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Abstract: In this paper, by applying the theory of condensing multimaps and the topological degree, we
deal with the existence of solutions for boundary value problems with second order differential inclusions
in different cases where the underlying space is a Banach space. Indeed, we investigate the existence of
solutions for the BVP {

x′′(t) ∈ F(t,x(t)) t ∈ I = [0,1],
x(0) = x(1) = 0,

whereX is a real Banach space and the multifunctionF : I ×X ⊸ K(X), in one case, has convex values and
in another case has non-convex values(K(X) denotes compact subsets ofX). Moreover, some results on the
existence of solutions for the extended version of BVP

{
u′′(t) ∈ Q(u) t ∈ I,

u(0) = u(1) = 0,

are presented, whereQ : C(I,X)⊸C(L 2) is a multimap satisfying some appropriate conditions. Finally, we
show how the results can be used to study periodic feedback control systems.
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1. Introduction

During the last few years, the second-order boundary value problem for ordinary and functional

differential equations with various conditions (periodic, nonlinear, integral conditions, etc..) have

attracted the attention of many mathematicians and are still intensively studied. Indeed, these

problems arise in different areas of physics, mechanics, and more generally in applied mathemat-

ics.

The first motivation of the study of the concept of differential inclusions comes from the develop-

ment of some studies in control theory. Examples of such phenomena include mechanical systems

with the Coulomb friction modeled as a force proportional tothe sign of a velocity and systems
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whose control laws have discontinuities. For more information about the relation between dif-

ferential inclusions and control theory, we refer the reader to [2, 7, 8, 16, 25] and the references

therein.

The case of the second order boundary value problem for differential inclusions has been stud-

ied in [9] where the multi-function satisfies a Bernstein-Nagumo condition. Benchohra et al.

[3] have studied some 3-point boundary value problems associated with a differential inclusion

x′′(t) ∈ F(t,x(t)) whereF is a nonempty compact valued multi-valued mapping which is inte-

grably bounded.

Very recently, C.S. Goodrich [11] demonstrated the existence of at least one positive solution to

the differential inclusionx′′(t) ∈ F(t,x(t)), equipped with the boundary conditionsx(1) = 0 and

x(0) = H(ϕ(x)), by imposing an asymptotic condition onH, whereH is a nonlinear function and

ϕ is linear functional realized as a Lebesgue-Stieltjes integral.

In 2015, R.P. Agarwal et al. discussed this inclusion problem in the Caputo fractional formDαx(t)∈

F(t,x(t)) by utilising theα-ψ-Ciric generalized fixed point theorem for multifunctions where

1< α ≤ 2.

Hu and Papageorgiou [13, 14] proved the existence of periodic solutions for nonconvex differ-

ential inclusions inRn. The approach [13] was based on directionally continuous selectors for

the orientor field and on a Nagumo type tangential condition.In [14], their approach was based

on degree theory arguments. Some existence results for the periodic problems have been estab-

lished by De Blasi et al. [6]. The method was based on the construction of the topological degree

for the Poincaré maps and on a guiding potential condition.In [17], the approach is based on

the LeraySchauder alternative theorem and the Schauder fixed point theorem where the orientor

field (multivalued vector field) was nonconvex. It is worth mentioning that there are many papers

about the existence of solutions for boundary value problems with differential inclusions inRn,

the proofs of which are essentially based on the fixed point theorems for compact multi-maps (see

for example [5, 23, 26, 27]).

Ravichandran and Baleanu [24] focused on establishing the existence result for a class of abstract

fractional neutral functional integro-differential evolution systems involving the Caputo fractional

derivative by using the properties of characteristic solution operators and Mönch’s fixed point

theorem via measures of noncompactness.

Motivated by the above, the goal of this paper is to investigate the existence of periodic solutions

for systems governed by differential inclusions. Our approach is based on the method of the

integral multioperator and the method of the translation multi operator along with the solutions of

the inclusion, which were used in [15]. Three cases of boundary value problems with differential

inclusions are considered here. In all of them we deal with the condensing multioperators. To

the best of our knowledge, there are relatively many resultson boundary value problems with
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differential inclusions of compact multimaps orJc-multimaps [18, 19, 20] in finite dimension

Banach spaces; however, this may be the first paper on the existence of solutions for boundary

value problems with noncompact multivalued maps in Banach spaces.

The paper is organized such that the next section contains background materials and preliminaries

from multivalued analysis which can be found in [15]. In Section 3, we investigate the existence

of solutions for the BVP {
x′′(t) ∈ F(t,x(t)) t ∈ I,

x(0) = x(1) = 0,
(1)

whereI = [0,1], X is a real Banach space and the multifunctionF : I ×X ⊸ K(X) in one case

has convex values and in another case has nonconvex values. In section 4, some results on the

existence of solutions for the extended version of BVP
{

u′′(t) ∈ Q(u) t ∈ I,

u(0) = u(1) = 0,
(2)

are presented, whereQ : C(I,X)⊸C(L 2) is a multimap satisfying some appropriate conditions.

In the last section, as an application we consider a feedbackcontrol system of the form




x′′(t) = f (t,x(t),u(t)) t ∈ I,

u(t) ∈U(t,x(t)) t ∈ I

x(0) = x(1) = 0,

(3)

where f : I ×X ×X1 → X andU : I ×X1 → K(X1), X ,X1 are Banach spaces. The first equation

of the above system describes the dynamics of the system and the second inclusion represents the

feedback.

2. Preliminaries

Let X be a metric space andY be a norm space.P(Y ) denotes the collection of all nonempty subsets

of Y , K(Y ) denotes the collection of all nonempty compact subsets ofY andKv(Y ) denotes the

collection of allS ∈ K(Y ) whereS is convex.

Definition 1. (See, e.g., [10].) A multivalued map (multimap)F : X → P(Y ) is said to be upper

semicontinuous (u.s.c.) if for every open subsetV ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open inX . A u.s.c. multimapF is said to be completely u.s.c. if it maps every bounded subset

X1 ⊂ X into a relatively compact subsetF(X1) of Y .
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A function γ : {B ⊂ X : B is bounded}→ [0,∞) is said to be a measure of noncompactness (MNC),

if it satisfies the invariance property under closure and convex hull i.e.γ( ¯coB) = γ(B).
An MNC γ is called

(1) (regular): ifγ(B) = 0 is equivalent to the relative compactness ofB,

(2) (semi-additive): ifγ(B1∪B2) = max{γ(B1),γ(B2)},

(3) (algebraic semi-additive): ifγ(B1+B2)≤ γ(B1)+ γ(B2),

(4) (nonsingular): ifγ({a}∪B) = γ(B) for all a ∈ X .

Examples of an MNC satisfying all the above properties are the Kuratowski MNC defined by:

α(B) = inf{r > 0 : B, which may be covered by finitely many sets of diameter≤ r},

and the Hausdorff MNC, defined by:

β (B) = inf{r > 0 : there exists a finiter-net for B in X},

Another example of an MNC which is defined on the space of continuous functionsC([0,T ],X)

with the values in a Banach spaceX is:

φ(B) = sup
t∈[0,T ]

βE(B(t)),

whereβX is the Hausdorff MNC inX andB(t) = {y(t) : y ∈ B}. It is known ([15]) that for every

B ⊂C([0,T ],X), we have

φ(B)≤ βC(B),

whereβC is the Hausdorff MNC inC([0,T ],X). Another example of an MNC defined on the space

of continuous functionsC([0,T ],X) with the values in a naturally partially orderedR2
+ is

υ(B) = max
D⊂∆(B)

(η(D),modC(D)), (4)

where∆(D) is the collection of all denumerable subsets ofB, and

η(D) = sup
t∈[0,T ]

e−btβ (D(t))

given byb > 0 is large enough andmodC(D) is the modulus of equi-continuity ofD defined as

modC(D) = limsup
δ→0y∈D

max
|t1−t2|≤δ

||y(t1)− y(t2)||.

Definition 2. Let X be a Banach space. A multimapF : X → P(X) or a family of multimaps

G : [0,1]×X →P(X) is called condensing relative to an MNCγ if for every non-relatively compact

setB ⊂ X

γ(F(B))< γ(B) or γ(G([0,1]×B))< γ(B),

respectively.
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Let ω ⊂ X be an open set,K ⊂ X a closed convex subset,γ a monotone MNC inX , andF :

ωK → Kv(K) a u.s.c. multimap such thatx 6∈ F(x) for all x ∈ ∂ωK , whereωK and∂ωK denote,

respectively, the closure and the boundary of the setωK = ω ∩K.

In such a setting, the relative topological degreedeg(F,ω) is defined and satisfies the standard

properties (see [15]).

3. Existence of Solutions

In this section we consider the following BVP
{

x′′(t) ∈ F(t,x(t)) t ∈ I,

x(0) = x(1) = 0,
(5)

whereI = [0,1], X is a real Banach space andF : I×X ⊸ X satisfies the following assumptions:

(F0) F has nonempty, compact, and convex values,

(F1) the multifunctionF(.,x) : [0,1] → Kv(X) has a strongly measurable selection for everyx ∈

X ,

(F2) the multimapF(t, .) : X → Kv(X) is u.s.c. for a.a.t ∈ I,

(F3) there exists a functionq ∈ L1([0,1]) such that

||F(t,x)|| = sup{||z|| : z ∈ F(t,x)} ≤ q(t)(1+ ||x||),

for a.a.t ∈ I,

(F4) there exists a constantk > 0 such that

β (F(t,D))≤ kβ (D) for a.a. t ∈ I,

for every bounded setD ⊂ X , whereβC is the Hausdorff MNC.

Definition 3. (see [22, 15]) LetF : I×X ⊸ X be a multimap satisfying assumptions(F0)−(F3),

then the superposition multioperatorPF : C([0,1],X)⊸ L1([0,1],X) given by

PF(x) = { f ∈ L1([0,1],X) : f (t) ∈ F(t,x(t)) a.e t ∈ I},

is correctly defined.

Definition 4. A function x : I → X is said to be a mild solution of(5) if there existsf ∈ PF(x)

such thatx has the form

x(t) =
∫ 1

0
G(t,s) f (s)ds,

where

G(t,s) =

{
t(s−1) 0≤ t ≤ s,

s(t −1) s ≤ t ≤ 1.
(6)
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Lemma 1. Every mild solution of(5), is a solution of it.

Proof. Let x be a mild solution, then there existsf ∈ PF(x) such that

x(t) =
∫ 1

0
G(t,s) f (s)ds,

so we can write

x(t) = (t −1)
∫ t

0
s f (s)ds+ t

∫ 1

t
(s−1) f (s)ds.

Therefore,

x′(t) =
∫ t

0 s f (s)ds+ t(t −1) f (t)+
∫ 1

t (s−1) f (s)ds− t(t −1) f (t),

=
∫ t

0 s f (s)ds+
∫ 1

t (s−1) f (s)ds.

Differentiating again

x′′(t) = t f (t)− (t −1) f (t) = f (t),

sox′′(t) ∈ F(t,x(t)) andx(0) = x(1) = 0 and the desired result is obtained.

In what follows, we need the following lemma.

Lemma 2. (See Theorems 5.1.2., 5.1.3. in [15].) LetPF be a superposition multioperator gener-

ated by a multimapF : [0,1]×X →Kv(X) satisfying properties(F0)−(F4) andS : L1([0,1],X)→

C([0,1],X) be an operator satisfying:

(S1) there existsA ≥ 0 such that

||S f (t)−Sg(t)||X ≤ A
∫ t

0
|| f (s)−g(s)||X ds

for every f ,g ∈ L1([0,1],X), t ∈ [0,1],

(S2) for any compact setK ⊂ X and sequence{ fn}
∞
1 ⊂ L1([0,1],X) such that{ fn}

∞
1 ⊂ K for a.a.

t ∈ [0,1], the weak convergencefn ⇀ f0 impliesS fn → S f0.

ThenS ◦PF is a u.s.c. closed multioperator with compact values andυ-condensing on bounded

sets whereυ is an MNC defined as(4).

Theorem 1. Under conditions(F0)− (F4), the solution set of BVP(5) is nonempty.

Proof. By the assumptions(F0)− (F3), the superposition multioperatorPF given by Definition

3 is correctly defined. Therefore, one can define the multioperator A : C([0,1],X) ⊸C([0,1],X)

by

Ax = {y : y(t) =
∫ t

0
G(t,s) f (s)ds : f ∈ PF(x)},
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and in order to prove the theorem, it is sufficient to verify that the fixed point setFixA is nonempty.

Consider the closed setK = {x : x(0) = x(1) = 0} ⊂C([0,1],X) and the family of multioperators

Ã : K × [0,1]⊸ K

Ã(x,λ ) = {y : y(t) = (1−λ )x+λ
∫ t

0
G(t,s) f (s)ds : f ∈ PF(x)}.

By Lemma 2, the multimap̃A is u.s.c. andυ-condensing on bounded sets ofK in addition to

having compact, convex values.

From(F3) and the standard technique based on the Gronwall-type inequality, the solutions set of

x ∈ Ã(x,λ ) is a priori bounded in the norm by the constant

R = DeD
,

whereD=maxt∈I
∫ t

0 q(s)ds. Therefore, if we takeB(0,r) as an open ball inC([0,1],X) with r >R,

then by the basic properties of the topological degree

degK(A,B) = degK(Ã(.,1),B) = degK(Ã(.,0),B) = 1,

and the desired result is obtained.

Now we want to consider the case that the multioperatorF : [0,1]×X ⊸ K(X) has nonconvex

values, but instead of assumptions(F1) and (F2), it satisfies the almost lower semicontinuity

assumption:

(FL) there exists a sequence{In} of disjoint compact setsIn ⊂ [0,1] such that

(i) the restriction ofF on each setIn ×X is l.s.c.

(ii) meas([0,1]\ I) = 0, whereI = ∪nIn.

Theorem 2. Let X be a separable Banach space andD =maxt∈I
∫ t

0 q(s)ds < 1. Under assumptions

(FL),(F3) and(F4), the solution set of problem(5) is nonempty.

Proof. In this situation, the superposition multioperatorPF(x) defined by 3 is l.s.c. and by

Fryszkowski-Bressan-Colombo theorem (see [4]), it admitsa continuous selectionh(x). Now we

want to show that there exists a compact convex subset ofC([0,1],X) invariant under the action of

multioperatorA. Consider the ballBr(0) = {x ∈C([0,1],X) : ||x|| ≤ r} wherer > 0 is chosen so

that

r > D(1−D)−1
. (7)

Let x ∈ Br(0) andy ∈ A(x), then by(7) we have

||y|| ≤ D+ rD ≤ r.
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Therefore, the multioperatorA maps the ballBr(0) into itself. It is clear that the continuous map

a : E → E defined by

a(x)(t) =
∫ 1

0
G(t,s)h(x)(s)ds

is a continuous selection ofA. Applying the Schauder fixed point theorem to the continuousmap

a, leads to the desired result.

4. Extended Version

Let X be a real Banach space,I = [0,1] andL 2 denotes the space of all square-integrable functions

L2(I,X) with the norm

|| f (t)||2 = (
∫ 1

0
|| f (s)||2ds)

1
2

.

Consider the BVP {
u′′(t) ∈ Q(u) t ∈ I,

u(0) = u(1) = 0,
(8)

whereQ : C(I,X)⊸C(L 2) is a multimap satisfying the following conditions:

(C1) for any operatorS : L1(I,X)→C(I,X) satisfying(S1) and(S2), the compositionS◦Q is a

condensing map on bounded sets.

(C2) there are constantsa,b > 0 such that

||Q(u)||2 ≤ a(1+ ||u||b2),

for anyu ∈C(I,X) where

||Q(u)||2 = sup{|| f ||2 : f ∈ Q(u)}.

Note that the values of multimapQ are not necessarily convex.

Hereafter, we denote the space of all continuous mappings from C(I,X) by C . The symbol〈., .〉

denotes the inner product inL 2, andBC (0,r) denotes the ball inC of radiusr centered at the

origin.

Theorem 3. Let (C1)− (C2) hold and there existsN > 0 such that for everyu ∈ C , ||u||2 > N,

the relation

〈 f ,u〉 > 0 for all f ∈ Q(u),

holds, then Problem(8) has a solution.

Proof. Let u(t) =
∫ 1

0 G(t,s) f (s)ds for f (s) ∈ Q(u), then by the same argument in the proof of

Lemma 1,u(t) is a solution of Problem(8). Therefore, it is sufficient to show that the fixed point

set ofφ , whereφ(u) = {y : y(t) =
∫ 1

0 G(t,s) f (s)ds, f ∈ Q(u)} is nonempty.
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Assume that there existsx ∈ C such thatφ(x) = x thenx(0) = x(1) = 0 and there isf ∗ ∈ Q(x)

such thatx′′(t) = f ∗(t) for a.et ∈ I, and hence

〈 f ∗,x〉 = 〈x′′,x〉 =−〈x′,x′〉 ≤ 0.

Therefore,||x||2 ≤ N.

By (C2), for t ∈ I, we have

||x(t)|| ≤
∫ 1

0
|G(t,s)||| f ∗(s)||ds ≤

∫ 1

0
|| f ∗(s)||ds ≤ || f ∗(t)||2 ≤ a(1+ ||x||b2),

thereupon ,||x||C = maxt∈I ||x(t)|| ≤ a(1+Nb). Consider the multimapϕ : BC (0,R)× [0,1] →

P(C )

ϕ(x,λ ) =
∫ 1

0
G(t,s)((1−λ )δx(s)+λ f (s)ds,

where 0< δ <
1
N is an arbitrary number andR = aNb+a+1. One can representϕ asS◦Q, where

S f =
∫ 1

0 G(t,s)((1−λ )δx(s)+λ f (s))ds. It is clear thatS satisfies(S1) and condition(S1) implies

thatS is a bounded linear operator from the spaceL1(I,X) into C . Therefore it is continuous and

by the standard argument in [15] on weak sequential convergence and the relative compactness of

the sequence{S fn}, this convergence will be in the norm of the spaceC . Therefore,S satisfies

(S2), then by(C1), ϕ is condensing on bounded sets.

Now we will show thatϕ has no fixed points on∂BC (0,R)× [0,1]. On the contrary, let(x∗,λ∗) ∈

∂BC (0,R)× [0,1], so we have

x∗(t) =
∫ 1

0
G(t,s)((1−λ∗)δx∗(s)+λ∗ f ∗(s))ds, t ∈ I, (9)

so, {
x′′∗(t) = (1−λ∗)δx∗(s)+λ∗ f ∗(s) t ∈ I,

x∗(0) = x∗(1) = 0,
(10)

If ||x∗||2 ≤ N, then by(9)

||x∗(t)|| ≤ δ (1−λ∗)||x∗||2+λ∗|| f
∗(t)||2 ≤ δ (1−λ∗)N +λ∗a(1+Nb)< R, t ∈ I.

Hencex∗ 6∈ ∂BC (0,R), which is a contradiction.

Therefore||x∗||2 > N and from(10) it follows that

〈x′′∗ ,x∗〉= δ (1−λ∗)〈x∗,x∗〉+λ∗〈x∗, f ∗〉> 0,

which leads to a contradiction again.

Thus,ϕ is a homotopy joiningδ joi and joQ, where j f =
∫ 1

0 G(t,s) f (s)ds. By the homotopic

invariance property of topological degree, we have

deg(i− joQ,BC (0,R)) = deg(i−δ joi,BC (0,R)).



CUJSE 12, No. 2 (2015) On the Existence of Solutions for BVPs 29

If δ > 0 is sufficiently small, then

||x− (x−δ joi)||C = δ || joi||C < ||x||C

for all x ∈ ∂BC (0,R).

Therefore, the vector fieldi andi−δ joi are homotopic on∂BC (0,R) and

deg(i−A,BC (0,R)) = deg(i−δF,BC (0,R)) = deg(i,BC (0,R)) = 1.

Problem(8) thus has a solution inBC (0,R).

5. Feedback Control Systems

As an application of Theorem 1, we consider a feedback control system of the form




x′′(t) = f (t,x(t),u(t)) t ∈ I,

u(t) ∈U(t,x(t)) t ∈ I

x(0) = x(1) = 0,

(11)

whereX ,X1 are separable Banach spaces, the mapf : I×X ×X1 → X and the feedback multimap

U : I ×X1 → K(X1) satisfy the following conditions:

( f 1) the function f (.,x,u) : I×X ×X1 → X is measurable for any(x,u) ∈ X ×X1,

( f 2) || f (t,x1,u)− f (t,x0,u)|| ≤ k(t)||xl − x0|| for anyx0,x1 ∈ X ,u ∈ X1 wherek ∈ L1(I),

( f 3) the mapf (t, ., .) : X ×X1 → X is continuous for a.e.t ∈ I,

(U1) the multifunctionU(.,x) : I → K(X1) is measurable for everyx ∈ X ,

(U2) the multimapU(t, .) : X → K(X1) is u.s.c. for a.e.t ∈ I,

(U3) the multimapU : I×X → K(X1) is superpositionally measurable, i.e., for every measurable

multifunction Q : I → K(X), the multifunctionφ : I → P(X1) with ϕ(t) = U(t,Q(t)) is

measurable (see Proposition 1.3.1 in [15]),

(U4) the setF(t,x) = f (t,x,U(t,x)) is convex for all(t,x) ∈ I×X ,

(U5) the multimapF satisfies the boundedness condition(F3),

(U6) for every (t,x) ∈ I × X the set f (t,x,U(t,D)) is relatively compact for any bounded set

D ⊂ X .

In what follows, we need the following assertion.

Lemma 3. (See Proposition 2.2.2 of [15].) Let X0,X1 be Banach spaces,β0,β1 Hausdorff MNC

in X0 andX1 respectively,X ⊂ X0 andM a collection of bounded subsets ofX . Suppose that the

multimapB : X ×X0 → K(X1) satisfies the following conditions:
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(i) for anyx ∈ X the multimapB(x, .) : X0 → K(X1) is k-Lipschitz with respect to the Hausdorff

metrich on K(X1), i.e.,

h(B(x,y0),B(x,y1))≤ k||y0− y1||,

for anyy0,y1 ∈ X0 wherek ∈ R
+ does not depend onx,

(ii) the setB(Ω×{y}) is relatively compact inX1 for anyΩ ∈ M andy ∈ X0.

Then the multimapA : X → K(X1) defined asA(x) = B(x,x) is (k,β0,β1)-bounded onM , i.e.,

β1(A(Ω)≤ kβ0(Ω),

for anyΩ ∈ M .

Lemma 4. (See Theorem 1.3.4. of [15].) If a multimapF : I×X → K(X) satisfies(F1) and(F2),

thenF is superpositionally measurable.

Theorem 4. Let conditions( f 1)− ( f 3) and(U1)− (U6) hold. Then the feedback control system

(11) has a solution.

Proof. We prove that the multimapF(t,x) = f (t,x,U(t,x)) defined onI ×X besides condition

(F3) satisfies conditions(F0),(F1),(F2) and (F4). By conditions( f 3) and (U4), F takes its

values inKv(X), so it satisfies(F0). From conditions( f 1),( f 3),(U1) and Lemma 4, the mul-

timapF(.,x) is measurable for everyx ∈ X , hence condition(F1) is fulfilled. From assumptions

( f 3),(U2) and Theorem 1.2.8 of [15], condition(F2) follows. Now fix t ∈ I and consider the

multimapB : X ×X → K(X) defined asB(x,y) = f (t,y,U(t,x)). From(U6) the setB(D,y) is rel-

atively compact for everyy ∈ X and boundedD ⊂ X . Fix x ∈ X and lety′,y′′ ∈ X . If b′ ∈ B(x,y′)

thenb′ = f (t,y′,u) , whereu ∈U(t,x). Considerb′′ = f (t,y′′,u) ∈ B(x,y′′). From condition( f 2)

it follows that

||b′′−b′|| ≤ k(t)||y′′− y′||

i.e, the multimapB(x, .) is k(t)-Lipschitz with respect to the Hausdorff metric onK(X). Applying

Lemma 3 to the multimapB, we confirm that condition(F4) is satisfied for the multimapF(t,x) =

B(x,x). From Theorem 1, the solution set of
{

x′′(t) ∈ F(t,x) t ∈ I,

x(0) = x(1) = 0,
(12)

is nonempty. Now using condition(U3) and applying the Filippov Implicit Function Lemma

(Theorem 1.3.3 of [15]), we conclude that for every solution functionx : I →X with x′′(t)∈F(t,x),

there exists a functionu(t)∈U(t,x) such thatx′′(t) = f (t,x,u) and sox is a trajectory of the system

(11).
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Équations Différentielles Ordinaires,Dissertationes Mathematicae Warszawa, CCXCVI , (1990).

[10] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings,second edition, Springer, Dordrecht,

(2006).

[11] C. S. Goodrich, Positive solutions to differential inclusions with nonlocal, nonlinear boundary conditions,Applied

Mathematics and Computation. 219, (2013), 11071-11081.

[12] D. Guo, V. Lakshmikantham, Multiple solutions of two-point boundary value problems of ordinary differential

equations in Banach spaces,J. Math. Anal. Appl., 129, (1988), 211–222.

[13] S. Hu, N. S. Papageorgiou, On the existence of periodic solutions for nonconvex valued differential inclusions in

R
n, Proc. Amer. Math. Soc. 123, (1995), 3043–3050.

[14] S. Hu, N. S. Papageorgiou, Periodic solutions for nonconvex differential inclusions,Proc. Amer. Math. Soc. 127,

(1999), 89–94.

[15] M. Kamenskii, V. Obukhovskii, and P. Zecca, CondensingMultivalued Maps and Semilinear Differential Inclu-

sions in Banach Spaces,de Gruyter Series in Nonlinear Analysis and Applications, 7, (2001).

[16] V. I. Korobov, Reduction of a controllability problem to a boundary value problem,Different. Uranen, 12, (1976),

1310–1312.

[17] G. Li, X. Xue, On the existence of periodic solutions fordifferential inclusions,J. Math. Anal. Appl. 276, (2002),

168–183.

[18] N. V. Loi, V. Obukhovskii, On global bifurcation of periodic solutions for functional differential inclusions,Funct.

Diff. Equat, 17(1-2), (2010), 157–168.

[19] N. V. Loi, Global behaviour of solutions to a class of feedback control systems,Research and Communications in

Mathematics and Mathematical Sciences, 2, (2013), 77–93.

[20] N. V. Loi, V. Obukhovskii, On the existence of solutionsfor a class of second-order differential inclusions and

applications,J. Math. Anal. Appl. 385, (2012), 517-533.

[21] D. O’Regan, Y. J. Cho, Y. Q. Chen, Topological degree theory and applications,Serries in Mathematical Analysis

and Applications, 10, 2006.



32 H. Salahifardet al.

[22] V. Obukhovskii, P. Zecca, On boundary value problems for degenerate differential inclusions in Banach spaces,

Abstract and Applied Analysis, 13, (2003), 769–784.

[23] H. K. Pathak, R. P. Agarwal, Y. J. Chod, Coincidence and fixed points for multi-valued mappings and its applica-

tion to nonconvex integral inclusions,Journal of Computational and Applied Mathematics, 283, (2015), 201–217.

[24] C. Ravichandran, D. Baleanu, Existence results for fractional neutral functional integro-differential evolution

equations with infinite delay in Banach spaces,Advances in Difference Equations, (2013), 2013–215.

[25] G. V. Smirnov, Introduction to the Theory of Differential Inclusions,Graduate Studies in Mathematics, American

Mathematical Society, Providence, (2002).

[26] S. Qin, X. Xue, Periodic solutions for nonlinear differential inclusions with multivalued perturbations,J. Math.

Anal. Appl.424, (2015), 988–1005.

[27] J.-Z. Xiao, Y.-H. Cang, Q.-F. Liu, Existence of solutions for a class of boundary value problems of semilinear

differential inclusions,Mathematical and Computer Modelling, 57, (2013), 671–683.


