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Abstract: In this paper, by applying the theory of condensing multimapd the topological degree, we
deal with the existence of solutions for boundary value [@ois with second order differential inclusions
in different cases where the underlying space is a Banaatespadeed, we investigate the existence of
solutions for the BVP
X'(t) € F(t,x(t)) tel=]0,1],
{ x(0) = x(1) =0,

whereX is a real Banach space and the multifunctfonl x X — K(X), in one case, has convex values and
in another case has non-convex val(ié$X) denotes compact subsets)of. Moreover, some results on the
existence of solutions for the extended version of BVP

U () eQu) tel,

u(0)=u(1) =0,

are presented, whe@: C(I,X) — C(£?) is a multimap satisfying some appropriate conditions. Iinae
show how the results can be used to study periodic feedbattkotsystems.
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1. Introduction

During the last few years, the second-order boundary valolelgm for ordinary and functional

differential equations with various conditions (perigdionlinear, integral conditions, etc..) have
attracted the attention of many mathematicians and atergghsively studied. Indeed, these
problems arise in different areas of physics, mechaniasn@ore generally in applied mathemat-

ICS.

The first motivation of the study of the concept of differahtnclusions comes from the develop-

ment of some studies in control theory. Examples of such@inena include mechanical systems

with the Coulomb friction modeled as a force proportionathe sign of a velocity and systems
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whose control laws have discontinuities. For more inforamaabout the relation between dif-
ferential inclusions and control theory, we refer the readd2, 7, 8, 16, 25] and the references
therein.

The case of the second order boundary value problem forreliftal inclusions has been stud-
ied in [9] where the multi-function satisfies a Bernsteingiamo condition. Benchohra et al.
[3] have studied some 3-point boundary value problems &gsocwith a differential inclusion
X'(t) € F(t,x(t)) whereF is a nonempty compact valued multi-valued mapping whichnie-i
grably bounded.

Very recently, C.S. Goodrich [11] demonstrated the existenf at least one positive solution to
the differential inclusiorn<”(t) € F(t,x(t)), equipped with the boundary conditior€l) = 0 and
x(0) = H(¢(x)), by imposing an asymptotic condition ¢h whereH is a nonlinear function and
¢ is linear functional realized as a Lebesgue-Stieltjegiratie

In 2015, R.P. Agarwal et al. discussed this inclusion prokilethe Caputo fractional form@9x(t) €
F(t,x(t)) by utilising the a-y-Ciric generalized fixed point theorem for multifunctionheve
l<a<?2.

Hu and Papageorgiou [13, 14] proved the existence of perisalutions for nonconvex differ-
ential inclusions iNR". The approach [13] was based on directionally continuolect®s for
the orientor field and on a Nagumo type tangential condition[.14], their approach was based
on degree theory arguments. Some existence results fortiwljw problems have been estab-
lished by De Blasi et al. [6]. The method was based on the nartgin of the topological degree
for the Poincaré maps and on a guiding potential condititm[17], the approach is based on
the LeraySchauder alternative theorem and the Schaudergbiat theorem where the orientor
field (multivalued vector field) was nonconvex. It is worthmtiening that there are many papers
about the existence of solutions for boundary value probleiith differential inclusions iIR",
the proofs of which are essentially based on the fixed poeuréms for compact multi-maps (see
for example [5, 23, 26, 27]).

Ravichandran and Baleanu [24] focused on establishingxiseeace result for a class of abstract
fractional neutral functional integro-differential eutibn systems involving the Caputo fractional
derivative by using the properties of characteristic solubperators and Monch’s fixed point
theorem via measures of noncompactness.

Motivated by the above, the goal of this paper is to investigiae existence of periodic solutions
for systems governed by differential inclusions. Our applois based on the method of the
integral multioperator and the method of the translatiortimperator along with the solutions of
the inclusion, which were used in [15]. Three cases of boyndalue problems with differential
inclusions are considered here. In all of them we deal withdbndensing multioperators. To
the best of our knowledge, there are relatively many resatboundary value problems with
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differential inclusions of compact multimaps df-multimaps [18, 19, 20] in finite dimension
Banach spaces; however, this may be the first paper on theemogsof solutions for boundary
value problems with noncompact multivalued maps in Banaelces.

The paper is organized such that the next section contagkgtmund materials and preliminaries
from multivalued analysis which can be found in [15]. In $&Tt3, we investigate the existence
of solutions for the BVP

x(0) =x(1) =0, )

wherel = [0,1], X is a real Banach space and the multifunctfon| x X — K(X) in one case

{ X'(t) € F(t,X(t)) tel,

has convex values and in another case has nonconvex valusgction 4, some results on the
existence of solutions for the extended version of BVP

{ u'(t) e Q(u) tel,

u(0) =u(l) =0, @)

are presented, whef@: C(I,X) — C(.£?) is a multimap satisfying some appropriate conditions.
In the last section, as an application we consider a feedtamttol system of the form

X)) tel (3)

wheref : | x X x X3 — X andU : | x X; — K(X1), X, X; are Banach spaces. The first equation
of the above system describes the dynamics of the systenharsg¢ttond inclusion represents the
feedback.

2. Preliminaries

Let X be a metric space antlbe a norm spacéd?(Y) denotes the collection of all nonempty subsets
of Y, K(Y) denotes the collection of all nonempty compact subset afdKv(Y) denotes the
collection of allSe K(Y) whereSis convex.

Definition 1. (See, e.g., [10].) A multivalued map (multimap): X — P(Y) is said to be upper
semicontinuous (u.s.c.) if for every open subget Y the set

Fr(V)={xeX:F(x)cV}

is open inX. A u.s.c. multimag is said to be completely u.s.c. if it maps every bounded gubse
X1 C X into a relatively compact subse{X;) of Y.
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Afunctiony: {B C X :Bisbounded} — [0, ) is said to be a measure of noncompactness (MNC),
if it satisfies the invariance property under closure andreriull i.e. y(caB) = y(B).
An MNC yis called

(1) (regular): ify(B) = 0 is equivalent to the relative compactnes8pf
(2) (semi-additive): ify(B1UBy) = max{y(Ba1),y(B2)},
(3) (algebraic semi-additive): if(B1 + Bz) < y(B1) + y(B2),
(4) (nonsingular): ify({a} UB) = y(B) for all a € X.
Examples of an MNC satisfying all the above properties agekitwratowski MNC defined by:
a(B) =inf{r > 0:B, which may be covered by finitely many sets of diameten },
and the Hausdorff MNC, defined by:

B(B) =inf{r > 0: there exists a finite-net for B in X},

Another example of an MNC which is defined on the space of naotis function€([0, T], X)
with the values in a Banach spaxads:

®(B) = sup Be(B(t)),

telo,T]
wherey is the Hausdorff MNC inX andB(t) = {y(t) : y € B}. Itis known ([15]) that for every
B c C([0,T],X), we have

@(B) < Bc(B),
wherefc is the Hausdorff MNC irC([0, T], X). Another example of an MNC defined on the space
of continuous function€([0, T], X) with the values in a naturally partially order&g is

(B) = max (1(D). moc(D). @

whereA(D) is the collection of all denumerable subset8pand

n(D)= sup e *B(D(t))
te[0,T]

given byb > 0 is large enough anahod: (D) is the modulus of equi-continuity @ defined as

modc (D) = limsup max_||y(t1) — y(t2)||.
5—0yeD [ti—t2[<d
Definition 2. Let X be a Banach space. A multim&p: X — P(X) or a family of multimaps
G:[0,1] x X — P(X) is called condensing relative to an MNGS for every non-relatively compact
setBC X
V(F(B)) <y(B) or y(G([0,1] xB)) < y(B),

respectively.
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Let w C X be an open se C X a closed convex subset,a monotone MNC inX, andF :
wk — Kv(K) a u.s.c. multimap such thatZ F(x) for all x € dwx, wherewk anddax denote,
respectively, the closure and the boundary of theget wNK.

In such a setting, the relative topological degdsg(F, @) is defined and satisfies the standard
properties (see [15]).

3. Existence of Solutions

In this section we consider the following BVP

{ X'(t) e F(t,x(t)) tel, (5)
x(0) =x(1) =0,

wherel = [0, 1], X is a real Banach space aRd | x X — X satisfies the following assumptions:

(FO) F has nonempty, compact, and convex values,

(F1) the multifunctionF(.,x) : [0,1] — Kv(X) has a strongly measurable selection for evegy
X,

(F2) the multimapF(t,.) : X — Kv(X) isu.s.c. for a.at €1,

(F3) there exists a functiog € L([0, 1]) such that

[IF(&x)]] = sup{[|z]] : z€ F(t,3)} < at)(1+[IX]]),

fora.a.t €l,
(F4) there exists a constakt> 0 such that

B(F(t,D)) <kB(D) fora.a. tel,
for every bounded s& C X, wheref% is the Hausdorff MNC.

Definition 3. (see [22, 15]) LeF : | x X — X be a multimap satisfying assumptioft30) — (F 3),
then the superposition multioperatéfr : C([0, 1],X) — L1([0,1], X) given by

Pe(x) = {f e LY[0,1],X): f(t) e F(t,x(t)) aetel},
is correctly defined.

Definition 4. A functionx: | — X is said to be a mild solution db) if there existsf € 7 (x)
such that has the form

X(t) = /(;lG(t,s)f(s)ds,

B t(s—1) 0<t<s,
G(t’s)_{ ( s<t<1 ©)

where
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Lemma 1. Every mild solution of(5), is a solution of it.

Proof. Letx be a mild solution, then there existss #7¢(x) such that

x(t):/olG(t,s)f(s)ds,
SO we can write . .
X(t) = (t—1)/0 sf(s)ds+t/t (s—1)f(s)ds

Therefore,

X(t)= [3sf(s)ds+t(t—1)f(t)+ f}(s—1)f(s)ds—t(t—1)f(t),

= Josf(s)ds+ fH(s—1)f(s)ds.

Differentiating again
X'(t) =tf(t)— (t—1)f(t) = f(1),

soX’(t) € F(t,x(t)) andx(0) = x(1) = 0 and the desired result is obtained. |

In what follows, we need the following lemma.

Lemma 2. (See Theorems.b.2., 5.1.3. in [15].) Let Z7r be a superposition multioperator gener-
ated by a multimaj : [0,1] x X — Kv(X) satisfying propertie$F 0) — (F4) andS: L1(]0,1],X) —
C([0,1],X) be an operator satisfying:

(S1) there existA > 0 such that
t
[ISF(t) —Sg(t)[Ix < A/O [If(s) —g(s)lIxds
for every f,g € L1(]0,1],X),t € [0,1],
() for any compact set C X and sequencéf,}y < L1(]0,1],X) such thaf f,}7 C K for a.a.
t € [0,1], the weak convergencl — fo implies Sf,, — Sfp.

ThenSo Z is a u.s.c. closed multioperator with compact values @mmbndensing on bounded
sets wheray is an MNC defined a$4).

Theorem 1. Under conditiongFO0) — (F4), the solution set of BVF5) is nonempty.

Proof. By the assumption&=0) — (F 3), the superposition multioperatoPr given by Definition
3 is correctly defined. Therefore, one can define the multaipeA : C([0, 1], X) — C([0, 1], X)
by

Ax={y:y(t) :/OtG(t,s)f(s)ds: fe 20},
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and in order to prove the theorem, it is sufficient to verifgtitine fixed point setixA is nonempty.
Consider the closed sit= {x: x(0) = x(1) = 0} C C([0, 1], X) and the family of multioperators
A:Kx[0,1] =K

~ 't
AXA) ={y:yt) = (1—)\)x+)\/ G(t,s)f(s)ds: f € Z(x)}.

0
By Lemma 2, the multimap?i is u.s.c. andu-condensing on bounded sets Kfin addition to
having compact, convex values.
From (F3) and the standard technique based on the Gronwall-type afigquhe solutions set of
x € A(x,A) is a priori bounded in the norm by the constant

R=De",

whereD = maxc| [5q(s)ds. Therefore, if we tak&(0,r) as an open ball i6([0, 1], X) with r > R,
then by the basic properties of the topological degree

da.JK(A>E) = da.:]K('&(>l)7E) = dG‘JK(A(,O),E) =1,

and the desired result is obtained. ]

Now we want to consider the case that the multioper&tor0,1] x X — K(X) has nonconvex
values, but instead of assumptioffsl) and (F2), it satisfies the almost lower semicontinuity
assumption:

(FL) there exists a sequenék,} of disjoint compact setk, C [0, 1] such that
(i) the restriction of on each sef, x X is|.s.c.
(i) meag[0,1]\ ) =0, wherel = Upl.

Theorem 2. Let X be a separable Banach space Bnd max fé g(s)ds < 1. Under assumptions
(FL), (F3) and(F4), the solution set of problertb) is nonempty.

Proof. In this situation, the superposition multioperatéfs (x) defined by 3 is l.s.c. and by
Fryszkowski-Bressan-Colombo theorem (see [4]), it adaitentinuous selection(x). Now we
want to show that there exists a compact convex sub<ef[0f1], X) invariant under the action of
multioperatorA. Consider the balB; (0) = {x € C([0,1],X) : ||x|| < r} wherer > 0 is chosen so
that

r>D(1-D)% @)

Letx € B;(0) andy € A(x), then by(7) we have

llyl| <D+rD<r.
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Therefore, the multioperatdx maps the balB, (0) into itself. It is clear that the continuous map
a: E — E defined by
1
a(x)(t) = / G(t,9)h(x)(s)ds
0
is a continuous selection & Applying the Schauder fixed point theorem to the continunag
a, leads to the desired result. ]

4. Extended Version

Let X be a real Banach spades [0, 1] and.#? denotes the space of all square-integrable functions
Lo(1,X) with the norm

1
1 2
1FOlle= ([ lIf(9)1%ds) -
Consider the BVP

{ u'(t) eQ(u) tel, ®)

u(0) =u(1) =0,
whereQ : C(I,X) — C(£?) is a multimap satisfying the following conditions:
(C1) for any operatoS: L1(1,X) — C(I,X) satisfying(Sl) and(S2), the compositiorBo Q is a

condensing map on bounded sets.
(C2) there are constangsb > 0 such that

1Q(U)[|2 < a1+ [Jul[3),

for anyu € C(l,X) where

[1Q(U)[|2 = supf][fll2: f € Q(u)}.

Note that the values of multimap are not necessarily convex.
Hereafter, we denote the space of all continuous mappigs&(l,X) by ¢. The symbol.,.)
denotes the inner product i&?, andBy(0,r) denotes the ball i’ of radiusr centered at the

origin.

Theorem 3. Let (C1) — (C2) hold and there existl > 0 such that for every € %, [|ul|2 > N,
the relation
(f,uy>0 forall feQ(u,

holds, then Problen(8) has a solution.
Proof. Let u(t) = [y G(t,s)f(s)ds for f(s) € Q(u), then by the same argument in the proof of

Lemma 1,u(t) is a solution of Problen8). Therefore, it is sufficient to show that the fixed point
set of g, whereg(u) = {y: y(t) = [y G(t,s)f(s)ds, f € Q(u)} is nonempty.
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Assume that there exisise ¢ such thatp(x) = x thenx(0) = x(1) = 0 and there is* € Q(x)
such tha’(t) = f*(t) for a.et € I, and hence

(%) = (X'",x) = —(X,X) < 0.

Therefore||x||2 < N.
By (C2), fort € |, we have

1 1
||><(t)||S/0 IG(LS)IIIf*(S)IIdSS/0 [1£*(s)/[ds < [|T*(t)]|2 < a(1+ [IX][3),

thereupon J|X||¢ = maxq ||x(t)|| < a(14 NP). Consider the multimag : B (0,R) x [0,1] —

P(%)

S(xA) :/c)lG(t,s)((l—/\)éx(s)+)\ f(s)ds,

where 0< o < % is an arbitrary number arld= aN®+a+ 1. One can represefitasSo Q, where

Sf = j’olG(t,s)((l—)\)éx(s)Jr)\ f(s))ds. Itis clear thaSsatisfieg S1) and condition(S1) implies
thatSis a bounded linear operator from the spaéé, X) into ©. Therefore it is continuous and
by the standard argument in [15] on weak sequential conmesgand the relative compactness of
the sequencé¢Sf,}, this convergence will be in the norm of the sp&e Therefore,S satisfies
(), then by(C1), ¢ is condensing on bounded sets.

Now we will show thatp has no fixed points 0dB¢ (0, R) x [0,1]. On the contrary, lefx,,A,) €
0B« (0,R) x [0,1], so we have

X, (t) = /OlG(t,s)((l—)\*)ch*(s) +AF(s)ds, tel, )

S0,

{ X! (t) = (1= A,) 3%, (S) + A f*(s) tel, (10)

X(0) = x,(1) =0,

If [[%.]l2 < N, then by(9)
1% (0)]] < (A=A X |24 A [F(D)]|2 < 3(1— AN+ Aa(1+NP) <R, tel.
Hencex, ¢ dB4(0,R), which is a contradiction.
Therefore||x.||2 > N and from(10) it follows that
X %) = 01— A) (X, X ) + A (Xs, £5) > 0,
which leads to a contradiction again.

Thus, ¢ is a homotopy joiningdjoi and joQ, wherejf = folG(t,s)f(s)ds. By the homotopic
invariance property of topological degree, we have
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If & > 0is sufficiently small, then
|[x— (x—&joai)||l = || joil| < [IX[|«

for all x € dB4(0,R).

Therefore, the vector fieldandi — d joi are homotopic 0@B (0, R) and

Problem(8) thus has a solution iB4 (0, R).

]
5. Feedback Control Systems
As an application of Theorem 1, we consider a feedback closystem of the form
X'(t) = F(t,x(t),u(t)) tel,
ut) eU(t,xt)) tel (11)
x(0) =x(1) =0,

whereX, X; are separable Banach spaces, the ialpx X x X; — X and the feedback multimap
U : I x X3 — K(X;) satisfy the following conditions:

(f1) the functionf(.,x,u) : | x X x X3 — X is measurable for anfx,u) € X x X,

(£2) || (t,x1,u) — f(t, %0, U)|| < K(t)||x —Xol| for anyxg, X, € X,u € X; wherek € L1(1),
(f3) the mapf(t,.,.) : X x Xy — X is continuous for a.e. € I,

(U1
(U2
(U3

)

)

)

) the multifunctionU (.,x) : I — K(X1) is measurable for everyec X,

) the multimapU (t,.) : X — K(X;) is u.s.c. for a.et €,

) the multimapJ : | x X — K(X;) is superpositionally measurable, i.e., for every meaderab
multifunction Q : | — K(X), the multifunctiong : | — P(X;) with ¢(t) =U(t,Q(t)) is
measurable (see Propositior3.1 in [15]),

(U4) the set(t,x) = f(t,x,U(t,x)) is convex for all(t,x) € | x X,

(U5) the multimapF satisfies the boundedness condit{&8),

(U6) for every (t,x) € | x X the setf(t,x,U(t,D)) is relatively compact for any bounded set

DcX.
In what follows, we need the following assertion.

Lemma 3. (See Proposition.2.2 of [15].) LetXg, X1 be Banach spacefy, 81 Hausdorff MNC
in Xp and X respectivelyX C Xg and.# a collection of bounded subsetsXf Suppose that the
multimapB : X x Xo — K(X;) satisfies the following conditions:
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(i) foranyx e X the multimapB(x,.) : Xo — K(X}) is k-Lipschitz with respect to the Hausdorff
metrichonK(X1), i.e.,

h(B(Xv y0)7 B(X>yl)) < k| |YO - yl||>

for anyyo,y1 € Xo wherek € R* does not depend og
(i) the setB(Q x {y}) is relatively compact irX; for anyQ € .# andy € Xo.

Then the multimap : X — K(X1) defined a#\(x) = B(x,X) is (K, Bo, B1)-bounded on#, i.e.,

Br(A(Q) < KBo(Q),
foranyQ e ..

Lemma 4. (See Theorem.B.4. of [15].) If a multimapF : | x X — K(X) satisfiegF1) and(F2),
thenF is superpositionally measurable.

Theorem 4. Let conditions(f1) — (f3) and(U1) — (U6) hold. Then the feedback control system
(11) has a solution.

Proof. We prove that the multimap (t,x) = f(t,x,U(t,x)) defined onl x X besides condition
(F3) satisfies conditiongF0), (F1),(F2) and (F4). By conditions(f3) and (U4), F takes its
values inKv(X), so it satisfiegF0). From conditiong f1),(f3),(U1) and Lemma 4, the mul-
timapF (.,x) is measurable for everye X, hence conditior{fF1) is fulfilled. From assumptions
(f3),(U2) and Theorem 2.8 of [15], condition(F2) follows. Now fixt € | and consider the
multimapB: X x X — K(X) defined aB(x,y) = f(t,y,U(t,x)). From(U6) the setB(D,y) is rel-
atively compact for every € X and bounded® C X. Fixx e X and lety,y’ € X. If b’ € B(x,y')
thenb’ = f(t,y,u) , whereu € U (t,x). Considet” = f(t,y’,u) € B(x,y"). From condition(f2)
it follows that

1" — B[] < k() ly" ||
i.e, the multimaB(x,.) is k(t)-Lipschitz with respect to the Hausdorff metric KriX). Applying
Lemma 3 to the multimaB, we confirm that conditiofiF4) is satisfied for the multimap (t,x) =
B(x,Xx). From Theorem 1, the solution set of

{ X'(t) e F(t,x) tel,

x(0) =x(1) =0, (12)

is nonempty. Now using conditioflJ3) and applying the Filippov Implicit Function Lemma
(Theorem 13.3 of [15]), we conclude that for every solution functienl — X with X’ (t) € F (t, x),
there exists a function(t) € U (t,x) such thak”(t) = f(t,x,u) and saxis a trajectory of the system
(11). |
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