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Abstract: In this paper, the Homotopy Analysis Method (HAM) is appliedthe damped Burgers and
Boussinesq-Burgers equations to obtain their approximaétytical solutions. The HAM solution includes
an auxiliary parametdrwhich provides a convenient way to adjust and control theee@ence region of the
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is investigated.
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1. Introduction

Mathematical modeling of many physical phenomena in variieids of physics and en-
gineering generally leads to nonlinear ordinary or padifierential equations. It is known that
investigating and constructing exact and numerical smhgtiof these equations are of great impor-
tance in applied mathematics. The HAM, which was first prepdsy Liao [1, 2], is a powerful
tool to find the approximate solutions of nonlinear evolntemuations (NLEES). Unlike perturba-
tion techniques, the HAM is not limited to any small physiparameters in the considered equa-
tion. Therefore, the HAM can overcome the foregoing resitris and limitations of perturbation
techniques so that it provides us with a powerful tool to yrealstrongly nonlinear problems|3].
This method has been successfully applied in order to seleral nonlinear problems arising in
science and engineering by many authors [1-17] and theerefes therein. In this paper, we will
apply the HAM to the damped Burgers and Boussinesg-Burggratins.
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2. Fundamentals of the HAM

In this manuscript, HAM has been applied to the problem dised. In order to provide
fundamentals of the method, let us consider the followirifdintial equation

A u(x,t)] =0,

where.4" is a nonlinear operatox andt denote independent variablagx,t) is an unknown
function, respectively. By generalizing the HAM, Liao []],I#as constructed the so-called zero-
order deformation equation

(1= p)Z[@(x.t; p) — Uo(X,t)] = pht” [@(X,t; p)] , 1)

wherep € [0,1] is the embedding parametér# 0 is an auxiliary parametery’ is an auxiliary
linear parametenio(x,t) is an initial guess ofi(x,t), @(x,t; p) is an unknown function, respec-
tively. One must note that one has great freedom to selediayxtems in HAM. Obviously, if
we choosep = 0 andp = 1 then we obtain

O(X,1;0) = up(X,1), @(x,t; 1) = u(x,t),

respectively. Therefore, as the embedding paranpatereases from 0 to 1, the solutio@sx,t; p)
vary from the initial valueiy(x,t) to the solutioru(x,t) . If we expandp(x,t; p) in the Taylor series
with respect to the embedding paramgtewe get

(P(X,t; p) = uO(X7t) + Um(X,t)pm,
where

1 9"p(x.t;p)

Un(>,t) = m  dpm

: 2)
p=0

If the auxiliary linear operator, the initial guess and theibary parameterh are chosen in a
proper way, the above series convergep atl, and we obtain

u(x,t) = up(x,t) + i Um(X,1),
m=1

which must be one of the solutions of the original nonlineguation, as proved by Liao [2, 5].
According to (2), the governing equation can be reduced fi@zero-order deformation equation
(). Define the vector

Un = {Up(X,t),uz (Xt), ..., un (X, t) } .
If we differentiate Eq. (1)ntimes with respect to the embedding parametend then gep =0
and divide bym!, we obtain themth-order deformation equation

<z [Um(X,t) - XmUm—l(X’t)] - ﬁRﬂ(um—l) ’ ©))
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where T \
1 - Pt p
Rm(Um-1) = 1~ gpm 1 o
and
o= 0, m<l,
"l 1 m>1

Finally, we emphasize thain(x,t) for m> 1 is governed by the Eq. (3) with the boundary
condition coming from the problem. It can be easily solveidgisymbolic computation software
such as Mathematica.

3. Applications of the HAM

3.1. The damped Burgers equation. We first consider the damped Burgers equation [18-
22] which describes the plane motion of a continuous medinrte following form

U + Ul — U+ AUu =0, (4)

with initial condition
u(x,0) = Ax. (5)
To investigate the series solution of Eq. (4) with initiahddion (5), we choose the linear operator
dQ(X,t;
2ot p)) = ZOEEP
with the property
Zc] =0,

wherec is constant. From Eq. (4), we now define a nonlinear operator a

d9(xt;p)  9%@(x.t;p)

_99(xt;p)
ox X2

ot

N [o(x.t; p)] +o(xt;p) +A(xt;p).

Therefore, we construct the zero-order deformation equats
(1-p)Z[e(xt;p) —Uo(x1)] = A" [@(x t; p)] . (6)
Obviously, if we choos@ = 0 andp = 1 then we obtain
O(X,t;0) = up(X,t) = u(x,0), P(x,t;1) = u(x,t),

respectively. Thus, as the embedding paramptiercreases from 0 to 1, the solutioggx,t; p)
vary from the initial valueup(x,t) to the solutionu(x,t) . By expanding®(x,t; p) in the Taylor
series with respect to the embedding parampjeve get

Pt p) =X t)+ 3 um(x)p", (7)
m=1
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where
1 9Mp(x.t;p)

m! opm ®

Um(X,t) = .
p=0

If the auxiliary linear operator, the initial guess and theibary parameteh are properly chosen,
the above series convergespat 1, and one has

u(x,t) = up(x,t) + % Um(X,1),
m=1

which must be one of the solutions of the original nonlinegragion, as proved by Liao [2, 5]. By
differentiating Eq. (6)ntimes with respect to the embedding parameteve obtain themnth-order
deformation equation

Z Un(X,t) = XmUm-1(X,1)] = ARy (Um-1), 9)
where , .
. OUm-1  0%Um-1 o OUm-1-n
Rn(Um-1) = FTa +AUn_1+ n; un(x,t)T.

The solution of thenth-order deformation Eq. (9) fan> 1 leads to
Um(%,t) = XmUm-1(X,t) + A2 [Rn (Um_1)] - (10)
By using Eq.(10) with initial condition given by (5) we susséely obtain
Ug(x,t) = 2AtxA 2,
ug(x,t) = 2RtxA 2 4 2R%txA 2 + 3%t 2xA 3,
Up(X,t) = % (BAtXA 2+ 12R%txA 2 + BRtxA 2 + 187%t%XA 3 + 187%t%xA 3 + 133 xA 4)
Us(x,1) = = (8htXA 1 24h2A2 1 24h30A 2 + B2 + 3B 1 720322

4
36"t%xA 3 + 520%%x 4 + 5203 + 250t °)

Therefore, the series solutions expressed by HAM can béwwiiih the form
U(X>t) = UO(X>t) + Ul(X,t) + U2(X,t) + U3(X,t) t... (11)
To demonstrate the efficiency of the method, we compare thigl ldélutions of Burgers equation

with the/a linear damping term given by Eq. (4) with exacusiohs [20]

u(x t) — L
T 2expAt) -1

Note that our HAM solution series contains the auxiliarygmaeterh which provides us with a

(12)

simple way to adjust and control the convergence of the isoligeries. To obtain an appropriate
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range forh, we consider the so-callddcurve to choose a proper valuefoivhich ensures that the
solution series is convergent, as pointed by Liao [2], byaliering the valid region dh, which
corresponds to the line segments nearly parallel to thedtal axis.
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FIGURE 1. The h-curves of 30th-order approximate solution obtained by the
HAM for A = 1.0.

In Fig.1, we demonstrate tiiecurves ofu(0.1,1) andw (0.1, 1) given by 30th-order HAM solution

(11) forA = 1.0. It can be seen from the figure that the valid rangh isfapproximately—0.7 <
h<-01.
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FIGURE 2. The results obtained by the HAM for variog®y 30th-order approx-
imate solution, in comparison with the exact solutiox at 1 for A = 1.0.

Fig. 2 shows the numerical solutionsugi, t) atx =1 during 0<t <5 forh=—-0.2,-0.4,-0.8
and—1.0 obtained by 30th-order HAM and analytical solutions, extipely. Betweert = 0 and
t =5, it can be seen from this figure that the choicéef —0.2 is a suitable value.
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3.2. TheBoussinesg-Burgersequation. We secondly consider the Boussinesg-Burgers equation
[23-25]
1
—5VW+2uu =0
Vi — 5Uxxx + 2(uv)x =0,

with initial conditions
u(x,0) = — 2 + Ktanh(kx),

v(x,0) = —Kseck (kx),

wherek andw are arbitrary constants. To investigate the series solufdeq. (13) with initial

(14)

condition (14), we choose the linear operator

Zlaxtp) =

with the property
£ [Ci] =0,

wherec; (i =1,2) are integral constants. From (13), we now define a systemriftaar operators

as

2@ (X t; 1o@(xt;
Alp0ctp) pixtp) = PAXEP ZIBKERL 5 1 p)

. 3 .
2@ (Xt p), (Xt p)] = Op\xtp) 107gxtp) 22 (@t p)@(xtp)).

dp(xt;p)
ox ’

ot 2 o X
We construct the zero-order deformation equations
(1-pZ @t p) —uo(xt)] = phrA1[@ (Xt p), @(X.t; p)] (15)
(1-p)Z[@(xt;p) —Vo(x,1)] = phaA2[@ (X t; p), @(X.t; p)] - (16)

Obviously, if we choosg = 0, then we obtain
@ (X,t;0) = upg(x,t) = u(x,0), @ (x,t;0) = vo(x,t) = Vv(x,0),
and whenp=1,

@ (xt;1) =u(xt), »(X,t;1) = v(xt).

Thus, as the embedding paramepeincreases from 0 to 1, the solutioggx,t; p) (for i = 1,2)
vary from the initial guessig(x,t) andvp(x,t) to the solutionu(x,t) andv(x,t), respectively. By
expanding@ (x,t; p) for i = 1,2 in the Taylor series with respect I we get

(pl(x7t; p) = uO(X7t) + z(r)robl Um(X,t)pm,

" a7
(pZ(X>t; p) = VO(X>t) + anlvm()gt) pma
where o)
Un(x 1) = L 27axtp) |
m( ) m dp ‘p:O (18)

1 M@ (xt;p
Vm(X,t) W%

‘p:O'
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When the auxiliary linear operator, the initial guess areldhxiliary parameter; are properly
chosen, the above series convergeg atl, and one has

u(x,t) = up(x,t) + % Um(X,t),
m=1

VX, t) =Vo(X.t) + > Vm(xt),
m=1
which must be one of the solutions of the original nonlinegragion, as proved by Liao [2, 5]. By
differentiating Egs. (15) and (1&)-times with respect to the embedding parametere obtain

themth-order deformation equations

Z [Um(Xt) = XmUm-1(X,t)] = MRy m (Um-1,Vm-1), (19)
ZL V(X t) — XmVm-1(X,t)] = ﬁ2R2,m(umflavmfl)> (20)
where .
OUm-1  10Vm1 o OUm—1-n
Rim(Un-1,Vm-1) = —— +2°Y up(xt) ,
mm ot 2 0x nZO " ax

Rom(Um-1,Vm-1) = it 2 o3 + %

The solution of thenth-order deformation Egs. (19) and (20) for> 1 leads to

OV 10%ma 0 (ml

Um(X,t) = XmUm-1(X,t) + ﬁlo%il [Rl,m (Um-1,Vm-1)], (21)

Vm(X,t) = XmVm-1(X,t) + ﬁzg_l [Rom (Um—1,Vm-1)] - (22)

For simplicity, assuming thdi; = h, = h, by using Egs.(21) and (22) with initial conditions given
by (14) we successively obtain

Uo(x,t) = v + lftanh(kx) ,

2k 2
up(x,t) = —%ﬁktv\secﬁ(kx),

uz(x,t) = — %ﬁktv\secﬁ (kx) (1+ R+ Rtwtanh(kx)),

uz(x,t) = — %zh—ktV\secﬁ (kx) (3+ R (6+ 30— 4At?w?)
+ (3+R(6+A(3+2t°w?))) cosh(2kx) -+ 6A(1+ Aytwsinh(2kx))
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FIGURE 3. Theh-curve for 7th-order approximate solutionwgix,t) obtained by
the HAM.
and

Vo(X,t)

vi(x,t) = —RiCtwsech (kx) tanh(kx) ,

k2
— Esecﬁ (kx),

Vo(X,t) = — :—ZLﬁkztwsecI‘f (kx) (htw(—2+ cosh(2kx)) + (1+ h) sinh(2kx)),

v3(x,t) = — éﬁkztwsecl‘f (kx) (6A(1+ h)twcosh(2kx)
+ (3+ R (6+ 3A+ 2At2w?) ) sinh(2kx) — 12Atw(1+ A+ Atwtanh(kx)))

Therefore, the series solutions expressed by the HAM carritiemvin the form

u(x,t) = up(X,t) +up(x,t) + u(X,t) + uz(x,t) + ..., (23)
V(X,t) = Vo (X, t) +vi(X,t) +Va(X,t) +Vva(X,t)+.... (24)

To demonstrate the efficiency of the method, we compare thisl ldélutions for Eq. (13) with
exact solutions [25]
u(x,t) = — % + Stanh(kx-+wt),
v(xt) = —Ksech (kx+wt).
For all calculations in the present pageandw are going to be taken as 1/8 and 1/16, respectively.

(25)

Theh-curves obtained based on the 7th-order HAM solutions ®Bbussinesq-Burgers equation
are presented in Figs. 3-4. As pointed above, the valid regfdh is a nearly horizontal line
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FIGURE 4. Theh-curve for 7th-order approximate solutionwgk,t) obtained by
the HAM.

segment. Therefore, it can be seen from the figure that the rahge ofh is approximately
—15<h<-03.
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FIGURE 5. The results obtained by the HAM for variondy 7th-order approxi-
mate solution ofi(x,t), in comparison with the exact solutionyat 2.

Figs. 5-6 shows the numerical solutions wf,t) andv(xt) at x = 2 during 0<t < 25 for
h=-0.8, —0.9, —1.0 and—1.1 obtained by the HAM and analytical solutions, respedjivel
Betweent = 0 andt = 25, it can be seen from these figures that the choick 6f—0.8 is a
suitable value.



10 Esenetal.

—0.002
—0.004 |

—0.006: o e

—0.008 |
—0.010F

—0.012}

FIGURE 6. The results obtained by the HAM for variohdy 7th-order approxi-
mate solution of/(x,t), in comparison with the exact solutionxat 2.

4. Conclusion

In this paper, the HAM has been successfully applied to nkdgproximate analytical so-
lution of the damped Burgers and Boussinesg-Burgers amsatilt has been also seen that the
HAM solution of the problem converges very rapidly to the@&@ne by choosing an appropriate
auxiliary parameteh. In conclusion, this study shows that the HAM is a powerfull @fficient
technique for finding the approximate analytical solutibthe damped Burgers and Boussinesqg-
Burgers equations and also many other nonlinear evolutioatens arising in science and engi-
neering.
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