Cankaya University Journal of Science and Engineering C\l ' F
Volume 11, No. 2 (2014) 29-38 - \J

Relative Entropy Functional of Relative
Dynamical Systems

Uosef Mohammadi

Department of Mathematics, University of Jiroft, Jirofat,
e-mail: u.mohamadi@ujiroft.ac.ir

Abstract: In this paper, the notion of theglative entropy functional for relative dynamical systems on
compact metric spaces is presented using the mathematamdlimg of an observer. The invariance of
the entropy of a system under topological conjugacy to thegive entropy functional is generalized. A
new version of Jacobs Theorem concerning the entropy of ardigal system is given. At the end, the
Kolmogorov entropy from theelative entropy functional for dynamical systems from the view point of
observeryyx, whereX denotes the base space of the system, is extracted.
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1. Introduction

The term entropy was first used by the German physicist Ru@alfisius in 1865 to denote a
thermodynamic function, which increase with time in all sfameous natural processes. He in-
troduced this in 1854. Entropy was first introduced into theoty of dynamical systems by
Kolmogorov [6] in 1958. Kolmogorov’s definition was improved by Sinai in 8989]. The im-
portance of entropy arises from its invariance under cagyugTherefore, systems with different
entropies cannot be conjugate. On the other hand, in thatBwestudies concerning physical
systems, molding of these systems is needed. The cregibilthe model given is related to the
level of its precision, which can be examined with lab dataot &ll the data from the lab are
precise, so the role of the "observer” in this process is ingm. Moreover, a method is needed
to rate the complexity and/or uncertainty of a system froengbint of view of various observers.
In order to develop a mathematical model underlying unggstaand fuzziness in a dynamical
system, which is called fuzzy mathematical modeling, wegaiag to apply the notion of the
observer. Therefore, we first ought to mathematically ifetihe observer. A modeling for an
observer of a seX is a fuzzy se® : X — [0,1][9,10,11 15. In fact, these kinds of fuzzy sets are
called "one-dimensional observers.” After this identifioa, the notion of the observer is used to
define thadative entropy functional for topological dynamical systems. The idea is based on the
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relation between "experience” and “information” from thiew point of an observer. A weight
factor of f(x) is assigned to any pointe X, whereX denotes the base space of the system. The
weight factor can be considered to be the local loss of inédlan caused by the lack of experi-
ence of any intelligent point. Thelative entropy functional is expected to have the fundamental
properties of the entropy and also coincides with the Kolanog entropy for dynamical systems
from the view point of the observeg, when there is no weight factor in the middle.

In this article the set of all probability measuresXpreservingl is denoted by (X, T). We also
write E(X,T) for the set of all ergodic measuresdf Finally, for p € M(X,T), h,(T) denotes

the Kolomogorov entropy of .

2. Preliminary Facts

This section is devoted to providing the prerequisites #énatnecessary for the next section. It is
assumed thaX is a compact metric space a@is a one-dimensional observer Xf9,10,11],
that is,® : X — [0,1] is a fuzzy sef{26]. Moreover, there is an assumption tAat X — X is a
continuous map. In this case, it is said tfiAt T,©) is a relative dynamical system. In fact, if
E C X, then the relative probability measure Bfwith respect to an observé is the fuzzy set
mg(E) : X — [0,1] defined by

n—-1

ML(E)() = limsup™ S xe(T'(¥)O(T! (X)),

n—co i=
wherexg is the characteristic function & [10].

Theorem 1. Let (X,3,m) be a probability space, and I&: X — [0,1] be the characteristic
function xx. Moreover, lefl : X — X be an ergodic map, then for eack X, m§(E)(x) is almost
everywhere equal to(E) whereE € (3.

Proof. See [10].

Therefore, relative probability measure is an extensiaeiotion of probability measure.
In the remainder of this papemy is a relative measure with respect to an obse®eat x €
X,i.e.my(E) = m§(E)(x) for anyE C X.

In the following, some classical results that are needelarsequel, are recalled.

Theorem 2. (Choquet) Suppose thitis a compact convex metrizable subset of a locally con-
vex spacek, andxy € Y. Then, there exists a probability measuaren Y which representsg
and is supported by the extreme pointsyofthat is,®(xp) = [, ®dt for every continuous linear
functional® onE, andt(ext(Y)) = 1.
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Proof. See [16].

Letu e M(X,T) andf : X — R be a bounded measurable function. Itis known B@¢, T) equals
the extreme points df1(X,T), applying Choquet’s Theorem f&& = M(X), the space of finite
regular Borel measures of, andY = M(X,T), and using the linear functiong : M(X) — R
given by®(u) = [y fdu, the following corollary is reached:

Corollary 1. Suppose that : X — X is a continuous map on the compact metric spacé&hen,
for eachu € M(X, T), there is a unique measuren the Borel subsets of the compact metrizable
spaceM (X, T), such thatt (E(X,T)) =1 and

] 100due) = [ on /. 10dmOo)dr(m)

for every bounded measurable functibnX — R.

Under the assumptions of Corollary 1= fE(x:) mdt(m) is written, which is called the ergodic
decomposition oft.

Theorem 3. (Jacobs) Lefl : X — X be a continuous map on a compact metrizable space. If
HeM(X,T)andu = fE(x.T) mdt(m) is the ergodic decomposition of, then we have:

(i) If & is afinite Borel partition oK, then,h, (T,&) = [g(x 1) hm(T, &)dT(m).
(i) hy(T) = Jgx.1)hm(T)d7(m) (both sides could be).

Proof. : See [23].

3. Relative Entropy Functional of Relative Dynamical Systens

This section presents the notion of entropy from the viewipai different observers and describes
a relative perspective of complexity and uncertainty irgfugystems.

Definition 1. Suppose thal : X — X is a continuous map on the topological spXce& € X and

A a Borel subset oK. Then

n-1
m(A) = lim Sup} Xa(T'(X)O(T!(x)).

n—oo s

Now, letx € X and&é = {A1,Az,...,An} andn = {B4,By,...,Bn} be finite Borel partitions oK.
We define

o(X,T,&): Zlmx )logmy(A),
and
Qo(x T.&[n): me A log THATBY),

m«(Bj)



32 U. Mohammadi

(We assume that log© — and Ox c = 0).

Note that the quantitRo (X, T, & |n) is the conditional version ®o(x, T, &). Itis clearQe(x, T,&) >
0.

Definition 2. A partition ¢ is a refinement of a partition, if every element of7 is a union of
elements of. If £ is a refinement ofy, we writen < €.

Definition 3. Given two partition€ andn their common refinement is defined by
Evn={AnNBj;A €& Bjen}.

Theorem 4. Let x € X andAg, Ay, ..., A be pairwise disjoint Borel subsets B If A= Uij(zlAj
thenm(A) = 5_; my(A)).

Proof.
n—1
m(A) = IITEOED— Xa(T'(x)O(T'(x))
n—1 .
— Ilrrlsotjp— Xue_a, (TH(X))O(T'(x))
n—-1 k .
— limsup= Xa, (T'(x)O(T'(x))
n—oo i=0j=1
k n—-1
= Y limsup= Z}XAJ (T'(x)O(T'(x))
=1 n—o0 1=
k n—1 )
= Y limsup='y xa, (T'(x)O(T'(x))
=1 n—o0 i=
K
= Y m(A)

Il
pR

Theorem 5. Suppose that : X — X is a continuous map on the topological spxcandx € X.
If £,n,C are finite Borel partitions oX, then

Qo(x,T,EVN|{)=Qe(XT,&[{)+Qa(x,T,n|EV{).

Proof. Let& = {A1,Az,...,An},n = {B1,By,...,Bm},{ = {C1,Cy,...,Ck} be finite Borel partitions
of X and assume, without loss of generality, that all sets haweptbperty thatn(A) # 0. By
definition, we have
my(AiNB;jNCy)

m(C)

Qo(x,T,EVn|)=— kax(Ai NB;jNCy)log
i),
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However, we may write
my(ANB;NCy)  Mk(ANB;NCy) m(ANCy)

my(Ci) - m(ANC) T m(Co)
unlessmy(A;NCx) = 0, in the latter case the left hand side is zero and we needomsider it;

therefore,
iNC
Qe(x,T,Evn\Z):_i.,zknk(AmBka)log%_
mx(A NB;j NGy
_ iNB;jNCy)log —————=+—
mkaX(A'm )NGJleg my (A NCx)
k(A NC)

+Q@(X>Ta’7|EVZ) (l)

=— iNBiNCy)I
iJkaX(A'ﬁ in k) log mx(Ck)

However, by Theorem 4, we have
> M(ANBjNCe) = My (ANCy)
]

Now multiplying both sides by- log A

mMx(Cx)

- m(ANB;jNCy)log
2, AT,

and summing oveirandk, we will obtain

m (A NCy)

Gy = Qo TED) @

Combining 1 and (2), we will have

Q@(X,T,E \/r’|Z) = Q@(X7T>E|Z) +Q®(X7T>’7|E \/Z)

Theorem 6. Suppose that : X — X is a continuous map on the topological spxcandx € X.
If & andn are finite Borel partitions oX then

Q@(X,T,E Vv r’) = Q@(X>T7€) —I—Q@(X,T,I’]|E)

Proof. Let & = {A1,Ay,...,A},n = {B1,By,...,Bn} be finite Borel partitions oK. We can write

my(ANBj) = %-W(Aﬁ)-
Therefore, we have
Qo(x,T.EVN) = —Zw(AﬂBj)log% — > M(AINB;j)logmy(A)
1] ]

= = m(ANB;)logmy(A) +Qo(x T, n¢)
1)

= Qo(XT,&)+Qo(xT,n|é).
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Theorem 7. Suppose that : X — X is a continuous map on the topological spxcandx € X.
If £,n,{ are finite Borel partitions oK andé < 7, then

Q@(X7T> E |Z) é Q@(X7T> n |Z)
Proof. From Theorem 5, we have

Qo(x,T,nl{) = Qo(x,T,&Vn|{)
= Qo(XT,&10)+Qo(x,T,nlE V)
Qo (X, T,¢|{).

v

Theorem 8. Suppose that : X — X is a continuous map on the topological spxcandx € X.
Let £andn be finite Borel partitions ané < n, then

Qo(X,T,§) <Qo(X,T,n).

Proof. Sinceé < n, we have

Q@(X7T>r’) = Q@(X>T7r'\/f)
> Q@(X>T7€)‘

Definition 4. Suppose that : X — X is a continuous map on the topological spXc& € X and
¢ is a finite Borel partition oX. The maphe(.,T,&) : X — [0, ] is defined as

h@(X>T7 E) - IimSUp}Q@(X,TA/:;éTfiE)'

| —o0 I

Theorem 9. Let & andn be finite partitions oX and§ < n. Then,hg(x,T,&) < hg(x,T,n).

Proof. If & < n thenV! 5T 1 < Vi—gT~In for all n > 1. This easily leads to the result.

Theorem 10. Suppose thaf be a finite partition oK. Then for evernk € N,

h@(X>T7 E) = h@(X>T7\/|j(:OT_jE)-

Proof. We immediately obtain

. . 1 i .
h@(x,T,\/'j‘:OT &) = I|msupﬁQ@(x,T,\/{‘:olT '(v‘J‘ZOT 1&))

Nn—oo

. 1
- IlmsupﬁQe(x,T,\/{‘j(')“lT‘tE)

n—oo

= Iimsupik.F—l)Q@(x,T,\/f__olTtE)

p—eo P—

= h@(X,T,E).



CUJSE 11, No. 2 (2014) Relative Entropy Functional of Retabynamical Systems 35

Definition 5. Let T : X — X be a continuous map on the topological spacd hen, a partitioré
of X is called a relative generator ofif there exists an integde> 0 such that

n<VieT ¢
for every partitionn of X.

Theorem 11. Let & be a relative generator af, thenhg(x, T,n) < ho(X, T, &) for every partition
n of X.

Proof. Sinceé is a relative generator af, then for partitionn, there exists an integér> 0 such
that
n < vk TE.
Hence
ho(X%,T,n) < ho(X,T,V{_ oT &) = he(x,T,&).

Definition 6. Suppose that : X — X is a continuous map on the topological spXce € X and
¢ is a finite Borel partition oX. We define the relative entropy dfat x by

ho(T,my) = suphe(x,T,§).
é
Theorem 12. Let & be a relative generator @f. Thenhg(x, T, &) = ho(T,m).

Proof. Obvious.

Definition 7. Suppose that : X — X is a continuous map on the compact metric spacandé
is a relative generator for the relative dynamical syst&y®,T). Let u € M(X,T) be such that
hy(T) < e. Therelative entropy functional of T (with respect tqu), L5(., i, &) : C(X) — R, is
defined as

LE(f..8) = [ T09ho(x T.&)du(
for all f € C(X) (again Ox o :=0).

In the following, the independence i ative entropy functional from the selection of the relative

generator is proved.

Theorem 13. Definition 7 is independent of the choice of relative germradte., if ¢ andn are
two relative generators df, then

LS(f,u, &) =LE(f,u,n).

for all f € C(X).
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Proof. Let &, n be relative generators @f. Then by Theorem 12, we have

h@(X,T,E) = h@(Tva) = h@(x,T,n).

So, if f € C(X), then,
f(X)h@(X,T7f) = f(X)h@(X,T,n)
for all x € X. ThereforeL.§(f, i, &) = L§(f,u,n).

Remark 1. By Theorem 13, we conclude that the definitionrefative entropy functional is

independent of the selection of generators. Thereforeengany invariant measune and any
relative generatoé, we have the uniqueslative entropy functional. Thus, we can writd';g(f,u)

for L (f, u, &) without confusion.

Example 1. Let X = % B denote the Borel sigma-algebr@,= xx and f(x) = 1. We letT :
X — X be the doubling map (x) = 2x(mod1). We know thafT preserves Lebesgue measure
and is ergodic. Hence by Theorem 1, for each X andA C X, we havemy(A) = m(A). Let
& ={[0, %), [%,1)}; then observe that

1
3 \/T_lf = {[07 Z)v [Zv E)» [Ev Z)» [Z»l)}
and more generally, _
VIZETE = ([, )

Thus,¢ is a relative generator and for eack X, we can now calculate

i=0,1,...,2" — 1}.

QTIHTE) = 3 i oamd( )
2-1
- ;(21.>Iog<21.>
= —2(z)log(z)

= llog2

Thus, we see tha%tLQ@(x,T,\/!;iT‘iE) = log2 and thus letting — o giveshg(x,T,&) = log 2.
Therefore, for eacl € M(X,T), we haveL(f,u,&) =log2

Theorem 14. Suppose thal : X — X is a continuous map on the compact metric spac&hen,

1. Given anyu € M(X,T), therelative entropy functional f — LE(f, ) is linear.
2. Given anyf € C(X), the mapu — L§(f, u) is affine.

Proof. 1. and 2. are trivial.
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Definition 8. We say that two relative dynamical syste(¥sT;,©;) and(Y, T, ©;) are conjugate
if there exists a homeomorphisgn: X — Y such thatpoT, = T,0¢ and©,(T,0¢ (X)) = O1(T1(X))
for all x € X.

Theorem 15. Suppose that : X — X is a continuous map on the compact metric spack two
relative dynamical system¥, T1,©1) and(Y, T»,©,) are conjugate, and € M(X,T), then,

Lo (f.u) =L& (fo t up™t

for all f € C(X).

Proof. Forx e X and the Borel sef\ C X, we havem@( )(X) = mg(¢(A))(¢(x)). Therefore,
Qo(X,T1,&) = Qo(¢(X), T2, ¢ (&)) for any finite Borel partitioré . By definition ofhg(., T, &) we
havehe, (., T1,&) = he,(., T2, ¢ (&))od. Note thatp (§) = {¢p(A);Ac &}. Letu € M(X,Ty), and
f € C(X). Then,

LG = [ F0he, (x To. E)du(
_ / f(X)he, (9 (x), T2, ®(&))du(x)
- / F(67(X)he, (%, T2, 6 (&))d(ud ) (X)
= L<T§2(f¢ g,
Now we can deduce the following version of Jacobs Theorem.

Theorem 16. Suppose thal : X — X is a continuous map on the compact metric spécdf
HeM(X,T)andu = fE(x.T) mdt(m) is the ergodic decomposition of, then

Lo(f. ) = [ Lh(f.mydr(m)
E(X,T)

for all f € C(X).

Proof. Let & be a relative generator of relative dynamical systet®, T). First, letf € C*(X).
Applying Corollary 1, we have

Lo(fp8) = | 1Xhe(x T.&)du(x)
X .
_ / (/f(x)h@(x,T,E)dm(x))dT(m)
E(X.T) JX
_ /E(X’T)(/XLg(f,m,E)dr(m).

For f € C(X), write f = f* — f~ wheref*, f~ € C*(X).
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Theorem 17. Suppose that : X — X is a continuous map on the compact metric spachlore-
over, letxe X andp € M(X,T). Then

L5(L, 1) = ho (T, my).
Proof. Let & be a relative generator. Lgte M(X,T). By Theorem 12, we have
ho(X,T,§) =he(T,my)
for arbitraryx € X. Therefore,
LH(LK) = [ No(T.mJdu() = ho(T.m,).

Theorem 18. Suppose that : X — X is a continuous map on the compact metric spachlore-
over, letx € X andu € M(X, T). Then therelative entropy functional f +— LL(f, ) is a continu-
ous linear function o€(X), and||L5 (., 1) || = he(T,my).

Proof. Let £ be a relative generator. Léte C(X), then
Lol = | [ 100he(<T.&)du(] < [ 11(0]ho(x T.m)du(x)
< flle [ Po(x Tm)d( = [1floLS(L 1) = [ lho(T.m)

Therefore, theelative entropy functional is a continuous function angL(.,m)|| < h3(T,my).
The equality holds by Theorem 15.

In the following theorem, Kolmogorov entropy from thdative entropy functional as a special
case is extracted.

Theorem 19. Suppose thal : X — X is a continuous map on the compact metric spacdf
©: X — [0,1] is the characteristic functiogx, thenL§ (1, u) = hy(T).

Proof. Let & be a relative generator. By Theorem 12, we have

he(x,T,&) = he(T,my).

First, letme E(X, T). For each Borel st andx € X, applying Theorem 1 we have,(A) = m(A).
Therefore, by replacingy with m, we have

ho (X, T,&) = hm(T).

Therefore,

Lo(1,m) = /X ho (X, T, €)dm(x) = hun(T).
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Now, let u € M(X,T), andu = fE(xﬂmdr(m) be the ergodic decomposition pf Applying
Theorem 3 and Theorem 15 we have

b = [ tbamdrm

_ / hin(T )d T (M)
E(X.T)

= hu(T)-

4. Conclusions

In this paper, the new notion aélative entropy functional for relative dynamical systems on
compact metric spaces from the view point of obse@®és introduced. This notion is an invariant
object under the conjugate relation. It can be used in odelassify relative dynamical systems
[9,11,15]. Moreover, by using it, a new method is obtained to make coismas between the
perspectives of observers. Moreover, it can be used to meetdseicomplexity and/or uncertainty
of the system through the viewpoint of observers. This mot#oa continuous linear functional
on C(X) such that its norm equals the relative entropyloét eachx € X. Finally, it is proved
that if @ : X — [0,1] is the characteristic functiox, thenL§ (1, 1) is the Kolmogorov entropy of
T. With regards to further research, more work can be carnigdnothe field of computation of
relative entropy for relative dynamical systems on non4gsach metric spaces.
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