exploiting the solutions and exploring possibilities we employ a roulette wheel mechanism 

to select solutions for the next generation.
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Figure 6. Genetic algorithm process 

Crossover: Crossover plays a role in producing solutions (offspring) by combining 

selected parent solutions. Our GA incorporates techniques like point or multi point 

crossover, where segments of parent routes are exchanged to create configurations. 

Mutation: Mutation introduces changes to the offspring promoting diversity within the 
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population and preventing convergence towards local optima. We carefully control the 

mutation rate to ensure it contributes to exploration without hindering progress, towards 

solutions. 

2.2. K-Means Clustering in Genetic Algorithm 

The K Means clustering technique plays a role in dividing delivery points into clusters each 

assigned to an Unmanned Aerial Vehicle (UAV). This process is vital for generating the 

population in Genetic Algorithms (GA). 

The goal of the K-Means clustering algorithm is to partition n delivery points into K clusters 

ensuring that each point pi belongs to the cluster with the mean. This creates a partition S = 

S1, S2, . . . , SK , with the objective of minimizing the sum of squares within each cluster 

(WCSS): 

Min ∑  𝐾
𝑖=1 ∑  𝑝∈𝑆𝑖

‖𝑝 − 𝜇𝑖‖2         (31) 

where µ is the mean of points in 𝑆𝑖 . 

Implementing into Genetic Algortihm 

• The K Means technique is employed to assign delivery points to UAVs based 

on their proximity, which establishes the routes. 

• This clustering approach forms the foundation of the population within Genetic 

Algorithms (GA) guaranteing a set of starting solutions. 

2.3. 2-Opt Algorithm in Genetic Algorithm 

The 2 Opt algorithm serves as a search method utilized to enhance the routes generated by 

Genetic Algorithms (GA). It consistently replaces two edges with two edges to decrease 

the route length. 

• Lets consider a route denoted as R, which consists of points R = (r1, r2, . . . , rn). 

• In the 2 Opt technique we removed two edges (ri, ri+1) and (rj, rj+1). Then reconnect 

the paths formed. 

• The resulting new route is denoted as R’ which follows the order R′ = (r1, . . . , ri, rj, . . 

. , ri+1, rj+1, . . . , rn). 

• We keep this change only if it reduces the distance of 

the route. Implementing into Genetic Algorithm 

• In a Genetic Algorithm (GA) after performing crossover and mutation steps on each 
offspring. 

• We apply the 2 Opt technique to refine each route individually. 

• This step focuses on optimizing the order in which delivery points are visited. 

• It helps prevent getting trapped in solutions and enhances the overall 

fitness of the population. 
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2.4. Multi-UAV System Implementation 

Calculating Distances: To plan the route of each UAV effectively it is essential to 

determine the distances between delivery points. The distance for each segment of a route 

can be calculated using the formula: 

  𝑑𝑖𝑗 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2                                                                                                    (32) 

This formula enables us to compute the straight-line distance between any two points i and 

j, where (xi, yi) and (xj, yj) represent their coordinates. 

Optimal Speed and Energy Calculation: To maximize efficiency while minimizing energy 

consumption it is crucial to determine the speed for each segment of a UAVs route. The 

optimal speed considers factors, like the UAVs weight and aerodynamic properties. It can 

be calculated as follows; 

 𝑣opt = 𝑚𝑖𝑛
𝑣

(𝑃drag(𝑣) + 𝑃lift(𝑣))                                                                                              (33) 

Additionally, we need to consider the energy required for completing each segment of the 

route including takeoff, cruising and landing phases: 

𝐸segment = (𝑃takeoff × 𝑡takeoff) + (𝑃cruise × 𝑡cruise) + (𝑃landing × 𝑡landing)                                  (34) 

This energy calculation incorporates parameters and aerodynamic principles. The formulate 

(33) and 

(34) contribute to a model that optimizes UAV flight paths by calculating the necessary 

energy. 
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3. COMPUTATIONAL RESULTS 

Our research delves into the Capacitated UAV Routing Problem (CDRP) using a UAV 

approach with a focus, on optimizing energy and cost efficiency through a multi visit 

system. We devised our solution by employing a Genetic Algorithm, which incorporates 

the 2 Opt technique for route optimization well as the K means Clustering Method to 

efficiently allocate tasks among UAVs. These methodologies collectively address the nature 

of routing UAVs while considering capacity limitations, energy efficiency and operational 

expenses. To implement our solution, we utilized Python programming language in 

conjunction with the PyCharm Integrated Development Environment (IDE). Additionally, 

we leveraged the capabilities of Gurobi 11.0 to solve optimization problems. All 

computations were performed on a MacBook Pro computer equipped with an M3 chip and 

8GB of RAM. This setup demonstrates that our approach is applicable on available 

computing platforms. The solvers parameters were kept at their default settings to ensure 

that our results can be reproduced reliably. Furthermore, to strike a balance between 

exploration and practical constraints we imposed a four-hour time limit on each 

experiment. 

By employing this framework, we were able to examine the effectiveness of our proposed 

methodologies in enhancing operational efficiency within UAV routing systems. Our 

findings underscore potential for advancements in UAV logistics. 

3.1. Simulation Setup 

Our simulation environment is carefully designed to add the complexities and limitations, 

in real world UAV delivery operations. The experimental parameters are as follows: 

• Population Size: We have set it at 50 which determines the diversity of route solutions 

explored by our algorithm striking a balance between exploration and exploitation. 

• Maximum Generations: Limited to 100 indicating the depth of search conducted for 

optimal route configurations. 

• Mutation Rate: Kept at a fixed value of 0.1 this rate emphasizes the algorithms’ 

ability to introduce variability and avoid getting stuck in local optima. 

• Tournament Size: Set at 5 representing the selection process for breeding within the 

algorithm framework. 

• Battery Capacity: Our UAV fleet operates with a capacity of 300-watt hours 

determining their range and endurance. 

• Number of UAVs: Our delivery fleet consists of four UAVs, which aligns with 

operational scalability and manageability considerations. 
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• UAV Specifications: Each UAV has a base weight of 20 kg and a maximum payload 

capacity of 40 kg. These parameters are crucial for understanding energy 

consumption and routing dynamics. 

• Package Weights and Delivery Coordinates: To simulate delivery scenarios package 

weights vary from 5 to 20 kg. Additionally, delivery points are strategically dispersed 

to challenge the routing algorithm. 

This configuration does not demonstrate the versatility of our model. Also investigates its 

boundaries and capacities when faced with diverse logistical limitations. 

3.2. Results 

In the operations of UAVs, adjustments in speed relative to changes in payload weight are 

strategically managed to optimize delivery efficiency. For UAV-1, the initial high speed of 

35.555 m/s with a payload of 35 kg is employed to quickly cover the longer initial segment 

of the delivery route. As the UAV makes deliveries and the payload decreases, the speed is 

systematically reduced. This reduction in speed is not directly due to the decrease in 

payload but is a strategic decision to conserve energy and enhance flight safety as the UAV 

becomes lighter and more energy-efficient in its operations. 

Table 4. UAV-1 subtour results 
 

This adaptive speed management strategy ensures that UAVs operate effectively when 

carrying loads using an advanced control system to balance the goals of saving time and 

conserving energy. In the case of UAV-2 we noticed a decrease in the speed and 

acceleration coefficient (epsilon) as it moves along its delivery route starting at a speed of 

17.777 m/s with a 15 kg load and gradually decreasing to 4.444 m/s as the load decreases 

to zero. This highlights how control mechanisms adjust speed based on payload weight 

during deliveries with energy consumption (210.667 Wh) heavily impacted by both the 

weight being carried and the distance traveled, emphasizing the need to optimize these 

factors for delivery efficiency. 
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Table 5. UAV-2 subtour results 
 

 

 

When we look at the results of UAV-3’s subtour, we can see that there is a balance between 

managing the payload and maximizing energy efficiency. At first the UAV carries a 

payload of 20 kg and reaches a speed of 22.222 m/s thanks to a higher acceleration 

coefficient (epsilon) of 0.617; as the payload decreases to 15 kg the speed decreases to 

17.777 m/s. Eventually drops to 4.444 m/s with no payload showing significant energy 

savings. The total duration of this trip is 144.030 seconds, with an energy usage of 148.861 

Wh highlighting how important it is to consider payload weight and flight dynamics when 

planning routes and adjusting speeds to improve the efficiency and performance of UAV 

delivery systems. 

Table 6. UAV-3 subtour results 

 

The UAV-4 begin its route carrying a 35 kg payload reaching a speed of 35.555 m/s and an 

acceleration factor (epsilon) of 1.58. In the leg of the flight, it consumes 51.834 Wh of 

energy due to the load and high speed. As the mission progresses, the payload decreases to 

25 kg. To 15 kg both the speed and epsilon decrease proportionally to 26.666 m/s and 

17.777 m/s respectively allowing for more efficient energy usage. When flying without any 

payload the UAV maintains a speed of 4.444 m/s resulting in a reduction in energy 

consumption to only 27.857 Wh for this phase. It completes this part of the journey, in 

121.115 seconds by adjusting its flight dynamics and energy consumption based on the 

changing payload weights. 

Table 7. UAV-4 subtour results 
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Figure 7. UAV mission delivery subtours 

Note: The total mission was completed in a time of 253.53 seconds, consuming a total 

energy of 

746.64 Wh. 

Fig. 7. provides an analysis of a UAV delivery mission, where UAVs are strategically 

deployed to balance payload distribution and route efficiency. The goal is to optimize 

delivery times and energy usage. UAV 1, which initially carried the load started off with 

speeds but gradually slowed down as deliveries were made. On the hand UAV 4 also 

started with a payload followed a more energy efficient route. UAV 2s longer flight time 

indicated that its route might have been longer or less efficient compared to others while 

UAV 3 maintained parameters throughout the mission. The overall mission was completed 

in 253.53 seconds consuming around 746.64 Wh of energy. This analysis highlighted the 

tradeoff between speed, payload capacity and energy consumption in UAV delivery 

systems. Identified potential areas for future optimization. 
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Figure 8. UAV flight segment optimal speeds 

Fig. 8 shows how UAVs change their speeds based on changes in payload weight when 

carrying out deliveries. At the beginning UAVs 1 and 4 begin with speeds of 35 m/s 

slowing down as their payloads get lighter, which improves efficiency towards the end of 

the mission. This chart emphasizes the tuning of UAV speeds to save energy and stresses 

the significance of adjusting speed for payload handling and route planning. 

 

 

Figure 9. Payload optimal speeds 
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Figure 8 shows the correlation between UAV payload weights and their optimal speeds, 

offering analytical perspectives on operational efficiency in UAV delivery systems. The 

scatter plot, complemented by a curve, demonstrates that as UAVs carry heavier loads, 

they tend to operate at higher optimal speeds. This relationship is evident through aligned 

data points and a linear trend line highlighting the increase in speed with payload weight. 

These optimal speeds were determined using our proposed enhanced genetic algorithm, 

which dynamically adjusts UAV speeds based on payload weight to optimize energy 

consumption and operational efficiency. The findings suggest that heavier deliveries require 

faster travel to maintain optimal flight dynamics and manage energy effectively. The data 

used for this figure was generated through computational experiments conducted as part of 

this study, where various payload weights and UAV specifications were tested to observe 

their impact on optimal speeds. 

 

Figure 10. Payload acceleration coefficient 

Fig. 10 shows the impact of payload weight, on UAV acceleration indicating that heavier 

loads demand power for acceleration. This is evident from the rise in the acceleration 

coefficient (Epsilon) as weight increases. The graph shows that UAVs maintain steady 

acceleration with payloads but adjustments in flight dynamics and power settings are 

required for heavier loads. The analysis emphasizes the link between payload weight and 

operational effectiveness emphasizing the importance of strategic UAV design and mission 

planning to enhance performance and energy efficiency. 
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Figure 11. Energy consumptions per segment 

In Fig. 11. we can get insights into the energy usage patterns of UAVs during delivery 

missions. It becomes evident that UAV 2 initially has energy demands, which could be 

attributed to a load or longer route. On the other hand, UAV 4 demonstrates energy use in 

the beginning indicating a lighter load or shorter initial segment. As the mission progresses 

all UAVs show a decrease in energy consumption across segments reflecting payload 

delivery and reduced energy requirements. Notably UAV 1 consistently consumes energy 

than the others suggesting its role in covering distances or carrying heavier payloads. 

 

Figure 12. Speed power consumptions 
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Fig. 12 shows the relationship between UAV’s speed, its carried payload, and the consequent 

power requirements. The data clearly indicate a correlation where power consumption 

increases with speeds across different payload weights. This highlights the energy demands 

needed to counteract drag at velocities particularly when dealing with heavier payloads. 

Such insight is crucial for UAV design as it emphasizes the importance of strategic speed 

management to enhance energy efficiency and optimize performance. 

 

Figure 13. Speed endurance 

In Fig. 13, it shows that when the speed of a UAV goes up its endurance goes down with 

payloads. This emphasizes the importance of flying UAVs, at a speed range to get the most 

out of their endurance. This evaluation is crucial for planning missions as it enables 

adjustments in UAV speeds based on payload weight ultimately improving efficiency in 

tasks, like delivery and surveillance. 
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Figure 14. Speed range 

Fig. 14. shows that UAVs travel range diminishes as both payload and speed increase. To 

what was observed in terms of endurance. This indicates an inverse relationship between 

speed and range across all payloads. Heavier payloads have an impact on the range of 

UAVs. Much like their effect on endurance. By reducing flight time and distance 

capabilities when combined with increased speed. Consequently, this underscores the 

importance of managing speeds, for performance. The values presented in the figure (25 m 

to 250 m) are derived from specific test scenarios designed to highlight the impact of 

varying payloads and speeds on UAV range in a controlled environment. These values 

illustrate the trend rather than representing the maximum possible range of the UAVs. 

Consequently, this underscores the importance of managing speeds for optimal 

performance and efficiency in UAV operations. 

4. CONCLUSION AND FUTURE WORK 

In this study we worked on the performance of four UAVs by exploring aspects such, as 

speed enhancement, energy conservation, handling of payloads and acceleration features. 

UAVs 1. 4 demonstrate efficient speed control when carrying loads indicating thrust 

capabilities, especially UAV 4 which strikes a balance between payload capacity and speed 

implying a superior power to weight ratio. On the other hand, UAV 3 maintains speeds 

even with heavy payloads at either energy saving tactics or limitations in thrust compared 

to UAV 4. Meanwhile UAV 2 demonstrates energy efficiency by utilizing 65.963 Wh even 

during long flights showcasing effective cruising without any payload onboard. The 

declining energy usage as payloads are delivered for UAV 4 emphasizes advanced energy 

management aligned with task completion. This study highlights the importance of 

managing both the weight and energy consumption of UAVs to optimize delivery routes; 

it stresses 
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that controlling speed and distributing payloads are factors in improving operational 

efficiency and cost effectiveness in UAV logistics. Future research should concentrate on 

creating algorithms that can dynamically adapt routes and speeds based on changing 

circumstances and testing them in real world settings to enhance their efficacy while also 

refining energy consumption models to consider impacts for better deployment strategies 

of UAVs, in diverse delivery scenarios. 

Based on our findings, it is advisable for practitioners to implement systems that manage 

speed and payload dynamically to enhance energy efficiency and operational effectiveness. 

Policy makers should think about creating rules and regulations that promote the integration 

of drones into delivery networks emphasizing operation guidelines such as speed 

restrictions and payload capacities. Moreover, investing in research and development for 

battery technologies and energy efficient drone designs will play a role in expanding the 

reach and functionalities of drones. Collaboration between industry stakeholders and 

regulatory entities can help in establishing procedures for drone operations ensuring 

scalability and sustainability across logistical settings. These steps will harness the potential 

of drone technology in improving delivery services while reducing impact and operational 

expenses. 

The experiments conducted involved controlled settings, which may not encompass all 

factors encountered in real world scenarios like weather conditions, regulatory limitations 

and unforeseen obstacles. Additionally, the model assumes knowledge about payload 

weights and delivery locations information that may not always be readily available in 

situations. Future studies ought to address these uncertainties by exploring algorithms 

capable of adapting to real time data and dynamic changes in delivery environments. 

Despite these constraints the proposed model represents an advancement towards 

optimizing drone-based logistics operations while setting a foundation for research 

endeavors and practical applications. 
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