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Abstract: Partial differential heat conduction equations are typically used to determine temperature distribution within any 
solid domain. The difficulty and complexity of the solution of the equation depend on differential equation characteristics, 
boundary conditions, coordinate systems, and the number of dependent variables. In the current study, the numerical solution 
schemes were developed by the Explicit Finite Difference and the Implicit Method- the Crank-Nicolson techniques for the 
partial differential heat conduction equation including heat generation term described as one-dimensional, time-dependent 
with the Neumann boundary conditions. The solution schemes were, then, applied to the battery problem including highly 
varying heat generation. Besides, the solution of the problem was performed by using Matlab pdepe solver to verify the 
developed schemes. Results suggest that the Crank-Nicolson scheme is unconditionally stable, whereas the explicit scheme is 
only stable when the Courant-Friedrichs-Lewy condition requirement is less than 0.3404. Comparing the developed schemes 
to the results obtained from the pdepe solver, the schemes are as reliable as the pdepe solver with certain grid structures. 
Besides, the developed numerical schemes allow for shorter computational times than the pdepe solver at the same grid 
structures when considering CPU times.    
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1. Introduction
Determining the temperature distribution within a solid 
medium is crucial for various engineering and scientific 
applications, ranging from the design of efficient heating 
or cooling systems to predicting material behavior un-
der thermal stress [1]. The partial differential equations 
(PDEs) of heat conduction represent the mathematical 
model of the heat conduction phenomena of physical 
problems defined in the solid domain. Therefore, it serves 
as a fundamental tool in analyzing such problems and, 
in turn, offers an insight into how heat propagates over 
time and spatial direction. However, the analytic solu-

tion of the PDEs is possible for the simple problems [2], 
and/or it requires a quite difficult solution process with 
different methods [3-5]. In many real problems, solving 
the PDEs analytically can be challenging due to complex 
geometries, the number of dependent variables, bound-
ary conditions, etc. In this regard, numerical approach-
es employing finite difference (FDM) [6], finite element 
(FEM) [7], and finite volume methods (FVM) [8] offer 
the approximate solution of the PDEs. 

The three methods aim to discretize and solve the PDEs 
but the discretization methods differ from each other 
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in these methods. The FDM approximates the PDEs by 
using a local Taylor expansion while the integral forms 
of the PDEs are used in the FEM and the FVM. Besides, 
the FDM uses generally a square grid structure to dis-
cretize the PDEs while the FEM and FVM offer to dis-
cretize the PDEs defined in more complex geometries 
[9]. Therefore, the FDM is frequently applied to issues 
involving regular geometry and is rather easy to apply. 
There are two main strategies used in numerical meth-
ods for solving PDEs: explicit and implicit schemes. 
The explicit approach updates the unknown function 
at each grid point by considering known values at each 
time step and/or grid point, which results in simple al-
gebraic equations. Alternatively, the implicit method 
uses the values of the unknown function at each grid 
point for both the current and prior time steps and/or 
grid points. Thus, the implicit method is computational-
ly more expensive than explicit methods. However, the 
implicit method offers typically unconditionally stable 
solutions while the explicit method has a stability re-
striction. Fine grid structures are needed to overcome 
the stability issue in the explicit technique, which raises 
computational costs for particularly stiff problems. In 
addition to two methods, the Crank-Nicolson method, 
known as implicit method [10], averages the explicit 
and implicit methods. As the Crank-Nicolson approach 
is second-order accurate in time, the solution is more 
accurate and stable [11].

 In many research, the FDM was used for solving the 
partial differential heat conduction equations. Mojum-
der et al. [12] analyzed a one-dimensional transient 
heat conduction equation with Dirichlet boundary con-
ditions in a cartesian coordinate system by using the 
explicit FDM and the Crank-Nicolson method. They 
reported that the Crank Nicolson method is uncondi-
tionally stable while the explicit scheme is only stable 
in a certain range of the Courant-Friedrichs-Lewy 
(CFL) condition criteria. Similarly, using both the ex-
plicit and implicit FDM method, Suarez-Carreno and 
Rosales-Romero [13] examined the one-dimension-
al transient heat conduction equation with Dirichlet 
boundary conditions in a cartesian coordinate system. 
They stated that the accuracy of the methods relies on 
the time step and grid size, and that the Crank-Nicol-
son technique is unconditionally stable. Whole et al.[14] 
implemented the explicit finite difference method for a 
two-dimensional steady-state heat conduction problem 
with Dirichlet boundary conditions   in cartesian co-
ordinates. They presented that the solutions obtained 
from the finite difference method have low errors com-
paring to the analytical solutions. Rieth et al.[15] pre-
sented the implicit FDM schemes for the generalized 
heat conduction equation in one spatial dimension for a 
shifted field approach. They compared the results with 
those obtained by the finite element method. They re-
ported that the Crank-Nicolson type implicit scheme 
resulted in the most accurate. Han and Dai [16] pre-
sented the finite difference schemes by combining the 

Crank-Nicolson method and Richardson extrapolation 
which are unconditionally stable and provide better 
accurate solutions for the heat conduction equation 
with Neumann and Dirichlet boundary conditions in a 
one-dimensional domain. In the same manner, Yosaf et 
al.[ 17] carried out the solving of one-dimensional heat 
equations with Dirichlet and Neumann boundary con-
ditions by developing a higher-order compact finite dif-
ference method.  Dai [18] presented an extensive study 
on the heat conduction equation with Neumann bound-
ary conditions for cartesian, cylindrical, and spherical 
coordinates by the finite difference schemes combining 
Crank-Nicolson or higher-order methods. They report-
ed that the developed schemes are unconditionally sta-
ble and have high-fidelity solutions.

The literature survey shows that most of the stud-
ies using the FDM methods have focused on solving 
the homogeneous partial differential heat conduction 
equation, meaning without source term. Besides, the 
schemes in these studies have been presented mostly 
in cartesian coordinates. The current study aimed to 
develop finite difference schemes for the heat conduc-
tion problem including highly varying heat generating 
in cylindrical solid domains like batteries, nuclear fuel 
rods, etc. Therefore, the explicit finite difference and 
the Crank-Nicolson finite difference schemes were de-
veloped for the non-homogeneous partial differential 
heat conduction equation with the Neumann boundary 
conditions. The non-homogenous partial differential 
equation was also solved by the Matlab built-in function 
pdepe solver used in many studies [19- 21] to validate 
the developed schemes with a test problem defined by 
the determination of temperature distribution through 
a battery discharge period. Thus, the relative errors of 
the developed schemes were determined by comparing 
the results with those obtained from the pdepe solver. 
Besides, the stability criteria of these schemes were 
evaluated testing CFL conditions.

2. Model Equations and Finite Difference 
Scheme Development
Considering the one-dimensional heat conduction in 
the cylindrical coordinates with initial and Neumann 
boundary conditions which are axial symmetric bound-
ary at r=0 and the convection heat transfer at r=R in an 
ambient temperature of T∞, the governing partial differ-
ential heat conduction equation is as follows;

   (1.a)

or,
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   (1.b)

where, k and a are the thermal conductivity and ther-
mal diffusivity, respectively. s denotes the heat genera-
tion or source term.

When examining Equation 1b, it has an indeterminate 
form 0/0 ratio at r =0  due to the second term (1/r ΔT/
Δr). By employing L’Hospital’s rule as in Equation 2, 
Equation 1.b at r =0 becomes Equation 3.

 
(2)

 
(3)

The initial and boundary conditions are given below.

 (4)

 
(5.a)

 
(5.b)

Equation 5.a is due to the axial symmetric boundary at 
r=0, and Equation 5.b implies the convective heat trans-
fer at r=R.

It is now examined the numerical solution schemes de-
velopment, based on the finite difference method-Ex-
plicit method and the Crank Nicolson Implicit method. 
Let m and k be the number of nodes on a grid structure 
for the spatial and time variables, respectively. Thus, 
the grid steps and the grid structure, W as shown in 
▶Figure 1, are defined as follows.

 
(6.a)

and,

  (6.b)

2.1. Explicit Method

The governing equations require approximations for 
the first and second derivate in space, and the first deri-
vate in time. By using the first-order forward finite-dif-

ference and the second-order centered finite-divided 
differences formula, the first and second derivate terms 
are discretized as follows.

The second order centered finite- difference formula:

 
(7)

The firs order forward finite- difference formula:

 
(8.a)

and,

 
(8.b)

By substituting Eq.7, and Eq.8.a,b into Eq.1.b and Eq.3, 
the resulting explicit finite-difference approximations 
become as below.

For Eq.1.b:

 
(9)

For Eq.3:

 (10)

Figure 1. The schematic grid structure for the finite difference discre-
tization
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By arranging Eq.9 and Eq.10, 

  (11)

and,

 (12)

where,

 
(13)

Additionally, the nodes i-1 and i+1 are fictitious nodes 
meaning a fictitious temperature for the defining nodes 
corresponding to r=0 and r=R. Therefore, by applying a 
second-order central difference formula to the bound-
ary conditions, the fictitious temperatures are eliminat-
ed as follows.

 
(14)

 (15)

By introducing Eq.14 into 12, and Eq.15 into 11, the 
finite difference equations for boundary nodes are ob-
tained as

 

   (16)

and,

 

  

   (17)

where, H=2Drh/k. 

Ultimately, the governing equation defined by Eq.1a or 
1b with the initial and boundary conditions is solved by 
the obtained explicit finite difference approximations 
which are Eq.16 (for boundary node at r = 0 ), Eq.11 ( 
for interior nodes), and Eq.17 ( for boundary node at r 
=R). The numerical scheme provides an equation sys-
tem including m algebraic equations for τ number with 
Δt interval. The equation system is given in the matrix 
form as follows.

     

(18)

where,

  

Thus, Eq.18 is solved up to a given time by starting the 
initial condition values.

2.2. The Crank Nicolson Method

The explicit finite difference approximations can result 
in a problem with stability. To overcome the problem, 
the implicit finite-difference methods are an alternative 
way that is somewhat more complicated than the explicit 
method. The simple implicit method is unconditionally 
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stable but limits the use of large-time steps for reason-
able accuracy [10]. In this regard, the Crank-Nicolson 
method presents an implicit scheme that is second-or-
der accurate in both spatial and time. Therefore, it gives 
a high level of accuracy with a coarser grid in the time. 
In the current study, the first and second derivate terms 
were discretized by the Crank-Nicolson method as fol-
lows.

   
(19)

 
(20)

 
(21)

,and

 
(22)

By substituting Eq.19, Eq.20, Eq.21, and Eq.22 into 
Eq.1.b and Eq.3, the resulting Crank-Nicolson approxi-
mations become as below.

  

 

  (23)

,and

 
  (24)

where, θ=K/2=αΔt / 2(Δr)2.

By applying boundary conditions to Eq. 23 for the node 
at r=R (for i=m), and to Eq.24 for the node at r=0 (for 
i=0), the following finite-difference equations are ob-
tained.

 

      (25)

 

  (26)

Thus, by employing the finite difference equations, Eq. 
23, 25, and 26, the equation system in the matrix form 
is written as, 

  

(27)

where,

By defining the coefficient matrixes and the vectors in 
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the right and left side hand of Eq.27 as [L], [R], {T}, and 
{Nh}, the equation can be written as follows. 

 (28)

By multiplying both sides of the equation by the inverse 
of matrix L, Eq.28 becomes in the form as follows,

 (29)

As in the explicit method, Eq.29 is solved by starting 
with initial values for a given time.

3. The pdepe Solver Model
The model equation was also solved using the Matlab 
built-in function pdepe which solves initial-bound-
ary elliptic and parabolic partial differential equation 
(PDEs), systems in one spatial variable and time. In the 
pdepe solver, the approximate solution is obtained by 
integrating the ordinary differential equations (ODEs) 
in a certain time, emerging with spatial discretization 
[22].  

The general form of the equation in pdepe solver is de-
fined as follows [23].

 
(30)

When considering the general form for m=1, it resem-
bles Equation 1. a. The variables, u, x correspond to T 
and r in Equation 1.a. Thus, the functions c, f,  and s are 
defined as

 
(31)

To implement the pdepe solver, the initial and boundary 
conditions are defined in sub-functions with the form 
as follows.

Initial condition:

 (32)

The pdepe solver satisfies the boundary conditions as 
following equation form.

 
(33)

Recalling boundary conditions given in Eq.5.a ,b, the p 
and q  were defined as follows.

(34)

4. Implementation
The developed numerical schemes were applied to a 
physical model of a cylindrical battery cell to determine 
time-dependent temperature variation in the radial 
direction of the cell. The geometric and thermophysi-
cal properties are given in ▶Table 1. To define the heat 
source during the discharge period of the cell, the vol-
umetric heat generation was regarded as a time-depen-
dent polynomial function derived from the study per-
formed by Hwang et al.[24]. The equation was obtained 
at 1C discharging rate meaning that the total simula-
tion time is 3600 s.

 (35)

The function values defined by G in Eq.13 and Eq.31 
were, thus, attained by dividing the k value. 

To implement the developed solving schemes and the 
pdepe solver for the problem, it was assumed that the 
initial temperature, T0 is equal to T∞  which is the ambi-
ent temperature of 25 oC. Furthermore, the convective 
heat transfer coefficient between the battery surface 
and the ambient is regarded as 10 W/m2K [25].

Table 1. The battery cell specifications [24, 26]    

Properties Value

Radius 9 mm

Density(ρ) 2939 kg/m3  

Conductivity (k) 1.6 W/mK 

Specific heat (cp) 2400 j/kg.K

Thermal diffusivity (m2/s) 2.268 10-7 m2/s

  

The developed numerical schemes were coded in Mat-
lab and tested with the model defined above. The CFL 
condition was first investigated for a stable solution of 
the explicit method. The results were compared in sta-
ble conditions with those obtained by the pdepe solver 
known as the unconditionally stable and high accuracy 
numerical approach. Moreover, the computational per-
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formances of three solution schemes were evaluated in 
the same grid structures in terms of CPU time.

5. Results
In this section, the stability of the developed schemes, 
and the results of the numerical schemes implemented 
for the battery problem in stable condition are present-
ed by comparing them to those obtained from the pdepe 
solver.

5.1. Stability Evaluation of the Developed Numerical 
Schemes

Stability in numerical schemes is crucial for obtaining 
accurate and reliable solutions to mathematical prob-
lems. A stable numerical scheme enables accurate and 
reliable results over time. Otherwise, the numerical 
scheme amplifies errors or produces wildly fluctuat-
ing solutions in unstable conditions. Many techniques 
have been developed for stability analysis such as von 
Neumann stability analysis [27], and Courant–Fried-
richs–Lewy (CFL) condition [28]. The CFL condition 
for the numerical schemes of a typical one-dimensional 
heat conduction equation states that the time step and 
thermal diffusivity divided by the square of the spatial 
step size must be less than a certain value for stability 
[10]. Therefore, the K value given in Eq.13 becomes the 
criteria for stability investigation. 

Figure 2 shows the instability of the explicit scheme for 
two K values obtained by changing the time step (Dt). 
As seen in ▶Figure 1a, the instability at K=0.3714 with 
Dt=1.64 has a maximum amplitude of fluctuation with 
an order of 1035 and it grows early time stage of the total 
simulation period. ▶Figure 1b illustrates that the insta-

bility partially alleviates due to decreasing the K value, 
as the stability both grows later time stage and has low-
er maximum fluctuation than those of K=0.3714.

To reveal the effect of Dr and Dt together on the insta-
bility of the explicit scheme, the solution of the explicit 
scheme with Dr = 1.1e-3 and Dt=2.06 was tested. Thus, 
the K value was kept at 0.3689 around the values of the 
cases in ▶Figure 2. As seen in ▶Figure 3, although the 
time step increases the instability of the solution doesn’t 
result in higher order fluctuation than the case in ▶Fig-
ure 2a due to increasing also the spatial step size. 

To determine the CFL condition for the stability of the 
developed explicit scheme, several trials were tested, ul-
timately, the stable solution of the explicit scheme was 
provided in the case of K ≤0.3404 as shown in ▶Figure 
4. Besides, although the solution at K=0.3599 resembles 
a stable solution it is an inconsistent solution due to the 
constant temperature values for each a certain time in-
terval.

The thermal diffusivity a also influences the stability. 
▶Figure 5 shows the thermal diffusivity effect on the sta-
bility. If a becomes 2.55 e-7 m2/s instead of 2.27e-7 m2/s, 
the explicit numerical scheme results in an unstable 
solution due to increasing K value as seen in ▶Figure 5. 
The solution illustrated in ▶Figure 5 proves the CFL con-
dition depends on the K value. Consequently, if the CFL 
condition is not satisfied, an unstable numerical solution 
leads to non-physical phenomena like oscillations or di-
vergent solutions. The stability criterion of the developed 
explicit scheme is determined as 0 < K ≤ 0.3404. 

Figure 7 verifies the finite difference scheme based on 
the Crank-Nicolson method to be unconditionally sta-
ble as stated in the study [29]. As can be seen in ▶Fig-
ure 6 for three different K values by changing the time 
step, the Crank Nicolson scheme gives stable solutions 

 

   

           (a)           (b)
 

Figure 2. Unstable solution in explicit scheme at spatial domain r= 9 mm (a) K=0.3714, (b) K= 0.3631     
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in each case even if the K value is quite greater than the 
stability criterion of 0.3404 of the explicit scheme. Un-
surprisingly, the change in the time step influences the 
results. It should be also noted that smaller time step al-
lows the more accurate results due to definition of deri-
vate [30]. ▶Table 2 presents the temperature values at 
3600 s and r=9 mm for the Crank Nicolson scheme. The 
differences in the temperature values relative to Dt=1.0 
s are 0.0001 oC and 0.1276 oC for Dt= 4.5 s and 225 s, 
respectively.

5.2. Comparison of the Numerical Solutions:

The finite difference schemes’ results were compared 
to those obtained from the pdepe solver with the same 
grid structures in stable conditions. ▶Figure 7 shows 
the time-dependent temperature variations at r=9 mm 
obtained from the numerical methods with the two 
grid structures. As seen in the Figure, the results of the 
two schemes developed are nearly identical. Moreover, 
the results of the schemes approach those of the pdepe 
solver when the grid structure gets fine size. ▶Figure 8 
also illustrates the absolute error of both the schemes 
developed relative to the results of the pdepe solver. The 
absolute error changes in time due to including highly 

Figure 3. Unstable solution in the explicit scheme for Dr=1.1e-3 m and 
Dt=2.06 s at r=9 mm

 Table 2. The temperature values obtained from the Crank-Nicolson 
scheme  at  t=3600 s for different K values by changing time steps  

Time step [ s ] ∆t=1.0 
(K=0.2269)

∆t=4.5  
(K=1.0022)

∆t=225  
(K=51.0380)

Temperature [oC] 45.9574 45.9575 46.0850

  

Table 3. Comparison of temperature values at different radial positions and times (∆r=0.5e-3 m, ∆t=0.25 s)
 

Temperature [ oC ]

ES CN pdepe |∆TES | |∆TCN | ES CN pdepe |∆TES | |∆TCN |

Time [s] r=4 mm r=8 mm

900 32.1442 32.1439 32.0865 0.0576 0.0574 32.0289 32.0287 31.9731 0.0558 0.0555

1800 36.5474 36.5470 36.5028 0.0446 0.0442 36.3589 36.3585 36.3165 0.0424 0.0420

3600 46.2708 46.2719 46.2761 0.0052 0.0042 45.9261 45.9272 45.9340 0.0078 0.0068

ES: Explicit scheme, CN: Crank Nicolson scheme 
|∆TES |= |Tpdepe - TES |, |∆TCN |= |Tpdepe – TCN |

 
 

Figure 4. Stable and inconsistence solutions of the developed explicit scheme at r = 9 mm
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varying time-dependent heat generation terms as given 
in Eq.35. Thus, the maximum absolute error is about 
0.2117 oC,  corresponding to a maximum relative er-
ror of 0.43 %, at the grid structure with Dt=1.0 s and 

Dr=1.0e-3 m. In the grid  structure of Dt=0.25 s and 
Dr=0.5e-3 m , it is about 0.0859 oC, corresponding to a 
maximum relative error of 0.21 %.

Figure 9 shows the results in the radial direction at dif-
ferent times, the difference temperature values between 
both the explicit and Crank Nicolson schemes are on 
the order of 10-4. On the other hand, the temperature 
differences between the developed schemes and the 
pdepe solver change with time and are on the order of 
10-2 and 10-3. Similarly, ▶Figure 10 illustrates these re-
sults given in ▶Figure 9 in contour plots of the solutions 
of the defined time-dependent model equation in the ra-
dial direction. As shown in the plots in ▶Figure 10, the 
differences in temperature distributions are quietly low 
and they are nearly identical for three numerical solu-
tions at t= 3600 s. Some numerical solutions and abso-
lute errors, relative to the pdepe, are given in ▶Table 3 
for different times. The results suggest that the schemes 
developed are as reliable as the pdepe solver. 

To evaluate the computational performance of the ex-

 

 

Figure 6. The Crank-Nicolson scheme solutions for different K values at r=9.0 mm

 

  

Figure 7. Comparison of the numerical solutions at r=9 mm

Figure 5. Unstable solution in the explicit scheme with α=2.55e-7

Melih Yıldız

187European Mechanical Science (2024), 8(3) https://doi.org/10.26701/ems.1469706



plicit and Crank-Nicolson FDM schemes in terms of 
computing time, the CPU times of the developed nu-
merical schemes were compared to those of the pdepe 
solver in the same grid structures. All computational 
analyses were performed on a PC with a 2.00 GHz In-
tel (R) Core ™  i7-2630 CPU and 8 GB RAM. ▶Table 3 
presents the CPU times of the numerical schemes.  

As shown in ▶Table 4, the developed explicit and 
Crank-Nicolson schemes consume fewer CPU times 
than those of the pdepe solver, as in the reference [31]. 
Besides, the explicit scheme has the least CPU times for 

Figure 8. The absolute errors of the explicit and Crank-Nicolson 
schemes relative to the pdepe solver at r=9 mm

 

   
Figure 9. Comparison of the numerical solutions in radial direction at different times  (∆r=0.5e-3 m, ∆t=0.25 s)

Figure 10. Temperature distribution, ∆r=0.5e-3 m, ∆t=0.25 s 
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each grid structure in stable conditions due to its solv-
ing scheme consisting of the simpler algebraic equation 
system. 

6. Conclusions 
In this research, the explicit and Crank-Nicolson 
FDM schemes were successfully developed for solving 
one-dimensional heat conduction equations including 
heat generation source terms with Neumann boundary 
conditions in cylindrical coordinates. The numerical 
schemes were, then, applied to solving the cylindrical 
battery problem including highly varying heat genera-
tion in time. The problem was also solved by the pdepe 
solver, a Matlab built-in function to verify the numer-
ical schemes. Considering the results, the following 
main conclusion can be stated.

• The stability requirement for the developed explicit 
scheme was found to be the condition of  0 ≤ K ≤ 
0.3404. It is also shown that the developed Crank 
Nicolson FDM scheme is unconditionally stable 
with several trials of K values.

• The explicit and Crank Nicolson schemes give near-
ly identical results with the order of 10-4 differenc-
es. Comparing the developed schemes to the pdepe 

solver known as having high accuracy, the maxi-
mum relative errors to the pdepe solver results is 
about 0.21 % with the grid structure of Dt=0.25 s 
and Dr=0.5 mm.

• The developed schemes enable lower computational 
time than the pdepe solver when considering CPU 
time at the same grid structures.

As a general result, the developed schemes are as reli-
able as the pdepe solver. The numerical schemes can be 
applied to one-dimensional transient heat conduction 
problems with/without heat generation source terms, 
and Neumann boundary conditions in cylindrical co-
ordinates.  
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