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Abstract: In this paper, the notion of therelative entropy functional for relative dynamical systems on
compact metric spaces is presented using the mathematical modeling of an observer. The invariance of
the entropy of a system under topological conjugacy to the relative entropy functional is generalized. A
new version of Jacobs Theorem concerning the entropy of a dynamical system is given. At the end, the
Kolmogorov entropy from therelative entropy functional for dynamical systems from the view point of
observerχX , whereX denotes the base space of the system, is extracted.

Keywords: Entropy, relative dynamical system, invariant, relative generator, relative measure, relative en-
tropy.

1. Introduction

The term entropy was first used by the German physicist RudolfClausius in 1865 to denote a

thermodynamic function, which increase with time in all spontaneous natural processes. He in-

troduced this in 1854. Entropy was first introduced into the theory of dynamical systems by

Kolmogorov [6] in 1958. Kolmogorov’s definition was improved by Sinai in 1959 [19]. The im-

portance of entropy arises from its invariance under conjugacy. Therefore, systems with different

entropies cannot be conjugate. On the other hand, in the scientific studies concerning physical

systems, molding of these systems is needed. The credibility of the model given is related to the

level of its precision, which can be examined with lab data. Not all the data from the lab are

precise, so the role of the ”observer” in this process is important. Moreover, a method is needed

to rate the complexity and/or uncertainty of a system from the point of view of various observers.

In order to develop a mathematical model underlying uncertainty and fuzziness in a dynamical

system, which is called fuzzy mathematical modeling, we aregoing to apply the notion of the

observer. Therefore, we first ought to mathematically identify the observer. A modeling for an

observer of a setX is a fuzzy setΘ : X → [0,1] [9,10,11,15]. In fact, these kinds of fuzzy sets are

called ”one-dimensional observers.” After this identification, the notion of the observer is used to

define therelative entropy functional for topological dynamical systems. The idea is based on the
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relation between ”experience” and ”information” from the view point of an observer. A weight

factor of f (x) is assigned to any pointx ∈ X , whereX denotes the base space of the system. The

weight factor can be considered to be the local loss of information caused by the lack of experi-

ence of any intelligent point. Therelative entropy functional is expected to have the fundamental

properties of the entropy and also coincides with the Kolmogorov entropy for dynamical systems

from the view point of the observerχX , when there is no weight factor in the middle.

In this article the set of all probability measures onX preservingT is denoted byM(X ,T). We also

write E(X ,T) for the set of all ergodic measures ofT . Finally, for µ ∈ M(X ,T), hµ(T ) denotes

the Kolomogorov entropy ofT .

2. Preliminary Facts

This section is devoted to providing the prerequisites thatare necessary for the next section. It is

assumed thatX is a compact metric space andΘ is a one-dimensional observer ofX [9,10,11],

that is,Θ : X → [0,1] is a fuzzy set[26]. Moreover, there is an assumption thatT : X → X is a

continuous map. In this case, it is said that(X ,T,Θ) is a relative dynamical system. In fact, if

E ⊆ X , then the relative probability measure ofE with respect to an observerΘ is the fuzzy set

mT
Θ(E) : X → [0,1] defined by

mT
Θ(E)(x) = limsup

n→∞

1
n

n−1

∑
i=0

χE(T
i(x))Θ(T i(x)),

whereχE is the characteristic function ofE [10].

Theorem 1. Let (X ,β ,m) be a probability space, and letΘ : X → [0,1] be the characteristic

functionχX . Moreover, letT : X → X be an ergodic map, then for eachx ∈ X , mT
Θ(E)(x) is almost

everywhere equal tom(E) whereE ∈ β .

Proof. See [10].

Therefore, relative probability measure is an extension ofthe notion of probability measure.

In the remainder of this paper,mx is a relative measure with respect to an observerΘ at x ∈

X , i.e.mx(E) = mT
Θ(E)(x) for anyE ⊆ X .

In the following, some classical results that are needed in the sequel, are recalled.

Theorem 2. (Choquet) Suppose thatY is a compact convex metrizable subset of a locally con-

vex spaceE, andx0 ∈ Y . Then, there exists a probability measureτ on Y which representsx0

and is supported by the extreme points ofY , that is,Φ(x0) =
∫

Y Φdτ for every continuous linear

functionalΦ on E, andτ(ext(Y )) = 1.
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Proof. See [16].

Let µ ∈M(X ,T) and f : X →R be a bounded measurable function. It is known thatE(X ,T) equals

the extreme points ofM(X ,T), applying Choquet’s Theorem forE = M(X), the space of finite

regular Borel measures onX , andY = M(X ,T), and using the linear functionalΦ : M(X) → R

given byΦ(µ) =
∫

X f dµ , the following corollary is reached:

Corollary 1. Suppose thatT : X → X is a continuous map on the compact metric spaceX . Then,

for eachµ ∈ M(X ,T), there is a unique measureτ on the Borel subsets of the compact metrizable

spaceM(X ,T), such thatτ(E(X ,T)) = 1 and
∫

X
f (x)dµ(x) =

∫
E(X ,T )

(

∫
X

f (x)dm(x))dτ(m)

for every bounded measurable functionf : X → R.

Under the assumptions of Corollary 1,µ =
∫

E(X ,T ) mdτ(m) is written, which is called the ergodic

decomposition ofµ .

Theorem 3. (Jacobs) LetT : X → X be a continuous map on a compact metrizable space. If

µ ∈ M(X ,T) andµ =
∫

E(X ,T ) mdτ(m) is the ergodic decomposition ofµ , then we have:

(i) If ξ is a finite Borel partition ofX , then,hµ(T,ξ ) =
∫

E(X ,T ) hm(T,ξ )dτ(m).

(ii) hµ(T ) =
∫

E(X ,T ) hm(T )dτ(m) (both sides could be∞).

Proof. : See [23].

3. Relative Entropy Functional of Relative Dynamical Systems

This section presents the notion of entropy from the view point of different observers and describes

a relative perspective of complexity and uncertainty in fuzzy systems.

Definition 1. Suppose thatT : X → X is a continuous map on the topological spaceX ,x ∈ X and

A a Borel subset ofX . Then

mx(A) = limsup
n→∞

1
n

n−1

∑
i=0

χA(T
i(x))Θ(T i(x)).

Now, let x ∈ X andξ = {A1,A2, ...,An} andη = {B1,B2, ...,Bm} be finite Borel partitions ofX .

We define

ΩΘ(x,T,ξ ) :=−
n

∑
i=1

mx(Ai) logmx(Ai),

and

ΩΘ(x,T,ξ |η) :=−∑
i, j

mx(Ai) log
mx(Ai ∩B j)

mx(B j)
.
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(We assume that log0=−∞ and 0×∞ = 0).

Note that the quantityΩΘ(x,T,ξ |η) is the conditional version ofΩΘ(x,T,ξ ). It is clearΩΘ(x,T,ξ )≥
0.

Definition 2. A partition ξ is a refinement of a partitionη , if every element ofη is a union of

elements ofξ . If ξ is a refinement ofη , we writeη ≺ ξ .

Definition 3. Given two partitionsξ andη their common refinement is defined by

ξ ∨η = {Ai ∩B j;Ai ∈ ξ ,B j ∈ η}.

Theorem 4. Let x ∈ X andA1,A2, ...,Ak be pairwise disjoint Borel subsets ofX . If A = ∪k
j=1A j

thenmx(A) = ∑k
j=1mx(A j).

Proof.

mx(A) = limsup
n→∞

1
n

n−1

∑
i=0

χA(T
i(x))Θ(T i(x))

= limsup
n→∞

1
n

n−1

∑
i=0

χ∪k
j=1A j

(T i(x))Θ(T i(x))

= limsup
n→∞

1
n

n−1

∑
i=0

k

∑
j=1

χA j(T
i(x))Θ(T i(x))

=
k

∑
j=1

limsup
n→∞

1
n

n−1

∑
i=0

χA j(T
i(x))Θ(T i(x))

=
k

∑
j=1

limsup
n→∞

1
n

n−1

∑
i=0

χA j(T
i(x))Θ(T i(x))

=
k

∑
j=1

mx(A j).

Theorem 5. Suppose thatT : X → X is a continuous map on the topological spaceX andx ∈ X .

If ξ ,η ,ζ are finite Borel partitions ofX , then

ΩΘ(x,T,ξ ∨η |ζ ) = ΩΘ(x,T,ξ |ζ )+ΩΘ(x,T,η |ξ ∨ζ ).

Proof. Let ξ = {A1,A2, ...,An},η = {B1,B2, ...,Bm},ζ = {C1,C2, ...,Ck} be finite Borel partitions

of X and assume, without loss of generality, that all sets have the property thatmx(A) 6= 0. By

definition, we have

ΩΘ(x,T,ξ ∨η |ζ ) =− ∑
i, j,k

mx(Ai ∩B j ∩Ck) log
mx(Ai ∩B j ∩Ck)

mx(Ck)
.
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However, we may write

mx(Ai ∩B j ∩Ck)

mx(Ck)
=

mx(Ai ∩B j ∩Ck)

mx(Ai ∩Ck)
.
mx(Ai ∩Ck)

mx(Ck)
,

unlessmx(Ai ∩Ck) = 0, in the latter case the left hand side is zero and we need not consider it;

therefore,

ΩΘ(x,T,ξ ∨η |ζ ) =− ∑
i, j,k

mx(Ai ∩B j ∩Ck) log
mx(Ai ∩Ck)

mx(Ck)
−

− ∑
i, j,k

mx(Ai ∩B j ∩Ck) log
mx(Ai ∩B j ∩Ck)

mx(Ai ∩Ck)

=− ∑
i, j,k

mx(Ai ∩B j ∩Ck) log
mx(Ai ∩Ck)

mx(Ck)
+ΩΘ(x,T,η |ξ ∨ζ ) (1)

However, by Theorem 4, we have

∑
j

mx(Ai ∩B j ∩Ck) = mx(Ai ∩Ck)

Now multiplying both sides by− log
mx(Ai ∩Ck)

mx(Ck)
and summing overi andk, we will obtain

− ∑
i, j,k

mx(Ai ∩B j ∩Ck) log
mx(Ai ∩Ck)

mx(Ck)
= ΩΘ(x,T,ξ |ζ ). (2)

Combining 1 and (2), we will have

ΩΘ(x,T,ξ ∨η |ζ ) = ΩΘ(x,T,ξ |ζ )+ΩΘ(x,T,η |ξ ∨ζ ).

Theorem 6. Suppose thatT : X → X is a continuous map on the topological spaceX andx ∈ X .

If ξ andη are finite Borel partitions ofX then

ΩΘ(x,T,ξ ∨η) = ΩΘ(x,T,ξ )+ΩΘ(x,T,η |ξ ).

Proof. Let ξ = {A1,A2, ...,An},η = {B1,B2, ...,Bm} be finite Borel partitions ofX . We can write

mx(Ai ∩B j) =
mx(Ai ∩B j)

mx(Ai)
.mx(Ai).

Therefore, we have

ΩΘ(x,T,ξ ∨η) = −∑
i, j

mx(Ai ∩B j) log
mx(Ai ∩B j)

mx(Ai)
−∑

i, j
mx(Ai ∩B j) logmx(Ai)

= −∑
i, j

mx(Ai ∩B j) logmx(Ai)+ΩΘ(x,T,η |ξ )

= ΩΘ(x,T,ξ )+ΩΘ(x,T,η |ξ ).
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Theorem 7. Suppose thatT : X → X is a continuous map on the topological spaceX andx ∈ X .

If ξ ,η ,ζ are finite Borel partitions ofX andξ ≺ η , then

ΩΘ(x,T,ξ |ζ ) ≤ ΩΘ(x,T,η |ζ ).

Proof. From Theorem 5, we have

ΩΘ(x,T,η |ζ ) = ΩΘ(x,T,ξ ∨η |ζ )

= ΩΘ(x,T,ξ |ζ )+ΩΘ(x,T,η |ξ ∨ζ )

≥ ΩΘ(x,T,ξ |ζ ).

Theorem 8. Suppose thatT : X → X is a continuous map on the topological spaceX andx ∈ X .

Let ξ andη be finite Borel partitions andξ ≺ η , then

ΩΘ(x,T,ξ )≤ ΩΘ(x,T,η).

Proof. Sinceξ ≺ η , we have

ΩΘ(x,T,η) = ΩΘ(x,T,η ∨ ξ )

≥ ΩΘ(x,T,ξ ).

Definition 4. Suppose thatT : X → X is a continuous map on the topological spaceX ,x ∈ X and

ξ is a finite Borel partition ofX . The maphΘ(.,T,ξ ) : X → [0,∞] is defined as

hΘ(x,T,ξ ) = limsup
l→∞

1
l

ΩΘ(x,T,∨
l−1
i=0T−iξ ).

Theorem 9. Let ξ andη be finite partitions ofX andξ ≺ η . Then,hΘ(x,T,ξ )≤ hΘ(x,T,η).

Proof. If ξ ≺ η then∨n−1
j=0T− jξ ≺ ∨n−1

j=0T− jη for all n ≥ 1. This easily leads to the result.

Theorem 10. Suppose thatξ be a finite partition ofX . Then for everyk ∈N,

hΘ(x,T,ξ ) = hΘ(x,T,∨
k
j=0T− jξ ).

Proof. We immediately obtain

hΘ(x,T,∨
k
j=0T− jξ ) = limsup

n→∞

1
n

ΩΘ(x,T,∨
n−1
i=0 T−i(∨k

j=0T− jξ ))

= limsup
n→∞

1
n

ΩΘ(x,T,∨
n+k−1
t=0 T−tξ )

= limsup
p→∞

p
p− k

.
1
p

ΩΘ(x,T,∨
p−1
t=0 T−tξ )

= hΘ(x,T,ξ ).
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Definition 5. Let T : X → X be a continuous map on the topological spaceX . Then, a partitionξ
of X is called a relative generator ofT if there exists an integerk > 0 such that

η ≺∨k
i=0T−iξ

for every partitionη of X .

Theorem 11. Let ξ be a relative generator ofT , thenhΘ(x,T,η)≤ hΘ(x,T,ξ ) for every partition

η of X .

Proof. Sinceξ is a relative generator ofT , then for partitionη , there exists an integerk > 0 such

that

η ≺ ∨k
i=0T−iξ .

Hence

hΘ(x,T,η)≤ hΘ(x,T,∨
k
i=0T−iξ ) = hΘ(x,T,ξ ).

Definition 6. Suppose thatT : X → X is a continuous map on the topological spaceX ,x ∈ X and

ξ is a finite Borel partition ofX . We define the relative entropy ofT at x by

hΘ(T,mx) = sup
ξ

hΘ(x,T,ξ ).

Theorem 12. Let ξ be a relative generator ofT . ThenhΘ(x,T,ξ ) = hΘ(T,mx).

Proof. Obvious.

Definition 7. Suppose thatT : X → X is a continuous map on the compact metric spaceX , andξ
is a relative generator for the relative dynamical system(X ,Θ,T ). Let µ ∈ M(X ,T) be such that

hµ(T ) < ∞. Therelative entropy functional of T (with respect toµ), LT
Θ(.,µ ,ξ ) : C(X) → R, is

defined as

LT
Θ( f ,µ ,ξ ) =

∫
X

f (x)hΘ(x,T,ξ )dµ(x)

for all f ∈C(X) (again 0×∞ := 0).

In the following, the independence ofrelative entropy functional from the selection of the relative

generator is proved.

Theorem 13. Definition 7 is independent of the choice of relative generator, i.e., if ξ andη are

two relative generators ofT , then

LT
Θ( f ,µ ,ξ ) = LT

Θ( f ,µ ,η).

for all f ∈C(X).
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Proof. Let ξ ,η be relative generators ofT . Then by Theorem 12, we have

hΘ(x,T,ξ ) = hΘ(T,mx) = hΘ(x,T,η).

So, if f ∈C(X), then,

f (x)hΘ(x,T,ξ ) = f (x)hΘ(x,T,η)

for all x ∈ X . Therefore,LT
Θ( f ,µ ,ξ ) = LT

Θ( f ,µ ,η).

Remark 1. By Theorem 13, we conclude that the definition ofrelative entropy functional is

independent of the selection of generators. Therefore, given any invariant measureµ and any

relative generatorξ , we have the uniquerelative entropy functional. Thus, we can writeLT
Θ( f ,µ)

for LT
Θ( f ,µ ,ξ ) without confusion.

Example 1. Let X =
R

Z
, β denote the Borel sigma-algebra,Θ = χX and f (x) = 1. We letT :

X → X be the doubling mapT (x) = 2x(mod1). We know thatT preserves Lebesgue measurem

and is ergodic. Hence by Theorem 1, for eachx ∈ X andA ⊂ X , we havemx(A) = m(A). Let

ξ = {[0,
1
2
), [

1
2
,1)}; then observe that

ξ ∨T−1ξ = {[0,
1
4
), [

1
4
,
1
2
), [

1
2
,
3
4
), [

3
4
,1)}.

and more generally,

∨l−1
i=1T−iξ = {[

i
2n ,

i+1
2n ) : i = 0,1, ...,2n −1}.

Thus,ξ is a relative generator and for eachx ∈ X , we can now calculate

ΩΘ(x,T,∨
l−1
i=1T−iξ ) = −

2l−1

∑
i=0

mx([
i
2l ,

i+1
2l )) logmx([

i
2l ,

i+1
2l ))

= −
2l−1

∑
i=0

(
1
2l ) log(

1
2l )

= −2l(
1
2l ) log(

1
2l )

= l log2.

Thus, we see that
1
l

ΩΘ(x,T,∨
l−1
i=1T−iξ ) = log2 and thus lettingl → ∞ giveshΘ(x,T,ξ ) = log2.

Therefore, for eachµ ∈ M(X ,T), we haveLT
Θ( f ,µ ,ξ ) = log2.

Theorem 14. Suppose thatT : X → X is a continuous map on the compact metric spaceX . Then,

1. Given anyµ ∈ M(X ,T), therelative entropy functional f 7→ LT
Θ( f ,µ) is linear.

2. Given anyf ∈C(X), the mapµ 7→ LT
Θ( f ,µ) is affine.

Proof. 1. and 2. are trivial.
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Definition 8. We say that two relative dynamical systems(X ,T1,Θ1) and(Y,T2,Θ2) are conjugate

if there exists a homeomorphismϕ : X →Y such thatϕoT1 = T2oϕ andΘ2(T2oϕ(x)) = Θ1(T1(x))

for all x ∈ X .

Theorem 15. Suppose thatT : X → X is a continuous map on the compact metric spaceX . If two

relative dynamical systems(X ,T1,Θ1) and(Y,T2,Θ2) are conjugate, andµ ∈ M(X ,T), then,

LT1
Θ1
( f ,µ) = LT2

Θ2
( f ϕ−1

,µϕ−1)

for all f ∈C(X).

Proof. For x ∈ X and the Borel setA ⊂ X , we havemT1
Θ (A)(x) = mT2

Θ (ϕ(A))(ϕ(x)). Therefore,

ΩΘ(x,T1,ξ ) = ΩΘ(ϕ(x),T2,ϕ(ξ )) for any finite Borel partitionξ . By definition ofhΘ(.,T,ξ ) we

havehΘ1(.,T1,ξ ) = hΘ2(.,T2,ϕ(ξ ))oϕ . Note thatϕ(ξ ) = {ϕ(A);A ∈ ξ}. Let µ ∈ M(X ,T1), and

f ∈C(X). Then,

LT1
Θ1
( f ,µ) =

∫
X

f (x)hΘ1(x,T1,ξ )dµ(x)

=
∫

X
f (x)hΘ2(ϕ(x),T2,ϕ(ξ ))dµ(x)

=

∫
Y

f (ϕ−1(x))hΘ2(x,T2,ϕ(ξ ))d(µϕ−1)(x)

= LT2
Θ2
( f ϕ−1

,µϕ−1).

Now we can deduce the following version of Jacobs Theorem.

Theorem 16. Suppose thatT : X → X is a continuous map on the compact metric spaceX . If

µ ∈ M(X ,T) andµ =
∫

E(X ,T ) mdτ(m) is the ergodic decomposition ofµ , then

LT
Θ( f ,µ) =

∫
E(X ,T)

LT
Θ( f ,m)dτ(m)

for all f ∈C(X).

Proof. Let ξ be a relative generator of relative dynamical system(X ,Θ,T ). First, let f ∈C+(X).

Applying Corollary 1, we have

LT
Θ( f ,µ ,ξ ) =

∫
X

f (x)hΘ(x,T,ξ )dµ(x)

=
∫

E(X ,T )
(
∫

X
f (x)hΘ(x,T,ξ )dm(x))dτ(m)

=
∫

E(X ,T )
(
∫

X
LT

Θ( f ,m,ξ )dτ(m).

For f ∈C(X), write f = f+− f− where f+, f− ∈C+(X).



38 U. Mohammadi

Theorem 17. Suppose thatT : X → X is a continuous map on the compact metric spaceX . More-

over, letx ∈ X andµ ∈ M(X ,T). Then

LT
Θ(1,µ) = hΘ(T,mx).

Proof. Let ξ be a relative generator. Letµ ∈ M(X ,T). By Theorem 12, we have

hΘ(x,T,ξ ) = hΘ(T,mx)

for arbitraryx ∈ X . Therefore,

LT
Θ(1,µ) =

∫
X

hΘ(T,mx)dµ(x) = hΘ(T,mx).

Theorem 18. Suppose thatT : X → X is a continuous map on the compact metric spaceX . More-

over, letx ∈ X andµ ∈ M(X ,T). Then therelative entropy functional f 7→ LT
Θ( f ,µ) is a continu-

ous linear function onC(X), and‖LT
Θ(.,µ)‖= hΘ(T,mx).

Proof. Let ξ be a relative generator. Letf ∈C(X), then

|LT
Θ( f ,µ)| = |

∫
X

f (x)hΘ(x,T,ξ )dµ(x)| ≤
∫

X
| f (x)|hΘ(x,T,m)dµ(x)

≤ ‖ f‖∞

∫
X

hΘ(x,T,m)dµ(x) = ‖ f‖∞LT
Θ(1,µ) = ‖ f‖∞hΘ(T,mx)

Therefore, therelative entropy functional is a continuous function and‖LT
Θ(.,m)‖ ≤ hS

Θ(T,mx).

The equality holds by Theorem 15.

In the following theorem, Kolmogorov entropy from therelative entropy functional as a special

case is extracted.

Theorem 19. Suppose thatT : X → X is a continuous map on the compact metric spaceX . If

Θ : X → [0,1] is the characteristic functionχX , thenLT
Θ(1,µ) = hµ(T ).

Proof. Let ξ be a relative generator. By Theorem 12, we have

hΘ(x,T,ξ ) = hΘ(T,mx).

First, letm∈E(X ,T). For each Borel setA andx∈X , applying Theorem 1 we havemx(A)=m(A).

Therefore, by replacingmx with m, we have

hΘ(x,T,ξ ) = hm(T ).

Therefore,

LΘ(1,m) =
∫

X
hΘ(x,T,ξ )dm(x) = hm(T ).
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Now, let µ ∈ M(X ,T), andµ =
∫

E(X ,T ) mdτ(m) be the ergodic decomposition ofµ . Applying

Theorem 3 and Theorem 15 we have

LT
Θ(1,µ) =

∫
E(X ,T )

LT
Θ(1,m)dτ(m)

=
∫

E(X ,T )
hm(T )dτ(m)

= hµ(T ).

4. Conclusions

In this paper, the new notion ofrelative entropy functional for relative dynamical systems on

compact metric spaces from the view point of observerΘ is introduced. This notion is an invariant

object under the conjugate relation. It can be used in order to classify relative dynamical systems

[9,11,15]. Moreover, by using it, a new method is obtained to make comparisons between the

perspectives of observers. Moreover, it can be used to measure the complexity and/or uncertainty

of the system through the viewpoint of observers. This notion is a continuous linear functional

on C(X) such that its norm equals the relative entropy ofT at eachx ∈ X . Finally, it is proved

that if Θ : X → [0,1] is the characteristic functionχX , thenLT
Θ(1,µ) is the Kolmogorov entropy of

T . With regards to further research, more work can be carried out in the field of computation of

relative entropy for relative dynamical systems on non-compact metric spaces.
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