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Abstract: Interval matrices have many applications in intelligent engineering problems such as robotics
in computer science. In this paper, we will first describe theconcepts of interval matrices. Next, we will
introduce a new class of interval matrices, namely, doubly stochastic interval matrices. Finally, we will
present some properties of this new class of matrices.
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1. Introduction

Many real-life problems originate from diverse uncertainties, for example due to data measurement

errors. The elements of a matrix, occurring in practice, areusually obtained from experiments,

hence they may appear with uncertainties. We represent the uncertain elements in interval forms

instead of fixed real numbers. The first systematic treatmentof interval vectors and matrices was

given by Apostolatos and Kulisch (1968).

An interval matrixAI is a matrix whose elements are intervals and will be written as

AI = [A,A] = (aI
i j)(m×n),

whereaI
i j = [ai j,ai j]. For this matrix,| AI | is a real matrix defined as

| AI |= (| aI
i j |)(m×n),

where| aI
i j |= max{| ai j |, | ai j |}.

For the interval matrixAI = [A,A], the center matrix denoted byAc and the radius matrix denoted

by ∆ are respectively defined as

Ac =
1
2
(A+A) , ∆ =

1
2
(A−A).

We assume that the reader is familiar with basic interval arithmetic, otherwise see [8].

An interval matrixAI is said to be nonnegative ifA ≥ 0. We will say that an interval matrixAI is

cogredient to an interval matrixBI if there exists a permutation matrixP such thatAI= PT BIP.
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The real eigenvalue set of a square interval matrix is definedas

Λ = {λ ∈ R; Ax = λx,x 6= 0,A ∈ AI}. (1)

A real vectorx is called a real eigenvector ofAI if it is a real eigenvector of some matrixA ∈ AI,

[10].

A real nonnegative matrixA is said to be anr-doubly stochastic matrix if each of its row and

column sums isr. The set ofn×n r-doubly stochastic matrices is denoted byΓr
n, [7].

Doubly stochastic matrices are very important in engineering and robotic problems: motion plan-

ning, localization and navigation [3] to name a few. In robotic networks, the discrete time con-

sensus algorithm requires the adjacency matrix to be doublystochastic [2]. On the other hand,

dealing with uncertainties is unavoidable in these problems [5]. In fact, interval analysis is used

to solve many robotic problems such as the clearance effect,robot reliability, motion planning,

localization and navigation [6].

Therefore, we motivate the concept of a doubly stochastic interval matrix by the above observation.

In the next section, we will introduce doubly stochastic interval matrices and study some of the

properties of these matrices. Finally we show the application of these matrices in the field of

robotics.

2. Basic Definitions and Main Results

As mentioned previously, realr-doubly stochastic matrices have useful and interesting properties.

In this section, we apply the existence of uncertainties in the elements of these matrices. At first,

we introduce the doubly stochastic interval matrices and then we present some results for these

matrices.

Definition 1. A nonnegativen×n interval matrixAI = [A,A] is said to be[α ,β ]-doubly stochastic

interval matrix and denoted byAI
[α ,β ] if A andA areα-doubly stochastic andβ -doubly stochastic

matrices, respectively.

Clearly, the center matrix of a doubly stochastic interval matrix AI
[α ,β ] belongs toΓ

α+β
2

n and its

radius matrix belongs toΓ
β−α

2
n .

Remark 2.1. Each[α ,β ]-doubly stochastic interval matrix contains numerousr-doubly stochastic

matrices, whereα ≤ r ≤ β .

The following lemma shows the existence of at least oner-doubly stochastic matrix inAI, for each

α ≤ r ≤ β .
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Lemma 1. Let AI
[α ,β ] be ann× n doubly stochastic interval matrix. For eachα ≤ r ≤ β , there

exists at least oner-doubly stochastic matrixA ∈ AI.

Proof. Define the mapφ : [0,1] −→ AI as follows:

φ(t) = A+ t(A−A).

If we chooset = r−α
β−α for eachα ≤ r ≤ β , it is clear thatφ(t) ∈ AI. Moreover, we have

n

∑
j=1

(φ(t))i j = r, i = 1, · · · ,n,

and
n

∑
i=1

(φ(t))i j = r, j = 1, · · · ,n.

In the following example, the existence of several 5.5-doubly stochastic interval matrices inAI has

been shown.

Example 2.1. Suppose

AI =









[2,3] [0,1] [1,4]

[1,5] [2,3] 0

0 [1,4] [2,4]









.

ThenAI is a[3,8]-doubly stochastic interval matrix.Ac ∈ Γ5.5
3 and∆ ∈ Γ2.5

3 . some other 5.5-doubly

stochastic matrices inAI are

A =









2 1 2.5

3.5 2 0

0 2.5 3









,









2 0.5 3

3.5 2 0

0 3 2.5









,









2.5 0 3

3 2.5 0

0 3 2.5









,









3 0.5 2

2.5 3 0

0 2 3.5









.

Arndt in [1] says that a nonnegative interval matrixAI is called (ir)reducible if|AI | is (ir)reducible.

We extend the definition of reducibility of interval matrices, as the following definition. In fact,

this definition is an extension of the reducibility of real matrices [7].

Definition 2. A nonnegative n-square interval matrixAI, for n ≥ 2, is strongly reducible if there

exists a permutation matrixP such that

PT AIP =

(

AI
1 0

AI
3 AI

2

)

,

whereAI
1 andAI

2 are (n-k)-square and k-square matrices, 1≤ k < n, respectively. Otherwise,AI is

weakly irreducible.

In the following lemma, some equivalent statements to reducibility of interval matrices are given.
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Lemma 2. For the square nonnegative interval matrixAI, the following statements are equivalent:

(i) AI is reducible,

(ii) A is reducible,

(iii) all A ∈ AI are reducible.

Proof. SinceAI is nonnegative, we have| AI |= A. This implies (i)⇒ (ii) and (iii) ⇒ (i).

(ii) ⇒ (iii): Let A be reducible. Then there exists a permutation matrixP such that

PT AP =

(

A1 0

A3 A2

)

,

whereA1 andA2 are square matrices.

Now supposeA ∈ AI. Then from 0≤ A ≤ A, it follows that
(

0 0

0 0

)

≤ PT AP =

(

A1 A4

A3 A2

)

≤ PT AP =

(

A1 0

A3 A2

)

.

This implies thatA4 = 0, and henceA is reducible.

By the following example, we will show that ifAI is irreducible, then everyA ∈ AI is not neces-

sarily irreducible.

Example 2.2. The matrix

AI =









[2,3] [2,3] [1,1]

[3,4] [0,1] [2,3]

[0,2] [0,3] [2,4]









is irreducible, since| AI |= A is irreducible, butA is reducible.

The following lemma shows that the strong reducibility is higher than reducibility of an interval

matrix.

Lemma 3. Every strongly reducible interval matrix is a reducible interval matrix.

Proof. If AI = [A,A] is strongly reducible, thenA is a reducible matrix and by Lemma 2,AI is

reducible.

The following lemma provides a criterion for an interval matrix to be doubly stochastic.

Lemma 4. A nonnegative interval matrixAI is an[α ,β ]-doubly stochastic interval matrix if and

only if

AIJn = JnAI = ([α ,β ])n×n,

whereJn is then×n matrix whose entries are 1 and([α ,β ])n×n is then×n interval matrix whose

entries are[α ,β ].
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Proof. Since each of the row and column sums is[α ,β ], the assertion is easily proved by direct

calculation.

Theorem 1. The product of two doubly stochastic interval matrices is a doubly stochastic interval

matrix.

Proof. If AI
[α ,β ] andBI

[α ′
,β ′ ]

aren× n doubly stochastic interval matrices, then their product isa

nonnegative matrix and it is clear that

(AI
[α ,β ]B

I
[α ′

,β ′
]
)Jn = Jn(A

I
[α ,β ]B

I
[α ′

,β ′
]
) = ([αα

′
,ββ

′
])n×n.

Theorem 2. Every doubly stochastic interval matrixAI
[α ,β ] is cogredient to a direct sum of weakly

irreducible doubly stochastic interval matrices.

Proof. If AI
[α ,β ] is strongly irreducible, then the proof is complete.

Suppose thatAI
[α ,β ] is strongly reducible, then by definition 2,AI

[α ,β ] is cogredient to a matrix of

the form

(

AI
1 0

AI
3 AI

2

)

, whereAI
1 is an (n-k)-square matrix andAI

2 is a k-square matrix.

Let sum(AI) denote the sum of all entries of the matrixAI. Clearly,sum(AI
3) = 0 and soAI

3 ≡ 0,

sinceAI
3 is nonnegative. IfAI

1 andAI
2 are weakly irreducible, the result follows. If eitherAI

1 or

AI
2 happens to be strongly reducible, then by repeating this argument we will end up with a direct

sum of weakly irreducible doubly stochastic interval matrices.

One of the most important problems in interval matrices is the determination of an interval that

contains the set of real eigenvalues of the matrix. The following theorem and its corollary provide

some ground rules regarding the real eigenvalues of this special class of matrixes.

Theorem 3. If AI
[α ,β ] is a doubly stochastic interval matrix, thenΛ(AI

[α ,β ]) ⊆ [−β ,+β ] ande =

(1,1, · · · ,1)T is a real eigenvector.

Proof. For eachA ∈ AI, we haveρ(A) ≤ ρ(A), [9]. Moreover, we know thatρ(A) = β and

e = (1,1, · · · ,1)T is an eigenvector forA. Therefore, from the definitions of the eigenvalue set and

the eigenvector forAI
[α ,β ], the result will follow.

Corollary 1. The absolute value of each eigenvalue ofA ∈ AI
[α ,β ] lies in the interval[0,β ].
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The following theorem says that the set of alln× n doubly stochastic interval matrices forms a

polyhedron with permutation matrices as its vertices.

Theorem 4. If AI
[α ,β ] is ann×n, [α ,β ]-doubly stochastic interval matrix, then

AI
[α ,β ] =

s

∑
i=1

θ I
i Pi, (2)

whereP1,P2, · · · ,Ps are permutation matrices andθ I
i are nonnegative intervals satisfying

s

∑
i=1

θ I
i = [α ,β ].

Proof. We have

AI
[α ,β ] = Ac +[−1,1]∆.

SinceAc ∈ Γ
α+β

2
n and∆ ∈ Γ

β−α
2

n , the Birkhoff theorem, (see [7]), implies the following relations:

Ac =
s1

∑
i=1

δiPi, (3)

and

∆ =
s2

∑
i=1

ηiPi, (4)

where thePi’s are permutation matrices and theδi’s andηi’s are nonnegative numbers satisfying

s1

∑
i=1

δi =
α +β

2
,

s2

∑
i=1

ηi =
β −α

2
.

Therefore, we can write

AI
[α ,β ] =

s

∑
i=1

θ I
i Pi,

where
s

∑
i=1

θ I
i =

α +β
2

[1,1]+
β −α

2
[−1,1] = [α ,β ].

Example 2.3. Let

AI
[3,8] =









[2,3] [0,1] [1,4]

[1,5] [2,3] 0

0 [1,4] [2,4]









be an[3,8]-doubly stochastic interval matrix. It is clear thatAI
[3,8] can be written as follows:

AI
[3,8] = [2,3]









1 0 0

0 1 0

0 0 1









+[0,1]









0 1 0

1 0 0

0 0 1









+[1,4]









0 0 1

1 0 0

0 1 0









.
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One important question here is the total number of permutation matrices in the form (2), or in other

words, the numbers ofs in this form. This problem is very difficult; however, we can compute an

upper bound fors.

The upper bound for the number of permutation matrices in (3)and (4) is(n−1)2+1, (Theorem

3.3 and 3.5 in [7]). This allows us to compute an upper bound for s in (2), hence we have the

following result.

Theorem 5. If n ≥ 4, then the number of permutation matrices which are needed in Theorem 4 is

less than or equal to 2(n−1)2+2.

The next example expresses an application for the doubly stochastic interval matrices in robotic

problems.

Example 2.4. A classical robotics problem is to determine various types of workspace of a given

robot. For example, we may have to compute the region of the workspace of the robot in which

the eigenvalues ofKI = (JI)T JI, whereJI is the Jacobian matrix, are all included in a given range

[a,b]; see [6].

Now, suppose the Jacobian matrix related to a robot is the following form

J =

(

1+sinθ cosθ
cosθ 1+sinθ

)

,

where 0≤ θ ≤ π
4 .

It is clear that this matrix is an[1+
√

2
2 ,2+

√
2

2 ]-doubly stochastic interval matrix and every eigen-

values ofK = JT J is real. Based on Theorem 1,K = JT J is an[3
2 +

√
2, 9

2 +
√

2]-doubly stochastic

interval matrix. Therefore, from Theorem 3 we obtain the interval [−9
2 −

√
2, 9

2 +
√

2] for the

region of the workspace of this robot.
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