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Abstract: The purpose of this study is twofold. For the first part, the entropy of countable partitions on an
effect algebra with the Riesz decomposition property is defined. In addition, the lower and upper entropy
and the conditional entropy considering a suitable state and transformation functions are introduced. Then,
some basic properties of these notions are investigated. Inthe second part, weak sequential effect algebra
is introduced followed by a definition for the entropy of countable partitions on this structure. Furthermore,
with the help of appropriate state and transformation functions, the notion of entropy, conditional entropy and
relative entropy are introduced. In the final step, some properties of these concepts are studied.
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1. Introduction

The Kolmogorov-Sinai entropy was introduced to distinguish two dynamical systems in the clas-

sical probability theory. In fact, the K-S entropy is a dynamical invariant that can be used as a

tool to measure the amount of uncertainty in random events. Every pair of isomorphic dynamical

systems has the same entropy. This notion was generalized inmany directions ([3,16, 18, 28],

etc.). If (Ω,β ,ρ) is a probability space, the entropy of a measurable partition A = {A1, ...,An} of

Ω is defined asH(A) = −
n
∑

i=1
ρ(Ai)logρ(Ai). If T : Ω → Ω is a measure preserving transforma-

tion, and if
n−1
∨

i=0
T−i(A) denotes the common refinement of the partitionsA,T−1(A), ,T−(n−1)(A),

then there is the limith(T,A) := lim
n→∞

1
n

n−1
∨

i=0
T−i(A). The K-S entropy ish(T ) := sup{h(T,A) :

A is a measurable partition o f Ω}. Probability theory was one of the first fields of mathematics

using fuzzy sets. The main idea of fuzzy entropy is replacingthe partitions with fuzzy partitions.

The fuzzy partition of the probability space(Ω,β ,ρ) is defied as a finite system of measurable
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functions fi : Ω → [0,1], i = 1,2, ...,n such that
n
∑

i=1
fi(x) = 1,∀x ∈ Ω. There are many possi-

bilities for operations with fuzzy sets. One of the first models was introduced by Dumitrescu

[4-11]. In this model , instead of a probability measure, a function m : F → [0,1] has been

considered such thatm(
k
∑

i=1
gi) =

k
∑

i=1
m(gi) whenever

k
∑

i=1
gi ≤ 1. The entropy of this fuzzy parti-

tion was given by the classical formulaH(A) = −
n
∑

i=1
(m( fi)) log(m( fi)) wheneverm( fi) 6= 0 and

H(A) = 0 whenm( fi) = 0. Some researchers have defined fuzzy entropy considering algebraic

structures such as MV-algebras and effect algebras as a probability space [3, 20, 21]. One of

the important notions of entropy is the refinement and join oftwo or more partitions. In classi-

cal probability theory, the common refinement ofA = {A1, ...,Am} andB = {B1, ...,Bn} is simply

C = {Ai ∩B j : 1≤ i ≤ m,1≤ j ≤ n} . However, this method cannot be used in more general al-

gebraic structures. The algebraic structures must have some special conditions. For the first time,

Malickı and B. Riecan [18] suggested a suitable refinement and join of two or more partitions

for defining entropy on structures with fuzzy sets. Effect algebras have been introduced by D.

J. Foulis and M. K. Bennett in 1994 [1] to model unsharp measurements in a quantum mechan-

ical system. They are a generalization of many structures which arise in quantum physics and

mathematical economics [2, 19]. In fact, effect algebras are a generalization of Boolean algebras,

MV-algebras, orthomodular lattices, orthomodular posetsand orthoalgebras. For relations among

these structures and some other related structures see, e.g., [12]. Effect algebras with the Riesz

decomposition property and sequential effect algebras arevery important subclasses of effect al-

gebras [17, 22-25]. In order to define the entropy, these subclasses have necessary conditions;

therefore, some writers generalize the notion of entropy for effect algebras with the Riesz decom-

position property and sequential effect algebras [3, 26, 27].

In fuzzy entropy, finite partitions have always been studieduntil Ebrahimi [13] introduced the

entropy with countable partitions. This notion was furtherdeveloped and studied in [14, 15].

According to the mentioned sources, entropy on algebraic structures has been defined with finite

partitions.

The notion of countable partitions and entropy on countablepartitions in effect algebra with Riesz

decomposition property and weak sequential effect algebraare introduced in Sections 2 and 6,

respectively. In these sections, it is proved that finer partitions have bigger entropy. In addition,

if ”P” is a partition that is obtained by joining two partitions ”A” and ”B”, then the entropy of

”P” is less than that of the summation entropy ”A” and entropy”B”. Conditional entropy and

relative entropy of effect algebra with RDP and weak sequential effect algebra are defined in

Sections 3 and 7, respectively. The properties of these entropies, especially the relations between

the conditional entropy, the relative entropy, the entropyof partitions and the entropy of join of

partitions are investigated. In Section 4, the lower and theupper entropies of a dynamical system
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on effect algebra with RDP are explored and it is proved that two isomorphic dynamical systems

have the same lower and upper entropies. In Section 5, a product operation between two effect

algebras with RDP is introduced and it is proved that the product of two effect algebras with RDP

is an effect algebra with RDP. Afterwards, it is proved that generally the entropy of the product of

two effect algebras with RDP is bigger than the summation entropy of the two effect algebras with

RDP. The entropy of a dynamical system on a weak sequential effect algebra is defined in Section

8 and some properties of this entropy are proved. Finally, inthe most important theorem of this

section it is proved that two isomorphic dynamical systems have the same entropy.

2. Countable Partition and Entropy of an Effect Algebra with RDP

In this section, we first define a countable partition, the refinement of a countable partition and

the join of two countable partitions of an effect algebra with RDP. Then we define an entropy on

a countable partition and investigate the relations between entropies of a countable partition, the

refinement of a countable partition and the join of two countable partitions.

Definition 1. An effect algebra is a partial algebraE = (E,⊕,θ ,1) with a partially defined oper-

ation⊕ and two constant elementsθ and 1 such that for alla,b,c ∈ E:

(i) if a⊕b is defined, thenb⊕a is defined anda⊕b = b⊕a;

(ii) if (a⊕b)⊕ c is defined, thena⊕ (b⊕ c) is defined and(a⊕b)⊕ c = a⊕ (b⊕ c);

(iii) for any a ∈ E, there exists a unique elementa′ ∈ E such thata⊕a′ = 1;

(iv) if a⊕1 is defined in E, thena = θ .

Definition 2. We say thata ≤ b if there exists an elementc ∈ E such thata⊕ c = b.

Definition 3. The effect algebraE has the Riesz decomposition property (RDP) ifx ≤ y1 ⊕ y2

implies that there exist two elementsx1,x2 ∈ E with x1 ≤ y1 andx2 ≤ y2 such thatx = x1 ⊕ x2.

This meansE has RDP iffx1⊕ x2 = y1⊕ y2 implies there exist four elementsc11, c12, c21, c22 ∈ E

such thatx1 = c11⊕ c12, x2 = c21⊕ c22, y1 = c11⊕ c21, y2 = c12⊕ c22.

Example 2.1. Let E = ([0,1],⊕,1,0). Then,a⊕b := min{1,a+b}, ∀a,b ∈ [0,1].

Definition 4. Let E be an effect algebra. A countable sequenceA = {ai}
∞
i=1 of elements ofE is

called a countable partition ofE, if
∞
⊕

i=1
ai exists inE and

∞
⊕
i=1

ai = 1. (
∞
⊕
i=1

ai meansa1⊕a2⊕a3⊕ . . .).

Definition 5. A countable partitionB = {b j}
∞
j=1 is a refinement of a countable partitionA =

{ai}
∞
i=1 and we writeA ≺ B, if for any ai, there is a subsetαi ⊆ N such thatai = ⊕ j∈αib j and

∪∞
i=1αi = N, αi ∩α j = /0 ∀ i 6= j.

Definition 6. Let E be an effect algebra. A mappings : E −→ [0,1] is said to be a state if:
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(i) s(1) = 1;

(ii) whenever
∞
⊕

i=1
ai exist and

∞
⊕
i=1

ai = e thens(
∞
⊕

i=1
ai) = s(e)≤

∞
∑

i=1
s(ai);

(iii) if a ≤E b thens(a)≤ s(b).

Definition 7. Let A = {ai}
∞
i=1 , B = {bi}

∞
i=1 be two countable partitions of effect algebraE with

RDP. We say that{ci j|i ≥ 1, j ≥ 1} is a Riesz join refinement ofA andB if
∞
⊕

k=1
cik and

∞
⊕

k=1
ck j exist

in E and,ai =
∞
⊕

k=1
cik, b j =

∞
⊕

k=1
ck j, sups(ci j) ≥ sup(s(ai))sup(s(b j))( by RDP we will be able to

find smaller elements ).

Definition 8. Let s be a state, andA = {ai}
∞
i=1 be a countable partition on an effect algebra with

RDP;

we define the entropy ofA by H(A) :=−logsup
i∈N

s(ai).

Example 2.2. A = {θ ,1} is a partition andH(A) = 0.

Corollary 1. If A = {ai}
∞
i=1 is a countable partition thenH(A)≥ 0.

Proof.
∞
⊕
i=1

ai = 1 so 1= s(1) ≤
∞
∑

i=1
s(ai) and this implies there isai such thats(ai) > 0 and so

0< sups(ai)≤ 1.

Theorem 1. Let C be a Riesz join refinement ofA = {ai}
∞
i=1 andB = {bi}

∞
i=1 . Then

max{H(A),H(B)} ≤ H(C)≤ H(A)+H(B).

Proof. Sinceai =
∞
⊕
i=1

ci j sos(ci j)≤ s(ai) ∀i, j, and this impliessup s(ci j)≤ sup s(ai) thusH(C)≥

H(A), with the same argument we haveH(C) ≥ H(B). On the other handsup s(ci j) ≥

sup s(ai)sup s(b j), which −log sup s(ci j) ≤ −log sup s(ai) − log sup s(b j), that is, H(C) ≤

H(A)+H(B).

Corollary 2. Let A ≺ B thenH(A)≤ H(B).

Proof. Since for eachi, ai = ⊕
j∈αi

b j, αi ⊆ N,αi ∩α j = /0 i 6= j and
∞
∪

i=1
αi = N,

we letci j =

{

b j i f j ∈ αi

θ o.w
c = {ci j}

∞
i, j=1 is a Riesz join refinement ofA,B because

(i)
∞
⊕

i, j=1
ci j =

∞
⊕
i=1

⊕
j∈αi

b j =
∞
⊕

i=1
ai = 1,

(ii) ai = ⊕
j∈αi

b j, b j = ci j, j ∈ αi,

(iii) sup s(ci j) = sup s(b j)≥ sup s(b j)sup s(ai), thenH(A)≤ H(C) = H(B).
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Example 2.3. E = ([0,1],⊕,1,0) is an effect algebra. Considers : E → [0,1] as s(t) = t then

sequence{(1
2)

n}∞
n=1 is an countable partition of E. consider partitiona1 = 1

6,a2 = 5
6,0 = a3 =

a4 = · · · and partitionb1 = 1
4,b2 = 3

4,0 = b3 = b4 = · · · then partitionc11 =
1
8,c12 =

1
24,c21 =

1
8,c22 =

17
24,ci j = 0, ∀ i, j > 2, is a refinement of sequences{ai}

∞
i=1 and{bi}

∞
i=1.

3. Conditional Entropy and Relative Entropy of Effect Algebras with

RDP

Let we begin this section with a definition of conditional entropy.

Definition 9. Let C = {ci j : 1 ≤ i,1 ≤ j} be Riesz join refinement of two countable partitions

{ai}
∞
i=1,{b j}

∞
j=1 of effect algebraE with RDP we define :

HC(A|B) :=−log sup (
s(ci j)
s(b j)

),s(b j)> 0.

Remark :b j =
∞
⊕
i=1

ci j sos(b j)≥ s(ci j).

Definition 10. We say Riesz join refinementC = {ci j : 1≤ i,1≤ j} of countable partitions{ai}
∞
i=1

and{b j}
∞
j=1 is independent ifsups(ci j) = sup(s(ai))sup(s(b j)).

Proposition 1. Let A , B andD be countable partitions of an effect algebras with RDP. Then

(i) if A ≺ B, C1 = A∨D andC2 = B∨D are independent thenH(A∨D)≤ H(B∨D);

(ii) if C = A∨B thenH(A∨B)≥ HC(A|B).

Proof.

(i) SinceA≺D, there isαi ∈N such thatai = ⊕
k∈αi

dk. This impliessups(c1
jk)= sups(b j) sups(dk)≤

sups(b j) sups(ai) = sups(c2
ji).

(ii) s(ci j)≤
s(ci j)
s(b j)

.

Definition 11. Let A1,A2, ...,An be countable partitions of effect algebraE with RDP. We define

H∗(A1∨ ...∨An) := in f{H(C) : C ∈ Re f (A1, ...,An)};

H∗(A1∨ ...∨An) := sup{H(C) : C ∈ Re f (A1, ...,An)}.

In view of (2.12)max{H(A1), ...,H(An)} ≤ H∗(A1∨ ...∨An)≤ H∗(A1∨ ...∨An)≤ H(A1)+ ...+

H(An).

Definition 12. Let A,B be two countable partitions we defineH∗(A|B) := in f{HC(A|B) : C ∈

Re f (A,B)} andH∗(A|B) := sup{HC(A|C) : C ∈ Re f (A,B)}.
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Proposition 2. Let A = {ai}
∞
i=1, B = {b j}

m
j=1 be two countable partitions ofE with RDP and

C = {ci j| i ≥ 1, j = 1, ...,m} be refinement ofA,B then:

(i) H(C)> HC(A|B)+H(B),

(ii) H∗(A∨B)≥ H∗(A|B)+H(B),

H∗(A∨B)≥ H∗(A|B)+H(B).

Proof.

(i) Let sups(b j)= s(bℓ), j = 1, ...,m. It holds that s(ci j)
sups(b j)

=
s(ci j)
s(bℓ)

≤
s(ci j)
s(b j)

so s(ci j)
sups(b j)

≤ sup( s(ci j)
s(b j)

).

This implies sups(ci j)
sups(b j)

≤ sup( s(ci j)
s(b j)

)and−log sups(ci j)
sups(b j)

≥−logsup s(ci j )
s(b j )

soH(C)≥ HC(A|B)+

H(B).

(ii) By (i) the proof is trivial.

Definition 13. Let A = {ai}
∞
i=1, B = {b j}

∞
j=1 be countable partitions ofE with RDP. The relative

entropy ofA with respect toB is defined as following:

H(A ‖ B) := logsup
i, j

(
s(ai)

s(b j)
), whenever s(b j) 6= 0.

Proposition 3. Let A = {ai}
∞
i=1, B = {b j}

∞
j=1 andC = {ck}

∞
k=1 be countable partitions ofE with

RDP. If A ≺ B then:

(i) H(B ‖C)≤ H(A ‖C),

(ii) H(C ‖ A)≤ H(C ‖ B),

(iii) H(A ‖ B)≥ 0.

Proof.

(i) sup
j,k

(
s(b j)
s(ck)

)≤ sup
i,k

( s(ai)
s(ck)

).

(ii) sup
i,k

( s(ck)
s(ai)

)≤ sup
j,k

( s(ck)
s(b j)

).

(iii) sup
i, j

( s(ai)
s(b j)

)≥ 1.

Corollary 3. Let A,B,C be countable partitions ofE with RDP andA ≺ B thenH(B∨D ‖C) ≤

H(A∨D ‖C).

Proposition 4. Let A = {ai}
∞
i=1, B = {b j}

∞
j=1 andC = {ck}

∞
k=1 be countable partitions ofE with

RDP, then:

(i) H(A ‖ B)≥ H(A),
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(ii) H(A∨B ‖C)≤ H(A∨B ‖ B)+H(B ‖C).

Proof.

(i) 0 ≤ s(b j)≤ 1 thus sup
i, j

( s(ai)
s(b j)

)≥ sup
i

s(ai).

(ii) Let A∨B = {di j : 1≤ i,1≤ j}. sup
i, j,k

(
s(di j)
s(ck)

)≤ sup
i, j,l

(
s(di j)
s(bl)

)sup
l,k

( s(bl)
s(ck)

).

4. Entropy of a Dynamical System on Effect Algebras with RDP

In this section we introduce dynamical system on an effect algebra with RDP.Then we will obtain

some interesting properties of lower and upper entropies onthis dynamical system.

Definition 14. A mappingT : E −→ E is said to be a transformation of an effect algebraE if

(i) T (
∞
⊕
i=1

ai) =
∞
⊕
i=1

T (ai) whenever
∞
⊕

i=1
ai and

∞
⊕

i=1
T (ai) exist;

(ii) T (1) = 1;

(iii) s(T (a)) = s(a) ∀a ∈ E thats is a state ofE.

A triple (E,s,T ) is said to be a dynamical system.

Proposition 5. Let A = {ai}
∞
i=1 be a countable partition of effect algebraE with RDP then:

(i) T (A) is a countable partition;

(ii) H(A) = H(T(A)).

Proof.

(i)
∞
⊕
i=1

T (ai) = T (
∞
⊕

i=1
ai) = T (1) = 1.

(ii) s(ai) = s(T (ai)).

Definition 15. Let A be a countable partition andT be a transformation of effect algebraE with

RDP. We define

Hn
∗ (A,T ) := H∗(A∨T(A)∨ ...∨Tn−1(A));

H∗
n (A,T ) := H∗(A∨T(A)∨ ...∨T n−1(A)).

Theorem 2. If C = A∨B thenT (C) = T (A)∨T(B).

Proof. C = A∨B soai =
∞
⊕

k=1
cik andb j =

∞
⊕

k=1
ck j. By definition ofT we haveT (ai) =

∞
⊕

k=1
T (cik) ,

T (b j)=
∞
⊕

k=1
T (ck j) andsup s(T (ci j))= sup s(ci j)≥ sup s(ai) sup s(b j)= sup s(T (ai)) sup s(T (b j)).
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Theorem 3. Let E be an effect algebra with RDP,s be a state andT be a transformation ofE .

For any countable partitionA = {ai}
∞
i=1, there exist limits

h∗(A,T ) := lim
n→∞

1
n

Hn
∗ (A,T );

h∗(A,T ) := lim
n→∞

1
n

H∗
n (A,T ).

Proof. LetC be a refinement of partitionsA,T(A), ...,T n−1(A)) andD be a refinement of partitions

A,T (A), ...,T m−1(A)). T n(D)is a refinement ofT n(A),T n+1(A), ...,T n+m−1(A). Let now ε be a

join refinement ofC andT n(D) soε = A∨T(A)∨ ...∨Tn+m−1(A) andA ≺ ε , ...,T n+m−1(A)≺ ε .

Hn+m
∗ (A,T ) = H∗(A∨T(A)∨ ...∨T n+m−1(A)) = in f{H(C) : CεRe f (A,T (A), ...,T n+m−1(A))} ≤

H(ε) ≤ H(c) + H(T(D)) = H(C) + H(D). C is arbitrary andHn+m
∗ (A,T )− H(D) ≤ H(c) so

Hn+m
∗ (A,T )−H(D) ≤ Hn

∗ (A,T ), since D is arbitrary too this implyHn+m
∗ (A,T ) ≤ Hn

∗ (A,T ) +

Hm
∗ (A,T ) and existence oflim

n→∞
1n

Hn
∗ (A,T )

. With the same argument we can conclude the existence of

lim
n→∞

1n
H∗

n (A,T )
.

Definition 16. The lower and upper entropy,h∗(T ) andh∗(T ) are defined as follow:

h∗(T ) := sup{h∗(A,T )} : A is a partition o f E},

h∗(T ) := sup{h∗(A,T )} : A is a partition o f E}.

Proposition 6. Let A be a countable partition of E thenh∗(T,A)≤H(A) and alsoh∗(T,A)≤H(A).

Proof. If C is a Riesz join refinement ofA,T (A),T 2(A), ...,T n−1(A) thenH(C)≤
n−1
∑

i=0
H(T i(A)) =

nH(A) sosup H(C)≤ nH(A) alsoin f H(C)≤ nH(A).

Definition 17. Two dynamical systems(E1,s1,T1) and (E2,s2,T2) are said to be isomorphic if

there exists a bijective mappingψ : E1 → E2 such that:

(i) ψ(1) = 1;

(ii) ψ(
∞
⊕

i=1
ai) =

∞
⊕
i=1

ψ(ai) whenever
∞
⊕
i=1

ai and
∞
⊕

i=1
ψ(ai) exist;

(iii) s2(ψ(a)) = s1(a);

(iv) T2(ψ(a)) = ψ(T1(a))∀aεE.

Theorem 4. If dynamical systems(E1,s1,T1) and(E2,s2,T2) are isomorphic dynamical systems,

whereE1, E2 have the property RDP thenh∗(T1) = h∗(T2) andh∗(T1) = h∗(T2).

Proof. Let ψ : E1 −→ E2 be an isomorphism.IfA = {ai}
∞
i=1 is a countable partition ofE1 then

{ψ(ai})
∞
i=1 is a countable partition ofE2 and vice versa also we haveH(A) = − logsup

i∈N
s1(ai) =

− logsup
i∈N

s2ψ(ai) = H(ψ(A)); therefore,Hn
∗ (A,T1) = in f{H(c) : c ∈ Re f (A,T1(A), . . . ,T

n−1
1 (A))}
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= in f{H(ψ(c)) : ψ(c) ∈ Re f (ψ(A),T2(ψ(A)), . . . ,T n−1
2 (ψ(A)))} = Hn

∗ (A,T2) and this proved

hn
∗(A,T1)= hn

∗(A,T2) andhn
∗(A)= hn

∗(A). In similar way we can prove the second equality.

Definition 18. Let A = {ai}
∞
i=1 andC = {c j}

∞
j=1 be two countable partitions of the dynamical

system(E,s,T ). We sayA
◦
⊆C if for any ai there arec j andbi j ∈ E such thatc j = ai ⊕ bi j and

s(bi j) = 0.

Theorem 5. Let A = {ai}
∞
i=1,B = {b j}

∞
j=1,C = {cn}

∞
n=1,D = {dm}

∞
n=1 be countable partitions of

effect algebraE with RDP andA
◦
⊆C, then

(i) H(C)≤ H(A);

(ii) T (A)
◦
⊆T (C);

(iii) If P = {pi j}
∞
i, j=1 is independent Riesz join refinements ofA andB andQ = {qn j}

∞
n, j=1 is

Riesz join refinements ofC andB thenH(Q)≤ H(P);

(iv) If for any n and m, Riesz join refinements of

A,T (A),T 2(A), ...,T n−1(A),C,T (C),T 2(C), ...,T m−1(C) are independent thenh∗(T,C) ≤

h∗(T,A) and alsoh∗(T,C)≤ h∗(T,A).

Proof.

(i) sups(ai)≤ sups(cn).

(ii) For any ai there arec j andbi j ∈ E such thatc j = ai ⊕ bi j and s(bi j) = θ . Therefore, for

anyT (ai) there areT (c j) andT (bi j) ∈ E such thatT (c j) = T (ai)⊕T(bi j) ands(T (bi j)) =

s(bi j) = θ .
(iii) sups(pi j)

i, j
= sups(ai)

i
sups(b j)

j
≤ sups(cn)

n
sups(b j)

j
≤ sups(qn j)

n, j
.

(iv) If P is a Riesz join refinement ofA,T (A),T 2(A), ...,T n−1(A) and Q is a Riesz join refinement

of

C,T (C),T 2(C), ...,T n−1(C) by part three we haveH(Q) = H(C∨T (C)∨ ...∨T n−1(C)) ≤

H(P) = H(A∨T(A)∨ ...∨Tn−1(A)).

5. Entropy of Product Effect Algebras with RDP

We begin this section with a proposition that introduces a product on the two effect algebras with

RDP.

Proposition 7. Let (E,⊕E ,0E ,1E) and (F,⊕F ,0F ,1F) be two effect algebras with RDP,C =

E ⊗F = {(e, f ) : e ∈ E, f ∈ F} , (e1, f1)⊗ (e2, f2) = (e1⊕E e2, f1⊕F f2) and(e1, f1)≤ (e2, f2) iff

e1 ≤E e2 and f1 ≤F f2 thenC is an effect algebra with RDP and we call it the product ofE andF .
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Proof. We just prove the Riesz decomposition property. Let(e, f ) ≤ (e1, f1)⊗ (e2, f2). Then

e ≤E e1⊕E e2 , f ≤ f1⊕F f2; therefore, there existsx1,x2 ∈E andy1,y2 ∈ F such thate = x1⊕E x2

and f = y1⊕F y2 andx1 ≤E e1,x2 ≤E e2 , y1 ≤F f1,y2 ≤F f2.

Proposition 8. A = {(ei, fi)}
∞
i=1is a countable partition ofC = E ⊗F iff AE = {ei}

∞
i=1 andAF =

{ fi}
∞
i=1 are countable partitions ofE andF respectively. We call sequencesAE andAF related

sequences toA.

Proof. Since
∞
⊗
i=1

(ei, fi) = (
∞
⊕E
i=1

ei,
∞
⊕F
i=1

fi), the proof is obvious.

Proposition 9. Let A = {(ei, fi)}
∞
i=1, B = {(e′i, f ′i )}

∞
i=1 be two countable partitions ofC = E ⊗F.

If A � B, thenAE � BE andAF � BF .

Proof. A � B; hence, for any(ei, fi) ∈ A, there is a subsetαi ⊆ N such that(ei, fi) = ⊗
j∈αi

(e′j, f ′j) =

(⊕E
j∈αi

e′i,⊕F
j∈αi

f ′i ) and this completes the proof.

Definition 19. Let E andF be effect algebras with RDP andSE , SF be states ofE andF respec-

tively. A mappingSp : E ⊗F −→ [0,1] is said to be a product state if

(i) Sp(e, f ) = SE(e) SF( f );

(ii) whenever
∞
⊗
i=1

(ei, fi) and(e1, f1)⊗(e2, f2)are defined and
∞
⊗

i=1
(ei, fi))= (e, f ),(e1, f1)⊗(e2, f2)=

(e, f ) thensp((e1, f1)⊗(e2, f2))= sp(e, f ),sp((e1, f1)⊗(e2, f2))≤ (sE(e1)⊕sE(e2),sF( f1))⊕

sF( f2))), Sp(
∞
⊗

i=1
(ei, fi)) = Sp(e, f ) andSp(

∞
⊗

i=1
(ei, fi))≤ (

∞
∑

i=1
sE(ei),

∞
∑

i=1
sF( fi)).

Proposition 10. Sp : E ⊗F −→ [0,1] is a state of the effect algebraE ⊗F.

Proof. By definition of product state, the first condition is true.Sp(1E ,1F ) = SE(1E) SF(1F) = 1.

If (e, f )≤ (e′, f ′) thene≤E e′, f ≤F f ′ soSE(e)≤ SE(e′), SF( f )≤ SF( f ′) soSp(e, f )≤ Sp(e′, f ′).

Definition 20. Let Sp be a product state onE ⊗F andA = {(ei, fi)}
∞
i=1 be a countable partition.

We define the entropy of the product effect algebraE ⊗F by HP(A) := −logsup
i∈N

Sp(ei, fi).

Remark: SinceSp is a state of effect algebra, all of the previous propositions are true for entropy

HP.

Proposition 11. Let A = {(ei, fi)}
∞
i=1, B = {(e′i, f ′i )}

∞
i=1 be two countable partitions ofE ⊗F and

C = {(ci j,c′i j)}i, j≥1 be a Riesz join refinement ofA andB. If sup
i j

SE(ci j) ≥ sup
i

SE(ei) sup
i

SE(e′i)

andsup
i j

SF(c′i, j) ≥ sup
i

SF( fi) sup
i

SF( f ′i ), thenCE = AE ∨BE andCF = AF ∨BF . We callC with

this property a strong Riesz join refinement ofA andB.
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Proof.
∞
⊗

k=1
(cik,c′ik) = (

∞
⊕

k=1
cik,

∞
⊕

k=1
c′ik) = (ei, fi) and

∞
⊗

k=1
(ck j,c′k j) = (

∞
⊕

k=1
ck j,

∞
⊕

k=1
c′k j) = (e′j, f ′j).

Proposition 12. Let A = {(ei, fi)}
∞
i=1 be a countable partition ofE ⊗F. Then

H(A)≥ H(AE)+H(AF)

Proof. SE(ei) SF( fi)≤ sup
i

SE(ei) sup
i

SF( fi). That is,

sup
i

Sp(ei, fi) = sup
i

SE(ei) SF( fi)≤ sup
i

SE(ei) sup
i

SF( fi).

Definition 21. Let TE : E → E andTF : F → F be transformations of effect algebras with RDP

andS be a state ofE ⊗F. A mappingTP : E ⊗F −→ E ⊗F is said to be a product transformation

of E ⊗F if:

(i) Tp(e, f ) = (TE(e),TF( f ));

(ii) S(TP(e, f )) = S(e, f ) ∀(e, f ) ∈ E ⊗F.

Proposition 13. Tp : E ⊗F −→ E ⊗F is a transformation of effect algebras.

Proof.

(i) If
∞
⊕E
i=1

ei and
∞
⊕F
i=1

fi are defined, then

Tp(
∞
⊗

i=1
(ei, fi)) = (TE(

∞
⊕E
i=1

ei),TF(
∞
⊕F
i=1

fi)) = (
∞
⊕E
i=1

TE(ei),
∞
⊕F
i=1

TF( fi)).

(ii) Tp(1E ,1F) = (TE(1E),TF(1F)) = (1E ,1F).

Definition 22. Let A,A1,A2, ...,An be countable partitions ofE ⊗F. We define

H p
∗ (A1∨ ...∨An) := in f{Hp(C) : Cε Strong Re f (A1,A2, ...,An)}.

H p
∗ (A,Tp) := H p

∗ (A∨Tp(A)∨ ...∨Tn−1
p (A)).

h∗(A,Tp) := limn→∞
1
n H p

∗ (A,Tp).

Proposition 14. H p
∗ (A1 ∨ ... ∨ An) ≥ Hn

∗ ((AE)1 ∨ ... ∨ (AE)n) + Hn
∗ ((AF)1 ∨ ... ∨ (AF)n) and

h∗(A,Tp)≥ h∗(AE ,(Tp)E)+h∗(AF ,(Tp)F).

Proof. Hp(C)≥ HE(C)+HF(C) for all C ∈ Strong Re f (A1,A2, ...,An) so

in f{Hp(C) : C ∈ Strong Re f (A1,A2, ...,An)} ≥ in f{HE(C) : C ∈ Strong Re f (A1,A2, ...,An)}+

in f{HF(C) : C ∈ Strong Re f (A1,A2, ...,An)}.
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6. Countable Partition and Entropy of Weak Sequential Effect

Algebra

We start this section with a definition of weak sequential effect algebra, followed by the definition

of the countable partition and the join of two countable partitions. Afterwards, some notable

propositions in this section are given.

Definition 23. Let (E,⊕,θ ,1) be an effect algebra, define another binary operation◦ on E, satis-

fying:

(i) If b⊕ c is defied thena◦b⊕a◦ c andb◦a⊕ c◦a are defined,a◦ (b⊕ c) = a◦b⊕a◦ c and

(b⊕ c)◦a = b◦a⊕ c◦a for all a ∈ E;

(ii) 1 ◦a = a for anya ∈ E;

(iii) If a◦b = θ , thena◦b = b◦a;

(iv) If a◦b = b◦a, thena◦b′= b′ ◦a and for eachc ∈ E, a◦ (b◦ c) = (a◦b)◦ c;

(v) If c ◦ a = a ◦ c andc ◦ b = b ◦ c, thenc ◦ (a ◦ b) = (a ◦ b) ◦ c andc ◦ (a⊕ b) = (a⊕ b) ◦ c

whenevera⊕b is defined;

(vi) If
∞
⊕
i=1

ai is defined, then
∞
⊕
i=1

ai ◦ b and
∞
⊕
i=1

b ◦ ai are defined andb ◦ (⊕∞
i=1 ai) =

∞
⊕
i=1

(b ◦ ai),

(
∞
⊕

i=1
ai)◦b =

∞
⊕

i=1
(ai ◦b).

We call (E,⊕,◦,θ ,1) weak sequential effect algebra and its short form WSEA will be used

throughout the article.

Example 6.1. Let E = [0,1] , a⊕ b = min{ 1 , a+b} anda ◦ b = ab. (E = [0,1],⊕,◦,0,1) is a

WSEA.

Definition 24. Let (E,⊕,◦,θ ,1) be a WSEA. A countable sequenceA = {ai}
∞
i=1 of elements of

E is called a countable partition if
∞
⊕

i=1
ai exists inE and

∞
⊕
i=1

ai = 1. and we say countable partition

B = {b j}
∞
j=1 is a refinement of the partitionA = {ai}

∞
i=1 , if for any ai there is a subsetαi ⊆N such

thatai = ⊕
j∈αi

b j and
∞
∪

i=1
αi = N, αi ∩α j = /0 ∀ i 6= j and we writeA ≺ B.

Proposition 15. Let (E,⊕,◦,θ ,1) be a WSEA,A = {ai}
∞
i=1 andB = {bi}

∞
i=1 be two countable

partitions ofE. ThenA◦B= {ai◦bi : aiεA,biεB, i= 1,2, ...} is a countable partition ofE, A≺A◦B

andB ≺ A◦B . We callA◦B the join refinement ofA andB.

Proof. Since
∞
⊕
i=1

ai and
∞
⊕
j=1

b j are defined by property(vi) of Definition 23,
∞
⊕
j=1

∞
⊕
i=1

ai ◦b j is defined

and⊕∞
j=1

∞
⊕
i=1

ai ◦ b j =
∞
⊕
i=1

ai ◦
∞
⊕
j=1

b j = 1◦ 1 = 1; therefore,A ◦ B is a partition. For anyaiεA,

ai =
∞
⊕
j=1

ai ◦b j and for anyb j, b j =
∞
⊕
i=1

ai ◦b j, which meansA ≺ A◦B andB ≺ A◦B.
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Definition 25. Let E be a WSEA. A mappings : E −→ [0,1] is said to be a state if

(i) s(1)=1;

(ii) whenever
∞
⊕

i=1
ai , a⊕b exist and

∞
⊕
i=1

ai = e anda⊕b = f thens(
∞
⊕

i=1
ai) = s(e)≤

∞
∑

i=1
s(ai) and

s(a⊕b) = s( f )≤ s(a)+ s(b);

(iii) If a ≤E b, thens(a) ≤ s(b);

(iv) s(a◦b) ≥ s(a)s(b).

Definition 26. Let s be a state on WSEA,E, andA = {ai}
∞
i=1 be a countable partition of unity 1.

We define the entropy ofA by H(A) :=−logsup
i∈N

s(ai).

Proposition 16. Let A◦B be a join refinement ofA = {ai}
∞
i=1 andB = {bi}

∞
i=1. Then

max{H(A),H(B)} ≤ H(A◦B)≤ H(A)+H(B)

Proof. ai = ai ◦b j ⊕ ai ◦b′j so ai ◦b j ≤ ai. By definitions of state and entropy, we haveH(A) ≤

H(A◦B); moreover,H(B)≤ H(A◦B) with the same argument.

s(ai ◦ b j) ≥ s(ai)s(b j); therefore,sup
i, j

(s(ai ◦ b j)) ≥ s(ai)s(b j), which impliessup
i, j

(s(ai ◦ b j)) ≥

sup
i
(s(ai))s(b j) and alsosup

i, j
(s(ai ◦b j))i, j ≥ sup

i
(s(ai))sup

j
(s(b j)).

Proposition 17. If a WSEA (E,⊕,◦,θ ,1) has the Riesz decomposition property,A = {ai}
∞
i=1 and

B = {bi}
∞
i=1 are two countable partitions of unity 1, thenA◦B is a Riesz join refinement ofA and

B.

Proof. Since
∞
⊕

i=1
ai and

∞
⊕
j=1

b j are defined by property (6) of Definition 23
∞
⊕
i=1

ai ◦b j and
∞
⊕
j=1

ai ◦b j

exist andbi =
∞
⊕

i=1
ai ◦b j, ai =

∞
⊕
j=1

ai ◦b j

Proposition 18. If A � B thenH(A)≤ H(B).

Proof. SinceA � B then for anyai ∈ A there isαi ⊆ N, such thatai = ⊕
j∈αi

b j sob j ≤E ai and this

impliessup
j

s(b j)≤ sup
i

s(ai).

7. Conditional Entropy and Relative Entropy of Weak Sequential

Effect Algebras

As we introduce the conditional entropy and the relative entropy on an effect algebra with RDP, in

this section we will also define the conditional entropy and the relative entropy on weak sequential

effect algebra. Furthermore, we will investigate the relation between these entropies.
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Definition 27. Let A ◦B = {ai ◦ b j : ai ∈ A,b j ∈ B} be a join refinement ofA andB of WSEA

(E,⊕,◦,θ ,1). We define conditional e4ntropy as follows:

H(A|B) :=−log sup (
s(ai ◦b j)

s(b j)
),s(b j)> 0.

Proposition 19. Let A = {ai}
∞
i=1, B = {bi}

∞
i=1 andC = {ci}

∞
i=1 be three countable partitions of

unity 1 of WSEA(E,⊕,◦,θ ,1). Then

(1) H(A|B)≥ 0;

(2) If A �C thenH(A|B)≤ H(C|B);

(3) If A � B thenH(A|B)≤ H(A);

(4) H(A◦B|C)≥ H(A|C)+H(B|A◦C);

(5) H(A◦C)≥ H(A)+H(C|A);

(6) H(A)≥ H(A|C);

(7) H(A|C)≤ H(A◦B|C);

(8) If A � B thenH(A◦C)≤ H(B◦C);

(9) H(A◦B)≥ H(A|B);

(10) If A ≺ B andC ≺ D thenA◦C ≺ B◦D.

Proof. (1) ai ◦b j ≤E b j.

(2) SinceA�C, for all ai ∈A there isαi such thatai = ⊕
j∈αi

c j , ai◦bk = ⊕
j∈αi

c j ◦bk sos(c j ◦bk)≤

s(ai ◦bk) andsup
j,k

s(c j◦bk)
s(bk)

≤ sup
i,k

s(ai◦bk)
s(bk)

.

(3) By definition of state,s(ai ◦b j)≥ s(ai)s(b j); therefore,sup s(ai◦b j)
s(b j)

≥ sup s(ai).

(4) s((ai◦b j)◦ck)
s(ck)

=
s((ai◦b j)◦ck)

s(ck)
s(ai◦ck)
s(ai◦ck)

and this impliessup s((ai◦b j)◦ck)
s(ck)

≤ sup s((ai◦b j)◦ck)
s(ai◦ck)

sup s(ai◦ck)
s(ck)

.

(5) s(ai ◦ c j) =
s(ai◦c j)

s(ai)
s(ai) sosup s(ai ◦ c j)≤ sup s(ai◦c j)

s(ai)
sup s(ai).

(6) s(ai◦c j)
s(c j)

≥ s(ai).

(7) A � A◦B.

(8) A � B implies for anyi andk we have,ai = ⊕
j∈αi

b j andai ◦ck = ( ⊕
j∈αi

b j)◦ck = ⊕
j∈αi

(b j ◦ck);

therefore,A◦C � B◦C.

(9) H(A|B)≤ H(A)≤ H(A◦B).

(10) For anyi and k, we haveai = ⊕
j∈αi

b j and ck = ⊕
m∈αk

dm ai ◦ ck = ( ⊕
j∈αi

b j) ◦ ( ⊕
m∈αk

dm) =

⊕
j∈αi,m∈αk

(b j ◦dm) ∀i,k

Definition 28. Let A = {ai}
∞
i=1 andB = {b j}

∞
j=1 be countable partitions of WSEAE. The relative

entropy ofA with respect toB is defined as follows:

H(A ‖ B) := logsup
i, j

(
s(ai)

s(b j)
), whenever s(b j) 6= 0.
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Proposition 20. Let A = {ai}
∞
i=1, B = {b j}

∞
j=1 andC = {ck}

∞
k=1 be countable partitions of WSEA

E . If A ≺ B. Then

(i) H(B ‖C)≤ H(A ‖C),

(ii) H(C ‖ A)≤ H(C ‖ B),

(iii) H(A ‖ B)≥ 0.

Proof. The proof is similar to the proof of proposition 3.

Corollary 4. Let A,B,C andD be countable partitions of WSEAE. Then

(i) if A ≺ B, thenH(B◦D ‖C)≤ H(A◦D ‖C);

(ii) if A ≺ B andC ≺ D, thenH(B◦D ‖ E)≤ H(A◦C ‖ E).

Proposition 21. Let A = {ai}
∞
i=1, B = {b j}

∞
j=1 andC = {ck}

∞
k=1 be countable partitions of WSEA

E. Then

(i) H(A ‖ B)≥ H(A);

(ii) H(A◦B ‖C)≤ H(A◦B ‖ B)+H(B ‖C).

Proof. (i) 0 ≤ s(b j)≤ 1.

(ii) sup
i, j,k

(
s(ai◦b j)

s(ck)
)≤ sup

i, j,l
(

s(ai◦b j)
s(bl)

)sup
l,k

( s(bl)
s(ck)

).

8. Entropy of Dynamical Systems on WSEA

In this section, we define the entropy of dynamical systems onweak sequential effect algebra.

Then, we show that the two isomorphic dynamical systems havethe same entropy.

Definition 29. A mappingT : E −→ E is said to be a transformation of a weak sequential effect

algebraE if:

(i) T (
∞
⊕
i=1

ai) =
∞
⊕
i=1

T (ai) whenever
∞
⊕

i=1
ai and

∞
⊕

i=1
T (ai) exist;

(ii) T (1) = 1;

(iii) s(T (a)) = s(a) ∀a ∈ E thatS is a state ofE;

(iv) T (a◦b) = T (a)◦T (b).

Proposition 22. Let A = {ai}
∞
i=1 be a countable partition of unity 1. Then
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(i) T (A) is a countable partition of unity 1,

(ii) H(A) = H(T (A)).

Theorem 6. Let E be a WSEA,s be a state andT be a transformation ofE . For any countable

partitionA = {ai}
∞
i=1 there exists the limit

h(T,A) := lim
n→∞

1
n

H(A◦T(A)◦ ...◦T n−1(A))

Proof. Let C = A ◦ T (A) ◦ ... ◦ T n−1(A) , D = A ◦ T (A) ◦ ... ◦ T m−1(A) and T n(D) = T n(A) ◦

T n+1(A)◦...◦T m+n−1(A). By partb of the previous proposition,we haveH(T n(D)) =H(D) on the

other handH(A◦T(A)◦ ...◦T m+n−1(A)) = H(C+T n(D))≤ H(C)+H(Tn(D)) = H(C)+H(D)

.

The dynamical entropyh(T ) is defined as follows:

h(T ) := sup{h(A,T )} : A is a partition o f E}

Theorem 7. Let A = {ai}
∞
i=1,B = {b j}

∞
j=1 andC = {cn}

∞
n=1 be countable partitions ofE. Then

(1) h(T,A)≤ H(A);

(2) if a◦b = b◦a for anya,b ∈ E thenh(T,A◦C)≤ h(T,A)+h(T,C);

(3) h(T,T (A)) = h(T,A);

(4) if a◦b = b◦a for anya,b ∈ E thenh(T,A◦T (A)◦ ...◦T n−1(A))≤ nh(T,A),n ≥ 1;

(5) if A ≺ B thenT (A)≺ T (B);

(6) if A ≺ B thenh(T,A)≺ h(T,B);

(7) h(T k,A◦T(A)◦ ...T k−1(A)) = kh(T,A) for k > 0;

(8) h(T k) = kh(T ) for k > 0.

Proof. (1) h(T,A) = lim
n→∞

1
nH(A◦T(A)◦ ...◦T n−1(A))≤ lim

n→∞
1
n

n−1
Σ

i=0
H(T i(A)) = H(A).

(2) H((A◦C)◦T(A◦C)◦...◦T n−1(A◦C))=H(A◦T(A)◦....T n−1(A)◦C◦T(C)◦...◦T n−1(C))≤

H(A◦T(A)◦ ...◦T n−1(A))+H(C◦T (C)◦ ...◦T n(C)).

(3) H(T(A)◦T 2(A)◦...◦T n−1(A))=H(T(A◦T (A)◦...◦T n−1(A)))=H(A◦T(A)◦...◦T n−1(A)).

(4) By part b and c the proof is trivial.

(5) A ≺ B; therefore, for anyi, we haveai = ⊕
j∈αi

b j and this impliesT (ai) = ⊕
j∈αi

T (b j),∀i.

(6) By part e, we haveT i(A) ≤ T i(B) for any i = 1, ...,n−1. Part m of 19 proposition implies

thatH(A◦T(A)◦ ...◦T n−1(A))≤ H(B◦T(B)◦ ...◦T n−1(B)).

(7) h(T k,A◦T (A)◦ ...◦T k−1(A)) = lim
n→∞

1
nH(A◦T (A)◦ ...◦T nk−1(A))= lim

n→∞
k

kn H(A◦T (A)◦ ...◦

T nk−1(A)) = kh(T,A).
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(8) kh(T ) = k sup
A

h(T,A) = sup
A

h(T k,A◦T (A)◦ ...◦T k−1(A))≤ sup
C

h(T k,C) = h(T k). On the

other hand, sinceA ≺ A ◦ T (A) ◦ ... ◦ T k−1(A) by part f, h(T k,A) ≤ h(T k,A ◦ T (A) ◦ ... ◦

T k−1(A)) = kh(T,A).

Definition 30. Let (E,⊕,◦,θ ,1) and(E ′,⊕′,◦′,θ ′,1′) be two WSEA. The two dynamical systems

(E,s,T ) and(E ′,s′,T ′) are said to be isomorphic if there exist, a bijective mapψ : E → E ′ such

that

(i) ψ(1) = 1′;

(ii) ψ(
∞
⊕
i=1

ai) =
∞
⊕′

i=1
ψ(ai) whenever

∞
⊕
i=1

ai and
∞
⊕′

i=1
ψ(ai) exist;

(iii) s′(ψ(a)) = s(a);

(iv) T ′(ψ(a)) = ψ(T (a))∀a ∈ E;

(v) ψ(a◦b) = ψ(a)◦ψ ′(b).

Proposition 23. Let two dynamical systems(E,s,T ) and(E ′,s′,T ′) be isomorphic. Then

(i) A = {ai}
∞
i=1 is a countable partition of E iffψ(A) = {ψ(ai)}

∞
i=1 is a countable partition of

E ′;

(ii) H(A) = H(ψ(A));

(iii) h(T,A) = h(T ′,ψ(A)).

Proof. (i) By propertyi andii of the above definition, the proof is trivial.

(ii) s′(ψ(a)) = s(a) imply H(A) = H(ψ(A)).

(iii) H(A ◦ T (A) ◦ ... ◦ T n−1(A)) = H(ψ(A ◦ T (A) ◦ ... ◦ T n−1(A))) = H(ψ(A) ◦ψ(T (A)) ◦ ... ◦

ψ(T n−1(A))) = H(ψ(A)◦T ′(ψ(A))◦ ...◦T ′n−1(ψ(A))) soh(T,A) = h(T ′,ψ(A)).

Theorem 8. If dynamical systems(E,s,T ) and (E ′,s′,T ′) are isomorphic dynamical systems,

whereE, E ′ are WSEA, thenh(T ) = h(T ′).

Proof. By the previous proposition for any countable partitionsA of E and B of E ′, we have

h(T,A) = h(T ′,ψ(A)) andh(T,ψ−1(B)) = h(T ′,B); therefore,sup
A

h(T,A) = sup
B

h(T ′,B).

Definition 31. Let E be a WSEA,A = {ai}
∞
i=1 andC = {c j}

∞
j=1 be two countable partitions . We

sayA
◦
⊆C if for any ai there arec j andbi j ∈ E such thatc j = ai ⊕bi j ands(bi j) = θ .

Theorem 9. Let E be a WSEA,A = {ai}
∞
i=1,C = {cn}

∞
n=1 be countable partitions ofE andA

◦
⊆C

then
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(i) H(C)≤ H(A),

(ii) T (A)
◦
⊆T (C).

Proof.

(i) sups(ai)≤ sups(cn).

(ii) For any ai there arec j andbi j ∈ E such thatc j = ai ⊕ bi j ands(bi j) = 0 so for anyT (ai)

there areT (c j) andT (bi j) ∈ E such thatT (c j) = T (ai)⊕T (bi j) ands(T (bi j)) = s(bi j) = 0.

Theorem 10. Let E be a WSEA,A = {ai}
∞
i=1,C = {cn}

∞
n=1,D = {dm}

∞
n=1 be countable partitions

of E, A
◦
⊆C and for anya,b ∈ E, a◦b = b◦a then

(i) H(COD)≤ H(AOD);

(ii) H(C|D)≤ H(A|D);

(iii) h(T,C)≤ h(T,A).

Proof.

(i) For anyai there arec j andbi j ∈ E such thatc j = ai ⊕bi j so for anyk , c j ◦dk = (ai ◦dk)⊕

(bi j ◦dk) this impliessup
i,k

s(ai ◦dk)≤ sup
j,k

s(c j ◦dk).

(ii) By part a,s(ai ◦dk)≤ s(c j ◦dk) sosup
i,k

s(ai◦dk)
s(dk)

≤ sup
j,k

s(c j◦dk)
s(dk)

.

(iii) By part a,H(C ◦T (C)◦ ...◦T n−1(C))≤ H(A◦T(A)◦ ...◦T n−1(A)).

9. Concluding Remarks

In this paper, entropy with countable partitions on two important subclasses of effect algebras was

introduced and their properties were investigated. Effectalgebra is an important logic model for

studying unsharp quantum events. However, due to the limitations of observational tools, physicist

are not able to consider every variable in their calculations. Mathematical models can provide a

better understanding of the realities of the world of micro-physics. Therefore, the entropy with

countable partitions defined on the algebraic structure, especially effect algebra, may be very

important. The next step in this regard could be trying to define entropy with countable partitions

on other subclasses of effect algebra, such as CB-effect algebra, generalized effect algebra and

some algebraic structures such as BCK-algebra andC∗-algebra.
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