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Abstract: Chaos particle swarm optimization (CPSO) is a novel optimization algorithm proposed in this 

paper. Evolutionary algorithms are one of the methods to solve optimization problems in various areas 

effectively. Particle swarm optimization (PSO) and genetic algorithms (GA) are the most popular 

evolutionary techniques. These algorithms adopt a random sequence for their parameters. However, these 

algorithms often lead to premature convergence, especially in complex nonlinear optimization problems. 

On the other hand, chaos theory studies the behavior of systems that are highly sensitive to their initial 

conditions and can hence generate a more variable range of numbers instead of random numbers. 

Therefore, this paper develops a new method that employs a Lorenz system, Tent map and Henon map to 

produce random numbers, when a random number is needed by the classical PSO algorithm. The 

experimental results show that the performance of CPSO is significantly better than the state-of-the-art 

techniques on PSO, GA and its combination with chaotic systems (CGA). 

Keywords: Chaos Particle Swarm Optimization, Optimization, Nonlinear Problem, Chaos Evolutionary 

Algorithm  

 

1. Introduction 

Optimization is the process of improving a problem. The goal of the optimization procedure is 

getting the best possible results to the restrictions or constraints that are imposed.  For a 

problem, there are various solutions to compare and choose the optimal one from; we will 

define a function, which is called objective function. The choice of the objective function 

depends on the nature of the problem. 
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Optimization problems can be divided into two categories: unconstrained optimization 

problems and constrained optimization problems. In problems belonging to the first category, 

the goal is to minimize or maximize the objective function without any constraint on decision 

variables; otherwise it is a constrained optimization problem. 

During the past years, many methods have been proposed to solve the problem of global 

optimization. These methods can be divided into two major categories: deterministic and 

stochastic. Deterministic methods are able to find an optimal solution exactly. Unfortunately, 

for NP-complete problems, deterministic algorithms are hard to find. Therefore, there are no 

algorithms that solve these problems in polynomial time. However, stochastic methods have 

demonstrated the capacity to reach near-optimal solutions for NP-complete problems in short 

time. Some examples of stochastic methods are Adaptive Random Search, Completive 

Evolution, Controlled Random Search, Simulated Annealing, Genetic Algorithm, Particle 

Swarm Optimization, etc. [1]. Stochastic methods for global optimization which have recently 

been considered by researchers are evolutionary algorithms such as genetic algorithms (GA) 

and particle swarm optimization (PSO). 

One of the major drawbacks in the field of the optimization by evolutionary algorithms, 

especially GA and PSO, is their premature convergence. The convergence properties of 

evolutionary algorithms are strongly related to their stochastic nature and these algorithms 

usually use a random sequence for their parameters during a run, which can cause loss of 

energy to escape from the local optimum. In the best-case, it is necessary to wait for the 

algorithm to escape from local optima by operators such as mutation in genetic algorithms.  

A Genetic Algorithm (GA) [2] is a population-based optimization method that mimics the 

mechanisms of natural selection and natural genetic. Its search is independent of a natural 

objective function. On the other hand, Particle Swarm Optimization (PSO) [3] has been 

proposed for continuous nonlinear function optimization. It was developed on the basis of 

simulation of the social behavior of animals such as bird flocking, fish schooling and swarm 

theory.  

Recently, several studies have been done to find and analyze chaotic systems and chaotic 

behavior in these systems. Because of extensive applications of chaos theory in engineering 

systems, the new research areas have been introduced to chaos theory. One of these fields is 

the field of optimization problems.  
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Chaos is as the phenomenon that occurs in a deterministic nonlinear dynamic system that it is 

extremely sensitive to the initial condition. It is mathematically defined as a semi-randomness 

behavior generated by nonlinear deterministic systems. Therefore, a chaotic movement can 

travel all states without any repetition within the certain rang. Because of the easy 

implementation and special capacity to avoid being trapped in local optima, chaos-based 

search algorithms have aroused intense interest [4]. Experimental studies assert the benefits of 

using chaotic signals instead of random signals [5].  

In [6], the authors have presented a new method based on a hybrid genetic algorithm and a 

chaotic function for image encryption. In this method, the chaotic logistic map is used for the 

initial image encryption and a genetic algorithm is used to improve the encryption process of 

the image. The important advantages of the proposed method can be referred to high-

efficiency and a higher resistance against common attacks. Li and Jiang [7] presented a chaos 

optimization algorithm (COA) that can solve complex optimization problems. The most 

important advantages of the COA are summarized as: easy implementation, short execution 

time and speed-up of the search. Observations, however, reveal that the COA also has some 

problems including: (i) COA is effective only for small decision spaces; (ii) COA easily 

converges in the early stages of the search process [8]. Therefore, hybrid methods have 

attracted attention by the researchers. Hybrid methods can save time and improve the 

computational efficiency of algorithms. In [9], Alatas et al. used eight chaotic maps for 

parameter adaptation. Their experimental results show that the proposed algorithms increase 

the solution quality. In addition, they sometimes improve the global search capacity. Dong et 

al. [10] presented a novel chaotic hybrid algorithm which combines the strength of particle 

swarm optimization, genetic algorithms and chaotic dynamics in solving multimodal 

problems. It is successfully applied to solve circle detection problems. Gao and Xu [11] 

proposed a new particle swarm optimization method. It uses the Monte Carlo method to 

investigate the behavior of the particle in PSO and then employs the local Henon mutation 

operator to improve the convergence speed. Wang and Yao [12] presented a hybrid genetic 

algorithm based on chaos and PSO. The experimental results demonstrated that the proposed 

method significantly improves both global convergence and convergence precision. In [13], 

Yang et al. presented an improved logistic map, namely a double bottom map, and apply 

particle swarm optimization to test the function. Jia et al. [14] proposed a novel PSO 

(CGPSO) algorithm which showed to be more effective and less sensitive to the function 

dimensions compared to the standard PSO.  
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In this paper, a sequence generated from different chaotic systems (such as Lorenz system, 

Tent map and Henon map) is substituted for random numbers for different parameters of the 

PSO. In order to evaluate these algorithms, some benchmark functions are utilized. The 

simulation results show that the application of chaotic signals instead of random sequences 

improve the performance of evolutionary algorithms.  

The remainder of this paper is organized as follows. A review of evolutionary algorithms 

(such as genetic algorithm and particle swarm optimization) is given in Section 2. The chaotic 

maps that generated chaotic sequences for the evolutionary algorithms are explained in 

Section 3. Section 4 describes the proposed methods. In Section 5, the proposed methods are 

tested through benchmark functions and results are compared to each other. Finally, we 

conclude in Section 6. 

2. Evolutionary Algorithms 

2.1. Genetic Algorithm 

Genetic Algorithms (GA) have always been attractive for researches as meta-heuristic search 

algorithms. GAs are robust methods to effectively solve optimization problems in various 

areas. These algorithms do not need derivatives of the objective function and do not have any 

limitation regarding the continuity or discreteness of the search space, because they are based 

on the evolution theory. In general, the following properties are advantages of GAs in 

comparison to other search methods [15]: 

- Nondeterministic algorithm 

- Easy implementation 

- Parallel computation capability  

- Ability to reach global optima and escape from local optima 

One major drawback of GAs is their premature convergence; where the algorithm may get 

stuck in a local optimum.  

2.2. Particle Swarm Optimization 

Particle swarm optimization (PSO) is population-based optimization method and it is based on 

the simulation of social behaviors of bird flocking or fish schooling. The PSO algorithm is 

initialized with a population of candidate solutions which is called a particle.  N particles are 

moving around in a D-dimensional search space of the problem. The position of the ith particle 
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at the tth iteration is represented by 𝑥𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑖) and 𝑥𝑖,𝑛 ∈ [𝐿𝑛,𝑈𝑛], 1 ≤ 𝑛 ≤ 𝑁 

where 𝐿𝑛 𝑎𝑛𝑎 𝑈𝑛 are the lower and upper bound for the nth dimension, respectively [13]. The 

best position that has so far been visited by the ith particle is represented as 

𝑝𝑖 = (𝑝𝑖1,𝑝𝑖2, . . . ,𝑝𝑖𝑖) which is also called pbest. The global best position attained by the 

whole swarm is called the global best (gbest) and represented as 𝑝𝑔 = (𝑝𝑔1,𝑝𝑔2, . . . ,𝑝𝑔𝑖). The 

velocity vector at the tth iteration is represented as 𝑣𝑖(𝑡) = (𝑣𝑖1,𝑣𝑖2, . . . , 𝑣𝑖𝑖). At the next 

iteration, the velocity and position of the particle are calculated according to (1)  

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) +  𝑐1𝑟1�𝑝𝑝𝑝𝑝𝑡𝑖(𝑡) −  𝑥𝑖(𝑡)� +  𝑐2𝑟2(𝑔𝑝𝑝𝑝𝑡𝑖 − 𝑥𝑖(𝑡))                         (1)                               

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)                                                                                                        

 

Here, the parameters 𝑐1 and  𝑐2 are called acceleration coefficients (usually 𝑐1 = 𝑐2). w is 

called inertia weight, which is set to 1 in the original PSO [3]. 𝑟1 and  𝑟2 are random numbers 

in the range [0, 1]. The velocity of a particle at each dimension can be consternated to the 

default  𝑣𝑚𝑚𝑚.  

The PSO algorithm has fast convergence towards an optimum, is simple to compute, easy to 

implement and free from the complex computation in genetic algorithms (e.g. 

coding/decoding, crossover and mutation) [16]. However, PSO has some disadvantages: it 

sometimes easily gets trapped in a local optimum and the convergence rate decreases 

considerably in the later period of evolution; when reaching a near optimal solution, the 

algorithm stops optimizing and the accuracy that the algorithm can achieve is limited [16].  

 

3. Chaos Theory and Chaotic Systems 

Chaos is a deterministic, random-like process found in nonlinear dynamical systems which are 

highly sensitive to their initial condition. Small differences in the initial values can lead to a 

big change of system behavior. Chaos theory is typically described as the so-called ‘butterfly 

effect’ detailed by Lorenz. In general, chaotic systems have the following properties [5]:  

- Sensitivity to primary condition 

- Randomness 

- Deterministic  
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By using these properties of chaotic systems, an effective approach was proposed for 

maintaining population diversity and avoids being trapped in local optimum.   

3.1. Lorenz System 

The Lorenz system [29] is one of the well-known chaotic systems that was originally derived from a 

model of the earth’s atmospheric convection flow heated from below and cooled from above. This 

system equation is described as: 

𝑎𝑥
𝑎𝑡

=  𝜎(𝑦 − 𝑥) 

    𝑑𝑑
𝑑𝑑

= 𝑥 ( 𝜌 − 𝑧) − 𝑦         (2) 

 
𝑎𝑧
𝑎𝑡

= 𝑥𝑦 −  𝛽𝑧 

 
Here, 𝑥, 𝑦 and 𝑧 make up the system state, 𝑡 is time, and 𝜎, 𝜌, 𝛽 are the system parameters. 

If = 10 , 𝛽 = 8
3�  and ρ = 28, the Lorenz system exhibits a chaotic behavior. The projections 

of the chaotic attractors are shown in Figure 1.  

 

FIGURE 1. The projections of the Lorenz attractor 

 

3.2. Tent Map 

The Tent map [17] is the simplest kind of one-dimensional chaotic dynamic mapping, which 

is defined as: 

 𝑥𝑛+1 =  �
𝜇𝑥𝑛                          𝑥𝑛 < 1

2
      

𝜇(1 − 𝑥𝑛)               𝑥𝑛 ≥
1
2
     

                                                                              (3)              
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If 1 < µ < 2, the system is in a chaotic state. Figure 2 shows the behavior of the chaotic tent 

map.  

 

FIGURE 2. a) Dynamics of the Tent map  b) Attractor of Henon map 

 

3.3. Henon Map 

The Henon map is a reversed two-dimensional chaotic map, which was introduced by Henon 

in 1976 [18]. This map is as a simplified version of the Poincare map of the Lorenz system. 

The Henon equations are introduced in (4): 

�
𝑥𝑛+1 = 1 + 𝑦𝑛 − 𝑎𝑥𝑛2

𝑦𝑛+1 = 𝑝𝑥𝑛                        
                                                                                                        (4)    

The map depends on two parameters, a and b, which for the canonical Henon map have values 

of a = 1.4 and b = 0.3. For the canonical values, the Henon map is chaotic. The example of 

chaotic behavior can be clearly seen from the space state diagram in Figure 2.  

 

4. Model for Chaotic Evolutionary Algorithms 

Recently, the idea of using chaotic sequences instead of random sequences has been noticed in 

research fields such as the chaotic neural network (CNN), DNA computing, Image processing 

[19], chaos optimization [7], etc.  

Generating random sequences with a long period and good uniformly is very important in the 

field of numerical analysis, sampling and heuristic optimization. Chaotic sequences have been 

proven easy and fast to generate and store, and a wide variety of behavior is observed in these 
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systems. To address this issue, we have generated 10000 random numbers and chaos numbers 

between 0 and 1.0 and show that some of the random values are more repeated while the 

chaotic numbers are almost uniform. Figure 3 shows the comparison of random numbers and 

Lorenz chaotic values. It is clear that the diversity of generated numbers by the Lorenz system 

is better than the random values. Therefore, using the output of these systems in evolutionary 

algorithms is the most important reason and motivation in our approach. Therefore, using 

chaotic sequences in evolutionary algorithms is a promising approach to obtain high quality 

solutions.  

 

FIGURE 3. Distribution of 10,000 generated Random and Chaotic numbers 

One of the major drawbacks of the evolutionary algorithms such as GA and PSO is premature 

convergence, especially while handling problems with more local optima. Due to infelicitous 

regulation of parameters, the algorithm is inclined to the local optimum. In this work, using 

properties of the chaotic systems, an effective approach will be proposed to maintain 

population diversity and avoid begin trapped in local optima.  

4.1. Chaotic Genetic Algorithm  

Genetic algorithms suffer from some disadvantages such as premature convergence and low 

performance when solving complex problems. In order to overcome these disadvantages, a 

genetic algorithm combined with chaos theory and a low computing complexity and high-

computing accuracy approach has been presented to solve nonlinear optimization problems. 

The performance of a genetic algorithm is somewhat dependent on its suitable selection of the 

parameters. The original GA usually adopts random approaches to generate the initial 

800

850

900

950

1000

1050

1100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Random Values

Chaotic Values



 
 
CUJSE 12, No. 1 (2015)                                                                                                                                                               48 

population, crossover and mutation during a run. In this paper, sequences generated from 

chaotic systems substitute random numbers for the PSO parameters.  

Population initialization is one of the key factors in convergence behavior of evolutionary 

algorithms. Because it can affect convergence speed, the initial population generated from 

random approaches may be unevenly distributed and may be far from the global optimal 

solution. Therefore, large numbers of iterations may be required to reach the global optimal 

value, which decreases the performance of the algorithm. In this paper, we use chaotic 

systems to generate initial populations. Thus, firstly D different chaotic variables 𝑐𝑥𝑖{𝑐𝑥𝑖, 𝑖 =

1,2, . . .𝐷} are generated with a given initial value. Then, D chaotic variables are translated 

into binary encoding by (5). Figure 4 shows the flowchart of the proposed algorithm.  

𝑥𝑖 =  �
1                 𝑐𝑥𝑖 ≥ 0.5

   0                 𝑐𝑥𝑖 < 0.5    
                                                                             (5)  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

FIGURE 4. Chaotic Genetic Algorithm Flowchart 
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4.2. Chaotic Particle Swarm Optimization 

The PSO algorithm faces up to premature convergence because information can be exchanged 

between particles quickly and the particles are getting near to each other rapidly. Thus, the 

dispersion of particles decreases in the search space and it is difficult to escape from local 

optima. The presented methods for this problem have tried to control the dispersion of 

particles in the search space [20-22]. In this paper, chaotic systems are applied to improve the 

diversity of the particle swarm in the search space so as to avoid getting trapped in local 

optima.  

In PSO, the parameters w, 𝑟1, 𝑟2 and initial populations are the key factors affecting the 

convergence behavior of the PSO. The parameter w provides balance between the global 

exploration and the local search ability. A large inertia favors the global search, while a small 

inertia weight favors the local search [19]. For this reason, an inertia weight that linearly 

decreases over the iterations is usually adopted [23]. 

In order to increase a population’s diversity, chaotic systems were used to initialize the 

particles’ population and velocity. Therefore, D-different chaotic variables are generated by 

selected chaotic systems with a given initial value and then the chaotic variables (𝑐𝑥𝑖) are 

converted to the corresponding ranges of optimization variables, that is, the corresponding jth 

component of optimization variables 𝑥𝑖 can be defined by 

 𝑥𝑖𝑖 = 𝑥𝑚𝑖𝑛𝑖 + �𝑥𝑚𝑚𝑚𝑖 − 𝑥𝑚𝑖𝑛𝑖�𝑐𝑥𝑖𝑖      𝑖 = 1, . . . . ,𝑁       𝑗 = 1, . . . . ,𝐷                             (6) 

Here, 𝑥𝑚𝑖𝑛𝑖 and 𝑥𝑚𝑚𝑚𝑖 are the search boundaries of 𝑥𝑖. Thus, the particle’s position is 

�⃗�𝑖 = (𝑥𝑖1, . . . . , 𝑥𝑖𝑖). A similar approach can be used to initialize the velocity. In CPSO, a 

sequence generated by selected chaotic systems substitutes the random parameters 𝑟1 and 𝑟2 in 

PSO. The velocity update equation for CPSO can be formulated as: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) +  𝑐1𝑐𝑟1�𝑝𝑝𝑝𝑝𝑡𝑖(𝑡) −  𝑥𝑖(𝑡)� + 𝑐2𝑐𝑟2(𝑔𝑝𝑝𝑝𝑡𝑖 − 𝑥𝑖(𝑡))                     (7) 

In (7), 𝑐𝑟1 and 𝑐𝑟2 are the chaotic variables. Figure 5 shows the flowchart of the proposed 

algorithm.  
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FIGURE 5. Chaotic Particle Swarm Optimization 

 

5. Implementation and Evaluation  
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provides detailed information about these functions. From the standard set of benchmark 

functions available in this paper, 3 functions are unimodal functions (containing only one 

optimum). For these functions, it is important to find the optimal solution rapidly. The rest of 

the functions are multimodal (containing many local optima, but only one global optimum) 

optimization functions.  

 
TABLE 1. Benchmark test functions 

 

5.2. Experimental Setup   

To examine the performance of the proposed algorithms, 9 test functions are adopted in this 

paper and we compared the proposed algorithms with the standard GA and PSO algorithms. 

In PSO and CPSO algorithms, swarm size is set to 25. For each method the Average (Mean), 

Best (Min), Worst (Max), standard deviation (SD) are calculated from the simulated runs and 

then they are compared. Some sets of parameters were assigned for PSO and CPSO, i.e. 

𝑐1 = 𝑐2 = 2 and 𝑣𝑚𝑚𝑚 is clamped to be 15% of the search space. Also in GA and CGA 

algorithms, the population size is set to 100, crossover and mutation rate are set to 0.8 and 0.2 

respectively. In these experiments, all the simulations were done for 2000 generations. Two 

criteria are applied to terminate the simulation of the algorithms: reaching a maximum number 

and reaching to the globally optimal solution. 

optimum Modality Range Mathematical representation Function 
0 Unimodal (-5,10) 𝑓(𝑥) =  � 𝑥𝑖2

𝑛

𝑖=1
+  (� 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)2 +  (� 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)4 Zakharov 

0 Unimodal (-10,10) 𝑓(𝑥) =   � (100�𝑥𝑖2 −  𝑥𝑖+1�
2

+ (𝑥𝑖 − 1)2)
𝑛−1

𝑖=1
 Rosenbrock 

0 Multimodal (-32 , 32) 𝑓(𝑥) = 20 + 𝑝 − 20 exp (−0.2√(1/𝑛(� 𝑥𝑖2
𝑛

𝑖=1
)))

− exp (1/𝑛(� cos 2𝜋𝑥𝑖
𝑛

𝑖=1
)) 

Ackley 

0 Multimodal (-5.12 , 5.12) 𝑓(𝑥) =  � (𝑥𝑖2 − 10 × cos(2𝜋𝑥𝑖) + 10 )
𝑛

𝑖=1
 Rastrigin 

0 Multimodal (-600, 600) 𝑓(𝑥) =  
1

4000
× � 𝑥𝑖2 −  � cos(

𝑥𝑖
√𝑖

) + 1
𝑛

𝑖=1

𝑛

𝑖=1
 Griewank 

-1.8013 Multimodal (0 , 𝜋) 𝑓(𝑥) =  −  � sin�𝑥𝑖�
𝑛

𝑖=1
(sin(𝑗𝑥𝑖2))20 Michalewics 

-186.7309 Multimodal (-10,10) 𝑓(𝑥) = (� 𝑖 cos ((𝑖 + 1)𝑥1 + 𝑖)
5

𝑖=1
)(� 𝑖 cos ((𝑖 + 1)𝑥2

5

𝑖=1
+ 𝑖)) 

Shubert 

-1.031628 Multimodal (-10,10) 𝑓(𝑥1, 𝑥2) = �4 − 2.1𝑥12 +  𝑥1
2

3� � 𝑥12 +  𝑥1𝑥2 + (−4

+ 4 𝑥22)𝑥22 
Camel 

-1 Unimodal (-100,100) 𝑓(𝑥) =  − cos(𝑥1)cos  (𝑥2)exp (−(𝑥1 −  𝜋) − (𝑥2 − 𝜋)) Easom 
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5.3. Results and Discussion 

These algorithms have been implemented in MATLAB and the results are shown in Table 2 in 

100 independent runs by each algorithm. To evaluate the performance of the GA, PSO, CGA 

and CPSO the means of the fitness value (Mean), Best (Min), Worst (Max) and the standard 

deviation (SD) are calculated. In this comparison, it can be seen that the proposed methods 

show and improvement as well as the disadvantages of the standard algorithms.  

 

TABLE 2. Simulation results obtained from CPSO and other methods using different 

chaotic systems for benchmark function 

Function  GA PSO  CGA   CPSO  
    Lorenz Tent Henon Lorenz Tent Henon 
Zakharov Mean 0.006 0.00005 0.0000 0.001 0.0000 0.0000 0.0000 0.0000 

 Min 0.0000 2.4433e-
007 

0.0000 0.0501 0.0000 0.0000 0.0000 0.0000 

 Max 0.0501 3.5513e-
004 

0.0000 0.1000 0.0000 0.0000 0.0000 0.0000 

 SD 5.9760e-
04 

3.7193 
e-006 

0.0000 1.0010 
e-014 

0.0000 0.0000 0.0000 0.0000 

Rosenbrock Mean 0.0120 0.1958 0.0000 0.002 0.002 0.0000 0.0000 0.0000 
 Min 0.0000 0.0128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 Max 0.2000 0.5138 0.0000 0.1000 0.1000 0.0000 0.0000 0.0000 
 SD 0.0012 0.0091 0.0000 1.9960 

e-04 
1.9960 
e-04 

0.0000 0.0000 0.0000 

Ackley Mean 8.8818e-
016 

0.00005 8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

 Min 8.8818e-
016 

2.4433e-
007 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

 Max 8.8818e-
016 

3.5513e-
004 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

8.8818e-
016 

 SD 0.0000 3.7193 
e-006 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Rastrigin Mean 0.0000 0.00024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 Min 0.0000 5.2969e-
005 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 Max 0.0000 0.0134 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 SD 0.0000 7.6349 
e-004 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Griewank Mean 0.0000 0.00075 0.0000 0.0000 0.0000 0.0000 0.0099 0.0000 

 Min 0.0000 3.5252e-
006 

0.0000 0.0000 0.0000 0.0000 0.0099 0.0000 

 Max 0.0000 0.007 0.0000 0.0000 0.0000 0.0000 0.0099 0.0000 

 SD 0.0000 1.5463 
e-05 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Michalewics Mean -1.7976 -1.7692 -1.8011 -1.8011 -1.8011 -1.8013 -1.8013 -1.8013 

 Min -1.8011 -1.8013 -1.8011 -1.8011 -1.8011 -1.8013 -1.8013 -1.8013 

 Max -1.7841 -1 -1.8011 -1.8011 -1.8011 -1.8013 -1.8013 -1.8013 

 SD 3.4828e-
04 

0.0024 2.2204e-
17 

2.2204e-
17 

2.2204e-
17 

0.0000 2.8866 
e-016 

2.8866 
e-016 

Shubert Mean - - - - - - - -
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186.7000 186.6359 186.7219 186.7219 186.7219 186.7309 186.7309 186.7309 
 Min -

186.7000 
-

186.7302 
-

186.7219 
-

186.7219 
-

186.7219 
-

186.7309 
-

186.7309 
-

186.7309 
 Max -

186.7000 
-

186.2143 
-

186.7219 
-

186.7219 
-

186.7219 
-

186.7309 
-

186.7309 
-

186.7309 
 SD 2.8422e-

15 
0.0073 2.8422e-

15 
2.8422e-

15 
2.8422e-

15 
0.0000 2.2737 

e-14 
2.2737 
e-14 

Camel Mean -1.029 -1.0314 -1.029 -1.029 -1.029 -1.0316 -1.0316 -1.0316 

 Min -1.029 -1.0316 -1.029 -1.029 -1.029 -1.0316 -1.0316 -1.0316 

 Max -0.872 -1.03 -1.029 -1.029 -1.029 -1.0316 -1.0316 -1.0316 

 SD 3.2499e-
04 

4.9208 
e-06 

1.1102 e-
016 

1.1102 
e-016 

1.1102 
e-016 

1.2326 e-
30 

1.2326 
e-30 

1.2326 
e-30 

Easom Mean -1.0000 -0.9899 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

 Min -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

 Max -1.0000 -0.9467 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 

 SD 1.2212 
e-016 

9.9804e-
04 

1.2212 e-
016 

1.2212 
e-016 

1.2212 
e-016 

0.0000 0.0000 0.0000 

 

The experimental results demonstrate that the chaotic evolutionary algorithms, especially 

CPSO, have better performance than the other algorithms. Moreover, we have compared our 

results with the-state-of-the-art in Section 5.3.  From Figure 6, it can be seen that the varying 

curves of objective values using CPSO descend faster than the other algorithms (CGA, GA 

and PSO). Therefore, it is concluded that the chaotic evolutionary algorithms, especially 

CPSO are more efficient than PSO and GA both for finding the globally optimal solution for 

giving a faster convergence rate. 

a) Ackley 

 

b) Easom 

 

 c) Grienwank  d) Rastrigin 
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FIGURE 6. Fitness values for CPSO and other methods on 4 benchmark function 

 

5.4. Robustness Analysis and Comparison 

In this experiment, the maximum iteration number was set to 2000 and we run the four 

algorithms independently each with 100 iterations. In order to find the robustness of the 

algorithms, we define the algorithm success rate in (9) as: 

𝑆𝑆 = 100 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑎𝑠𝑠

𝑄𝑙𝑙𝑙𝑙𝑙 ,                                                                                            (8) 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑙𝑠𝑠𝑠𝑠𝑙  is the number of trials for finding the solution on 𝑄𝑙𝑙𝑙𝑙𝑙 in the maximum 

iteration.  𝑁𝑁𝑚𝑙𝑙 is the number of all trials. 𝑄𝑙𝑙𝑙𝑙𝑙 is the stopping condition of the algorithm 

and it is defined as  

|𝑓𝑠𝑐𝑠𝑑𝑥(𝑡) − 𝑓𝑠𝑐𝑠𝑑(𝑥∗)| ≤  𝑄𝑙𝑙𝑙𝑙𝑙                                                                                        (9) 

Here, 𝑓𝑠𝑐𝑠𝑑𝑥(𝑡) is the cost function in the tth iteration and 𝑓𝑠𝑐𝑠𝑑(𝑥∗) is the global minimum of 

f. Table 3 represents the success rate (SR) and the number of average iterations (Avg.Iter) for 

convergence to the global optimal value from the four algorithms using the different chaotic 

systems for the benchmark functions. The obtained results indicate that CPSO algorithm can 

find global optima with very high probability and very low number of iterations for all 

benchmark functions. Table 6 shows a comparison of the proposed algorithms with other 

meta-heuristics, such as Directed Search Simulated Annealing (DSSA) [24], Simplex Coding 

Genetic Algorithm (SCGA) [25], Simulated Annealing Heuristic Pattern Search (SAHPS) 

[26], Directed Tabu Search (DTS) [27], Hybrid Particle Swarm Optimization with Wavelet 

Mutation (HPSOW) [28] and Chaotic Optimization Algorithm (COA) [7]. From the obtained 

results, it can be concluded that CPSO has better performances than the other methods.  
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TABLE 3. Success rates and average number of Iteration to find the global optimum in 

CPSO and other methods using chaotic Lorenz system for benchmark functions 

GA PSO CGA CPSO Function 
Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR  

363 99 1229 64 343 100 653 100 Zakharov 
354 100 1311 66 319 100 186 100 Rosenbrock 
340 100 1254 53 340 100 146 100 Ackley 
383 99 1928 97 342 100 118 100 Rastrigin 
889 82 946 53 305 100 2 100 Griewank 
355 81 88 97 335 100 59 100 Michalewics 
314 100 1281 60 292 100 74 100 Shubert 
189 100 1357 52 152 100 65 100 Camel 
329 99 880 78 296 100 63 100 Easom 

 

TABLE 4. Success rates and average number of Iteration to find the global optimum in 

CPSO and other methods using chaotic Tent map for benchmark functions 

GA PSO CGA CPSO Function 
Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR  

363 99 1229 64 311 99 649 100 Zakharov 
354 100 1311 66 324 100 169 100 Rosenbrock 
340 100 1254 53 337 100 170 100 Ackley 
383 99 1928 97 347 100 111 100 Rastrigin 
889 82 946 53 359 100 87 100 Griewank 
355 81 88 97 377 100 55 100 Michalewics 
314 100 1281 60 266 100 118 100 Shubert 
189 100 1357 52 175 100 91 100 Camel 
329 99 880 78 273 100 49 100 Easom 

 
 

TABEL 5. Success rates and average number of Iteration to find the global optimum in 

CPSO and other methods using chaotic Henon map for benchmark functions 

GA PSO CGA CPSO Function 
Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR Avg.Iter %SR  

363 99 1229 64 352 99 653 100 Zakharov 
354 100 1311 66 302 100 180 100 Rosenbrock 
340 100 1254 53 317 100 146 100 Ackley 
383 99 1928 97 327 100 118 100 Rastrigin 
889 82 946 53 336 100 128 100 Griewank 
355 81 88 97 308 100 59 100 Michalewics 
314 100 1281 60 266 100 74 100 Shubert 
189 100 1357 52 189 100 65 100 Camel 
329 99 880 78 323 100 111 100 Easom 
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TABEL 6. Average number of function evaluations in CPSO and other methods for 

benchmark functions 

Method Ackley 
 (n= 5) 

Zakharov 
(n=3) 

Rastrigin 
(n=3) 

Griewank 
(n=3) 

Michalewics Easom 

DTS 1748 473 - - 583 223 
DSSA 1058 472 252 1830 - 1442 
SAHPS 556 302 - - 355 - 
HPSOWM 205 107 1378 177 257 71 
SCGA - 630 - - 273 715 
COA 347 495 - - 334 793 
CGA 318 334 304 302 308 323 
Proposed Method 217 653 152 167 59 61 

 

 

6. Conclusion 

In this paper, we have proposed a novel improved particle swarm optimization (PSO) using 

chaotic maps for global optimization. We use the properties of the chaotic systems, such as 

regularity and semi-stochastic, to improve the performance of the PSO algorithm. The 

proposed approach uses some chaotic maps such as the Lorenz system, Tent map and Henon 

map, to generate semi-stochastic numbers. Therefore, the sequence generated from different 

chaotic systems replaces random numbers whenever a random number is needed by the 

original PSO. The results show that the Lorenz system provides a better performance of the 

PSO than the others. It has also been shown that the convergence speed of CPSO is 

significantly better than the convergence speed of GA, PSO, CGA and the number of 

iterations to find the global optimal value has been reduced.   
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