Cankaya University Journal of Science and Engineering C\l LJ
Volume 14, No. 2 (2017) 152-179 =

Clothoid-based Lane Change Trajectory
Computation for Self-Driving Vehicles

LArdam Haseeb Mohammed Ali Kahya afidlaus Werner Schmidt

1Department of Electronic and Communication Engineeripgnkaya University, Ankara, Turkey
2Department of Mechatronics Engineering, Cankaya Unitgrénkara, Turkey
e-mail: ardamkahi73@yahoo.com, schmidt@cankaya.edu.tr

Abstract: The subject of this paper is the efficient computation of lelh@nge trajectories for self-driving
vehicles. The paper first identifies that a certain type othdial-basedi-elementary pathsan be used to
represent lane change trajectories for vehicles. It i©é@rhighlighted that the curvature of such trajectories
must be adjusted to the driving situation in order to obtaasfble lane change trajectories. Accordingly,
the paper establishes an analytical relation between thénmen admissible curvature of the lane change
trajectory and the velocity profile during a lane change.ngshis relation, the paper proposes an efficient
Newton iteration for computing the parameters of bi-eletagnpaths for lane changes. The resulting lane
change trajectories are as short as possible, while meéggngpnstraint on the maximum curvature. Simula-
tion experiments for various driving situations show tliet tomputed bi-elementary paths can be computed
efficiently and constitute suitable lane change trajeesori
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1. Introduction

Today, the need for a more efficient and smarter usage of @itable transportation infrastruc-
ture leads to the emergencelofelligent Transportation Systenfd'S). ITS deployments aim at
increasing the traffic throughput and safety, reducing tial travel time and traffic congestion
using novel achievements of communication and controlrtelcigies [30, 29, 28, 24].

As an important application of ITS, the development of skiing vehicles (SDVs) gains increas-
ing interest in the recent years. It is expected that SDVidogihvailable in the near future [2] and
it is predicted by IEEE that SDVs will constitute 75 % of cags2040 [1]. The usage of SDVs

requires the development of advanced methods for comigallie longitudinal and lateral vehicle
behavior. In particular, it is required to design vehickgectories for different vehicle maneuvers.
Hereby, trajectories are considered suitable if they caralsdy computed and applied in real-time
vehicle applications, while ensuring driving comfort adesy.

The main subject of this paper is the fast computation oéttayies for lane changes of SDVs.
To this end, this paper suggests utilizing a certain typei@ldmentary paths for representing
ISSN 2564—-7954C) 2017 Cankaya University
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lane change trajectories. Bi-elementary paths are basebbtiroid curves and are found suitable
for lane change computations in the recent literature [143.the first contribution, this paper
develops an efficient method for computing the parametessict bi-elementary path based on
a Newton iteration. It is proved that the proposed Newtoraiten always converges to a unigue
solution, whereby fast convergence is observed from coatipuial experiments. As the second
contribution of this paper, it is argued that the parametéts-elementary paths for lane changes
have to be chosen carefully depending on the driving s@inaflo this end, this paper determines
an analytical bound on the admissible path curvature depgrh the maximum velocity profile
of a vehicle during a lane change. Using this bound, thispaqmgoses a computational procedure
for selecting the parameters of bi-elementary paths tlesaitable for lane change trajectories.
This parameter selection can be efficiently carried out al-tieme based on the current vehicle
velocity and a bound on the admissible acceleration. Usiagptoposed procedure, it is possible
to uniquely determine the shortest bi-elementary pathfthiiits the imposed curvature constraint
depending on the driving situation. Simulation experirsesith a nonlinear vehicle model show
that the proposed method determines suitable lane chaajgettries.

In the existing literature, the generation of lane changjedttories is mostly studied in the context
of model predictive control (MPC) or optimal control. [333ed MPC to formulate constraints
for finding a lane change trajectory and suitable input d&gmdnile avoiding collisions. A dis-

advantage of MPC is that trajectories are not known in advdnt evolves based on the com-
puted lane change steering maneuver. Optimal control id wsg8, 25, 16, 31]. [8] presents an
optimal-control based method for quantifying the manealbiity of actively controlled passen-

ger vehicles during emergency highway-speed situatioesebbary conditions for optimality and
optimal control laws are found for different cases inclgdear steering. [25] provide optimal
control-based strategies to explore the dynamic capasilidf a single-track car model with tire
models and longitudinal load transfer. That paper expltresystem dynamics by using nonlin-
ear optimal control techniques to compute aggressive apactories. An optimal path-planning
method is proposed for self-driving ground vehicles in cafsevertaking a moving obstacle in
[16]. The trajectory generation problem faced by a selidg vehicle in moving traffic is inves-

short-term collision avoidance is proposed. Although tiedcmethods determine feasible Lane
change trajectories, their main disadvantage is that #jectiories are computed offline when us-
ing optimal control. In particular, the required computattimes are not suitable for an evaluation
in real-time. The research on the computation of lane chaaggctories without using optimiza-
tion methods is limited. An incremental trajectory planiased on rapidly-exploring random
trees and a dynamic vehicle model is proposed in [23]. A ldr@ge model for self-driving ve-
hicles was presented in [6]. In this study the emphasis wakeroa generating a safe path based
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on a piecewise Bezier curve. Moreover, the work in [11] anedythe suitability lane change
trajectories based on bi-elementary paths. Different ftbenexisting work, this paper develops
a computational procedure for determining suitable patarador short lane change trajectories
depending on the driving situation in real-time.

The remainder of this paper is organized as follows. Se@iamotivates the lane change trajec-
tory computation for self-driving vehicles and formulatie problem studied in this paper. The
usage of bi-elementary paths for lane changes and the mdpsameter computation method
are discussed in Section 3. In Section 4, the proposed tivayecomputation method is validated
by simulation experiments. Section 5 gives conclusionsautlihes directions for future work.

2. Motivation and Problem Statement

This section motivates the study of trajectory generatmridne changes and states the research
topics considered in this paper. Section 2.1 describeg Ipagperties of lane change maneuvers
and Section 2.2 introduces bi-elementary paths as a seitedjectory representation. The main
problem considered in this paper is outlined in Section 2.3.

2.1. Background on Lane Change Trajectories

Lane changing is the process, where a vehicle moves fronuitsrtt lane to an adjacent lane as
depicted in Fig. 1.

FIGURE 1. Basic lane change maneuver.

A lane change is carried out following a certain trajectdrin the coordinate planex¢yY-plane).
Hereby, the change in thé-position is given by the lane widtAY, whereas the change in the
X-position and the orientation angléduring the lane change determine the particular shape of
In principle, a trajectoryi” with a small value ofAX requires a fast change of the orientation angle
W and is hence difficult to follow when vehicles travel at higkocities or perform acceleration
maneuvers. In turn, trajectoridswith large values oAX permit small variations o¥ and are
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suitable for fast vehicles. The disadvantage of such ti@jes is given by the fact that vehicles
simultaneously occupy two lanes of a larger segment of thd,rteading to an inefficient use
of the road infrastructure. Accordingly, it is highly redau to adjust lane change trajectories
depending on the velocity/acceleration profile of vehicles

When considering self-driving vehicles, lane change ¢tajges have to be computed in real-time
and lane changes have to be carried out autonomously. Ipgher, we assume that a basic control
architecture for self-driving vehicles as in Fig. 2 is aahble.

Control Architecture

v
Td )
» Lateral Control >
Longitudinal N
and Lateral v ) Se\llft;:li’lc\lltleng Signal
Maneuvers |, | Longitudinal Fr measurement
o Control

*

FIGURE 2. Control architecture for self-driving vehicles.

In such architecture, the motion of the self-driving vedit controlled by the steering angbe
and the traction forc&t. Desired maneuvers for longitudinal and lateral vehiclenewaers are
computed in real-time and the related reference signaledrto the respective controllers. The
longitudinal controller provides the traction forEg depending on the desired acceleration signal
ag and the lateral controller determines the required stgerimgled based on the desired vehicle
trajectoryTy. Note that both the maneuver generation and the controfitiigts depend on signal
measurements from the vehicle.

Assuming a control architecture as in Fig. 2, the focus @ plaiper is on the generation of suitable
lane change trajectori@iy depending on the velocity/acceleration profile of vehicE&secifically,

it is desired to employ an analytical representation of lemenge trajectories that can be followed
by self-driving vehicles, which can be parametrized dependn longitudinal vehicle maneuvers
and can be evaluated in real-time.

2.2. Bi-Elementary Pathsfor Lane Changes

The recent literature indicates that trajectories basedathoid curves can be used to represent
lane change trajectories [27, 13, 11]. The work in this papbased ori-elementary pathas a
special type of clothoid curves.

In general, a bi-elementary path as considered in this pajstaped as shown in Fig. 3.
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FIGURE 3. Components of a bi-elementary path.

It consists of 5 segments;,C,,L,C3,Cy4 that are defined in terms of the arc-length parameter
s. Precisely,s denotes the traveled distance when following the bi-eléargrpath andSis the
total length of the path. The segmefs...,C4 areclothoid curveswheread. is a straightine
segment During the clothoid curves, the curvatukeof the bi-elementary path changes linearly
with the arc-length, whereas the curvature is zero duriaditie segmenit. We next formalize the
description of a bi-elementary path as a basis for the maintseof this paper. The formalization

is based on the previous literature in [20, 7, 17, 18, 14, 11].

Since bi-elementary paths are based on clothoid curves,ratepfiovide a formal definition of
clothoids. Clothoids are considered as suitable curvesdbicle trajectories since they enable a
smooth change of the trajectory curvature [4, 11]. The dureaof a clothoid is defined as

k(S) =ki+0s (1)

with the initial curvaturek; and a constantr that characterizes the change of curvature. Then, the
evolution of a clothoidC with arc lengthS: in the coordinateX, Y, W is evaluated depending on
the arc length parameter

W) = /O "K(@)dz+ W, ?)
X(s) = /0 cosW(2)) dz+ X, @)

Y(s) = /0 sin(W(2)) dz+, @)
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Here,W;, X; andY; represent the initial values for the orientation anleqosition andy -position,
respectively. In the sequel, we employ the following natatfor clothoids. The initial point is

written ask = X.] , the initial curvature i = k(0) and the final curvature ik = k(). We

write
C=7(R, Wik, k., &) )

for a clothoid with starting poin®, initial orientation anglép;, initial curvaturek;, final curvature
ki and arc lengttg:. We note that a clothoid is uniquely characterized by thesarpeters since
the curvature is directly given by
(ke — ki)

<
For a given clothoidC = € (R, W;, ki, ki, &), we introduce the notatioR (C) = R, W;(C) = ¥,
ki (C) = ki, ki(C) = ks andS(C) = <. In addition, the change in orientation angle is computed as

AW(C) = m (7)

k(s) =k +as=k+

S. (6)

and the final tangent angle is
Y (C) =W, +A¥(C). (8)

We further writeY; (C) for the finalY-position ofC.

The clothoid curve€; andC, of a bi-elementary path as in Fig. 3 form a so-cal&ementary
path It holds for the arc-length th&, = S, = S;/2 and the curvatures fulffill

2k 2k
ke, (s) = gls(for sc[0,5/2) and ke,(s) = gl (S—s9) (forse (S1/2,S1]).  (9)
In addition, the initial point ofZ; is the final point ofC,, the initial angle ofC; is the final angle
of C; and the initial curvature d; is the final curvaturdy of C;. Writing B for the initial point

of C; andW; for the inital angle ofZ;, such elementary path is defined by the two clothoid curves

Cl :%(Plvwi’(l k]_,S_']_/Z) (10)
Co =% (R(Cy),¥s(C1),k1,0,5:/2) (11)

and is written as
& (R, Wi, k1, S1) (12)

in the remainder of this paper. Noting tHat= 0 andW¥; = O for the elementary path given B¢
andC,, this elementary path is precisely described by

Er = &(0,0,ky, Sy). (13)

The second part of the bi-elementary path in Fig. 3 is a $ttdige segment that is defined by
its arc-lengthS , its initial point P(E;) and its orientation angle = Ws(E;). Hence, this line
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segment is written as
L =2 (R(E1), ¥1(E1), ). (14)

It can be further observed that the cuné@sandC, in Fig. 3 form an elementary path that is
described by

Ex=&(R(L), 0.k, S). (15)
In order to ensure that the tangent orientatlp(E,) at the end of the bi-elementary path is zero
and respecting (7), it must hold that

k k
That is, .
b:-%%. (16)

2.3. Problem Formulation

Together, a bi-elementary path consists of the concatgreggments; in (13), L in (14) and
E, in (15) and is defined by its maximum curvatdeeand the shareS;, S , S of the different
segments in the total arc-lenggh

There are two main problems to be solved regarding the gateat these parameters when com-
puting lane change trajectories for self-driving vehicles

1. It needs to be ensured by a correct choicé0fS;, § and S, that the change of th¥-
position of a bi-elementary path equals the actual lanehwiglince the position of a clothoid
path cannot be evaluated analytically [4, 13], efficient etical methods are required to
achieve this task.

2. The selection of each parameter affects the shape of tblefientary path and hence the
drivability of the corresponding lane change trajectorhafTis, different parameters must
be chosen depending on the velocity profile and/or acc@eratofile of a vehicle.

In Section 3, this paper develops novel computational nusthio order to address the stated re-
quirements. Furthermore, a simulation study in Sectionlidages the suitability of the developed
methods.

3. Computation of Lane Change Trajectories

This section constitutes the main contribution of this pagérst, Section 3.1 summarizes sev-
eral properties of bi-elementary paths that are requirethi®efficient parameter computation in
Section 3.2. A novel method for the parameter selection-eldmentary paths depending on the
driving situation is proposed in Section 3.3 and illustdalty example trajectory computations in
Section 3.4.
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3.1. Basic Properties of Bi-elementary Paths

Using the same notation as in Section 2.2, several factst @ementary paths are derived from
[11]. Using the change in orientation angle

kS
=73
from (16) and the function
05
D(a) :2/ co2a (—Z +2))dz (17)
0

the change in th¥-position of a generic bi-elementary path in Fig. 3 can béuatad as

AY = AY; +AY. +AY>, = S D(a) sin(a/2)+ S sin(a) + S$D(a) sin(a/2). (18)

We next suggest two modifications of the computation in (E¥st, it has to be respected that it
is not possible to evaluate (17) analytically. Instead, weputeD(a) for the relevant range of
values fora and use an approximation of the resulting curve. From thetiped perspective, the
orientation angle of a lane changes stays well below a vdlae<o7t/4. Hence, an interval af €
[—m/4, /4] is used for the approximation. Noting thata) = D(—a), it is hence, sufficient to
evaluateD(a) in the intervallO, 71/4]. The resulting function evaluation is shown in Fig. 4 togeth
with a tight polynomial approximation of degree 3. In thesggwe employ this approximation

D(a) = po+ p1a+ p.a’+ pza® (19)

with the parametergg = 1, p; = 1.34- 1074, p, = —6.75-10"2 and p3 = 1.64- 103, The ap-
proximation is chosen such that the residual norm is below.10

0.99

—~0.98
3
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0.96

oo : : : : : : :
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FIGURE 4. Approximation ofD(a)

In addition, it will be more convenient to consider a differ@arametrization of a bi-elementary
path based on the share of each segment in the overall ayttyl&nTo this end, we introduce the
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parameterd € (0,1) andy € (0,1] and define

S+S=yS (20)
S=(01-y)S (21)
S=AyS (22)
S=(1-2)yS (23)

That is, y represents the length of the elementary paths in relatidthe@verall arc lengtts. A
large value ofy (and hence small value of-1y) implies a short straight line segmdntThe ratio
of the arc-lengths of the elementary pathsandE; is given byA. If A > 0.5, it holds thatE; is
longer tharE; and vice versa. Using these shape paramdtensdy, a bi-elementary path can be
written as

B(Ski.Y). (24)

Using Iﬁ(a) in (19), the overall change in théposition is approximated as
AY = $.D(a) sin(a/2) +S_sin(a) +$D(a) sin(a/2)
— A ySD(a) sin(a/2) + (1—y)Ssin(a) + (1—A) yD(a) sin(a /2)
= S(yD(a) sin(a/2) + (1—y) sin(a)). (25)

For illustration, Fig. 5 and 6 show bi-elementary paths wli arc-lengtts= 100 and curvature
ki = 0.005 for different values ok andy. The variation ofA in Fig. 5 indicates that choosing a
larger value ofA (a longer first elementary path ) also leads to a larger change in tgosition.
The same effect is observed for a larger valug (d shorter straight line segmenin Fig. 6.

10 1 ! L) L) L) ! L) L) L)
—A=03 : : : : : : :
— 8 ——r=04F T SRR FEEEEREEEE EEERERRERE T T Teereon E
£ _ : : : : : : :
p 6_—)\—0.5 ......................................................
I‘g ——A=06 : : : : g = :
8 al—r=or} i e
1 T : : : - . : :
>—
oF L D
0

0 10 20 30 40 50 60 70 80 90 100
arc length [m]

FIGURES. #A(Ski,A,y) for S=100,k; = 0.005,y = 1 and different values of.

3.2. Parameter Computations

When computing lane change trajectories for self-drivie@ieles based on bi-elementary paths,
itis required to determine the relevant parameg&/s, y, AY, k; anda. According to the previous
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FIGURE 6. Z(Sky,A,y) for S=100,k; = 0.005,A = 0.5 and different values of.

discussion, these 6 parameters are related by the folloggngtions:

AY = S(yD(a) sin(a/2) + (1 - y) sin(a)) (26)
a=2 v28 k (27)

That is, it is only required to assign four of these paranset€he remaining parameters can then
be computed from (26) and (27).

Regarding the choice of the fixed parameters, we considee@adrase that is most relevant in
practice and that is the basis for the novel parameter gaectethod in Section 3.3. In this case,

the change in th¥-positionAY, the shape parameteksandy and the curvature parametarare
A kg

. . . 1 _ A
denotes the maximum curvature of the second elementarygpathe choice ok; determines the

known. Sincek; | denotes the maximum curvature of the first elementary [padnd|k;| =

maximum curvature encountered along the bi-elementaty. [paibm the practical perspective, the
drivability of a bi-elementary path is directly related teetvalues ok, andk, as will be further
elaborated in Section 3.3. Intuitively, it holds that td@ies with a large curvature can only be
followed at small velocities. That is, specifying the vaafék; for a lane change is directly related
to the admissible velocity during a lane change.

In the described casAY, A, y andk; are given, and it is required to determiaeandS. We know

from (26) and (27) that
YA Sk 2a
a= =

2 A Vkl
This can be substituted in (26) and we get
AY ~ AY = )\2% (yD(a) sin(a/2) + (1—y) sin(a)).
1

This gives a nonlinear equation far.

fi(a) =2a (yD(a)sin(a/2)+ (1—y)sin(a)) — A ykiAY = 0. (28)
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It is desired to obtain a fast solution of the nonlinear eiguatin (28) in order to evaluate bi-
elementary paths for lane changes in real-time. We next shatithe Newton method is suitable
for this purpose and even provides a unique solution. Toehts we first briefly describe the

Newton method. Consider the equatibfz) = 0, wheref(z) is a nonlinear function. Using an
o2f(2)

initial value zy and the first derivativef’(z) = oy

of f(z), the Newton iteration proceeds as
follows

o @,
Ziy1= f’(zi)+z" 1=0,1,.... (29)

The iteration terminates iff (z.1)| < €, wheree is a small tolerance value. We next show in

Theorem 1 that the Newton iteration converges to a uniqueisalwhen solving (28).

Theorem 1. Consider thatr € [0,71/4],0<y<1,0< A -k; <0.05 and 0< AY < 10. Then, the
nonlinear equation in (28) has a unique solutéionthat can be computed by the Newton iteration
in (29) with the initial valueag = 11/4.

The proof of Theorem 1 is provided in Appendix A. In words, ®rem 1 confirms that the
Newton iteration with the functiori;(a) in (28) converges to the unique solutiori. Applying

*

2 . . . . .
S = ﬁ, this leads to a lane change with width using the bi-elementary pat# (S, ki, A, y).
1

When applying Theorem 1, the defined boundsXoy, k; andAY need to be justified. By (21)
to (23), itis clear that & A,y < 1. In addition, it holds that the curvature paramdterepresents
the inverse of the road radius. Considering that the smailessible radius for a vehicle is given

by the turning circle radiuRr, it must hold thak; < 1/Ry and|ky| = 1}\_k; < 1/Rr. Thatis,
Aky 1/Ry 1/Rr kg
< e /TR
1 xS 1I/Rr=A(k+1/Rr)<1/Rr =A< K+ 1/RT Ak < K+ 1/RT

Considering thak; is bounded by ARy, the bound fon k; is given by

YRr-1/Rr 1

Ak S
LS TRr +1Rr _ 2Rr

(30)

Applying the fact that the turning radius of series vehigtegsually not below 10m, it can hence
be assumed thatk; < 0.05. In addition,AY represents the lane width for a lane change. When
performing a single lane change, the lane width is usualiymgd adlY = 3.7 m. Also allowing

for multiple or wider lane changes, we consider a bounfYok 10.

For illustration, we next provide several examples for lereentary paths that were computed
using the Newton iteration with = 108 as described above withY = 3.7 and different values
for ki, A, y. Note that the termination criterion corresponds to a diwnaof 1um from the desired
lane change widtldY = 3.7m, which is more than sufficient in practice. Fig. 7 showsdase
wherek; is varied for given values of = 0.5 andy = 1. It can be seen that a larger curvature
leads to trajectories with a shorter arc-length.
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FIGURE 7. A(Sky,A,y) for AY =3.7,A = 0.5, y =1 and differenk;.

A similar effect is observed when increasing the shape petensA andy in Fig. 5 and 6, respec-
tively. In all computational experiments, the Netwon metlsonverged within at most 7 iterations
despite the very tight termination condition.
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FIGURE 8. #A(Ski,A,y) for AY =3.7,k; =0.01, y =1 and differentA.
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FIGURE9. A(Sky,A,y) for AY = 3.7, k; = 0.01,A = 0.5 and differenty.

3.3. Parameter Selection M ethod

The method presented in the previous section enables tegetfcomputation of bi-elementary
paths assuming that the relevant parameters sukh Asandy are already given. The remaining
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guestion is the selection of these parameters dependinigeadritving situation. Qualitatively, it
holds that small curvature values (and hence long trajesfoshould be chosen at large speeds
and/or accelerations, whereas large curvature valuest (shjgctories) can be tolerated at small
velocities. In the sequel, we develop a method for seledtiegrelevant parameters based on a
characterization of the maximum possible curvature fovargivelocity/acceleration profile.

To this end, we assume that tletry velocityof a lane change & and the maximum acceleration
during a lane change B&ynax In practice, the entry velocity is the current vehicle w#p when
initiating a lane change and hence available. In additagy is determined by the limits for
comfortable driving which are in the order afa = 2 m/seé [32, 9, 19]. Usingvg andamay, the
maximum velocity profile during a lane change is given by

V(t) = Vo + @maxt (31)
and the corresponding arc-length is computed as
1 2
S(t) = Vot + 5 amaxt”. (32)

Since bi-elementary paths are formulated depending onrthkeiagth parametes, we next write
the maximum velocity profile in terms of the arc-length as

t(s) = ar: (—Vo+ 1/ VE+ 2amaxs), (33)

ax

Vmax(S) = Vo + 8maxt(S) = Vo — Vo + 1/ V3 + 28maxS= 1/ V3 + 28maxS. (34)

It is now possible to establish a relation between the mawimelocity profile in (34) and the
maximum feasible curvature based on the well-establishetioh circle [21]. Assuming a point
mass vehicle model as in [11], it must hold that

Afong + iy < U2 G°, (35)

whereby,aong is the longitudinal vehicle acceleratioas is the lateral vehicle acceleratiop,is
the friction coefficient of the road arglis the gravity constant. Moreover, the lateral accelenatio
on a curved road with radiug and curvatur&k = 1/R depends on the longitudinal velocitys)
via

v(s)®

aat(s) = R = v(s)?-k. (36)

Respecting thadong < amax, the maximum curvature profile is derived as

Vrznax(s) V% + 28maxS
In words, any lane change trajectory with a curvature, whas®lute value at each arc-length
remains belowknax(S) can be taken by vehicles that enter the lane change withiteblagand

2.02_32 2.02_32
() = V2 F ~Bhax _ V1 G~ 37)
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whose acceleration is bounded &ya.x. Moreover, in view of the previous discussion on lane
change trajectories in Section 2.1, it is desired to find atekbpossible bi-elementary path with
a curvature that is bounded Byax(S).

Consider a generic bi-elementary pa#iS ki, A, y). According to Fig. 3, the maximum curvature
is reached as = A yS/2 with a curvature valug and ats= S— (1— A)yS/2 with a curvature
valuek, = —A /(1—A)k;. In order to determine a bi-elementary path with the shoeeslength
(and hence largest curvature), it is required to achieve

Ki = kmax(A yS/2) andky = —A /(1 —A) ks = —Kkmax(S— (1 —A) yS/2). (38)
Substituting (38) into (37), it follows that
A
Kmax(S2) = Y Kmax(S2) (39)
V I-‘Z’gz_algnax _ A V Uz’gz_a?nax (40)

V3+2a(S—(1-A)yS/2)  1-A v3+2aAyS/2

This equation can be solved farand the corresponding value lof follows from (38).

)\max = f)\ (S)

. (Sa:nax— \/Szarzr\axyz_zszarznaxy+szar2r1ax+ ZSanaxv%+VS+v8—Sanaxy) 41
o 2S anaxy @

2.112 _ a2
Kemax= fio (SA) = Y9 H"~ dnax (42)

That is, (41) and (42) must be fulfilled in order to achieve mieximum feasible curvature. In

addition, (28) must be ensured to obtain the desired lanthwid. In the sequel, we reformulate
A yk]_S
2

(28) in terms of the arc-lengtBby substitutinga = . Accordingly, it must hold that

fo(SkaA,y) = SO LS sin A VE5) 4 (1) sing

Substituting (41) and (42) into (43), we must solve

A ykls

))—AY =0.  (43)

fS(Sv fk1(87 f)\ (S))7 f)\ (8)7 y) =0 (44)

in order to obtain a bi-elementary path with the maximum fbs<urvature. Theorem 2 states
that a unique solution of (44) can be obtained using the New#oation in (29).

Theorem 2. Consider thaSe [0,500, 0.3 < y<1and 0<AY < 10. Then, the nonlinear equation
in (44) has a unique solutidsf that can be computed by the Newton iteration in (29) with tiitésil
valueS = 500.
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The proof of Theorem 2 is provided in Appendix B. We again rtbed the parameter intervals
in Theorem 2 are chosen according to practical consideati®irst, the same values fAl as

in Section 3.2 are assumed. Second, the valueg &re selected based on the fact that smaller
values ofy lead to very long bi-elementary paths as was already obdénvEig. 9. In addition,

it will be further highlighted in Section 3.4 that small vakifory are not suitable for lane change
trajectories. Finally, the maximum value f8is chosen such that the Newton method always finds
a solution as is shown in Appendix B.

In summary, this section develops a straightforward proetbr selecting the parameters of a bi-
elementary lane change path for a given entry velogitymaximum acceleratiopyax and shape
parametey. The steps of the procedure are listed as follows.

1. Determine the solutio8 of (44) using the Newton method
2. Computer* = f, (S") from (41) andkj = f, (S,A*) from (42).
3. Evaluate the desired bi-elementary patlva$ ki, A*,y).

The resulting bi-elementary path is the shortest path favengralue ofy that fulfills the curvature
constraint in (37) for all possible velocity profiles thaarstfrom the entry velocityy and that
meet the acceleration constramfax. A suitable choice for the parametgwill be discussed in
the subsequent section.

3.4. Trajectory Examples

In this section, we validate the proposed method by sevewahples. We consider different
friction coefficientsyu = 0.82 (dry asphalt) angt = 0.5 (wet asphalt) and accelerations up to
5m/seé. Considering that accelerations belaw- 2 m/seé are considered as comfortable [32, 9,
19], amax= 5m/seé is selected as a case with a large acceleration.

In the first example, the entry velocity s = 20 m/sec, the friction coefficient j$ = 0.82 (which
corresponds to dry road) arnyd= 1. Fig. 10 shows the computed bi-elementary path (uppey part
and its curvaturé(s) with the corresponding maximum curvatlgax(s) (lower part) for different
maximum accelerations. It is readily observed that theldsrentary paths are computed such
that the curvature constraiftax(S) is met. In accordance with (41) and (4R)s) equalskmax

at the two points of maximum curvature such that there is aeilide shorter bi-elementary path.
Comparing the different accelerations, it is clear thagjearaccelerations require a longer arc-
length due to the reduced maximum curvature.

Fig. 11 considers the same case as Fig. 10 with the differtat¢é¢he entry velocityg = 40 m/sec
is increased. Since a larger entry-velocity implies a redumaximum curvature in (37), the bi-
elementary paths in this case are considerably longer cadpa the ones in Fig. 10.
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Fig. 12 repeats the experiment in Fig. 10 with a reduceddnctoefficientu = 0.5. It can again
be seen that the resulting bi-elementary paths performaiie ¢hange with the smallest possible
arc-length, whereby the arc-length is increased comparédyt 10. In particular, it turns out that

an acceleration odmax =5 m/seé is not tolerable in this case. Fig. 12 shows the computation f
a= 4 m/seé because of this reason.

The previous examples are evaluated yot 1, that is, there is no straight line segment in the
resulting bi-elementary paths. We next study the effechahgingy usingvy = 20 m/secamax =
2m/seé and = 0.82. The resulting bi-elementary paths are shown in Fig. 1& dlear from
this experiment that smaller values pfead to longer trajectories. This effect is mainly caused
by the usage of a non-zero curvature during a shorter fractiadhe overall arc-length whepis
decreased. We note that the same effect was observed fapaliments with different values of
Vo, U, 8max andAY. An analytical evaluation of this observation is not in tkege of this paper.
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In summary, the evaluation in this section shows that th@gsed parameter selection method
in Section 3.3 indeed determines bi-elementary paths fa thhanges with the shortest possible
arc-length, while meeting the imposed curvature congsaifonsidering that the shortest lane
change trajectory was obtained fpe= 1, it is suggested to apply the proposed method for this
value ofy. Itis finally pointed out that the proposed parameter seleanethod can be applied

in real-time. It is only required to solve (43), which can lmd using the Newton method with

a limited number of iterations. In all our experiments, autioh of (43) fore = 108 (which
corresponds to a precision ofiin) could be obtained within not more than 15 iterations.
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4. Realization and Evaluation

The lane change trajectories in Section 3 were computedilmasthe maximum curvature evalua-
tion in (37), which is based on a point mass vehicle models $hction validates the suitability of
the computed trajectories using the control architectariig. 2 with a nonlinear vehicle model.
The model equations are presented in Section 4.1 and siomulasults for different velocity
profiles and friction coefficients are shown in Section 4.@ &13.

4.1. Vehicle Modée

The study in this paper is based on the dynamic bicycle magshawn in Fig. 14. The global
coordinates arX, Y andW¥ and a body coordinate frame with the coordinateg, ( is attached
to the vehicle center of gravity (CG).

Ay

FIGURE 14. Dynamic Bicycle Model

The relation between the inertial and body coordinatesvisrgby

X = xcogW) —ysin(W) (45)
Y = xsin(W) +ycog W) (46)
WY =. (47)

The dynamic equations in the body frame are
I:xf + I:xr

X=yy+ o (48)
. R =

- sy B @)

' :M (50)

Hereby,mis the vehicle masd;; is the moment of inertia ana, b are the distances between the
wheels and the CG. The longitudinal fordgs, Fx and the lateral forceBy, Fy, at the front and
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rear tires are computed using (51) to (54) depending on gpentive forces in the wheel direction
Fr, Fer, FBr andF.

Fxi = Frcoqd) — Feesin(d) (front wheel, x-direction) (52)
Fyt = Frsin(d) + Fercogd) (front wheel, y-direction) (52)
F« = Ry = 0 (rear wheel, x-direction) (53)
Fyr = Fer (rear wheel, y-direction) (54)

Fr is the traction force that is provided by the engine &pd= 0 when using actuation at the front
tires. The forced andF. depend on the lateral tire slip angles (front) anda; (rear) of the
respective tire:

ap = tan‘l(y+).(a¢) _5 (55)
o = tan‘l(#) (56)

Then, the tire forces can be computed using the magic forfRdlgthat is frequently used in the
literature [3, 25, 12]. Its basic form is given in the follow equations [22, 21]:
Fet = Det sin(Ccf tanfl(BCf as — Eq (Bcf ag — tanfl(BCf lof: )))), (57)
or = D¢r Sin(Cer tan 1 (Bgr @y — Egr (Ber oy — tan 1 (Ber ). (58)
In this paper, we make the common assumption that the pagesrfet the rear and front tires are
equal. Thatis, we usB, C, D andE. Here,D determines the maximum possible lateral tire force,

which depends on the normal force of the vehicle. Using thécle massn and the road friction
coefficientu, the maximum lateral force is given by

D=umg (59)

The remaining parameters are shape parameters that detettraidependency of the tire force on
the slip angle. In this paper, we use the parameters fromg@8lmmarized in Table 1.

TABLE 1. Vehicle parameters.

m L, B C D E a b
1480 1950 8.22 1.65 -1.7-10° -10 1.421 1.029

4.2. Lane Change Experimentsfor Dry Roads

In this section, we consider the case of dry roads suchpthat0.82. We perform simulation
experiments in the control architecture in Fig. 2 using takiele model in Section 4.1. Lateral
control is realized by the lane keeping method in [15] andtthetion forcel is computed such
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that the desired acceleration profile for each experimeiicigeved. In each experiment, the
vehicle performs a lane change after traveling 50m on ag$trabad and continues driving on
that road after the lane change until theposition reaches 250 m. The lane width of & is
chosen if not stated otherwise. Following the discussioBdation 3.4, the valug= 1 is used.

In the first experiment, the entry velocityvg= 20 m/sec and the maximum acceleratiopjisx =
2m/seé. In this case, a trajectory with* = 0.46, ki = 0.018 S* = 42.86 m is computed. Fig.
19 shows the simulation result. In the upper plot, the refegetrajectory is compared to the
actual vehicle trajectory and the lower plot shows the a&raébn bound g as well as the applied
longitudinal accelerationyong and the overall acceleratiqv a,zOng +a2,. Itis readily observed that
the vehicle is able to follow the reference trajectory witnaall error. This is due to the fact that
the reference trajectory is computed respecting the ainsin (37) on the maximum curvature.
As a result, the overall acceleration does not exceed theezation bound as can be seen in the
lower part of Fig. 15.
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FIGURE 15. Trajectory following forvg = 20 m/secamax = 2 m/seé, u = 0.82
andAY =3.7m.

Fig. 16 shows the simulation result fa§ = 20 m/sec an@max = 4 m/seé. In this case a longer
lane change trajectory with* = 0.42,k; = 0.015 andS" = 49.74 is obtained due to the increased
maximum acceleration. Again, it is the case that the vetiale follow the computed reference
trajectory.

Similarly, Fig. 17 shows the case of an increased entry itglog = 40 m/sec andmax = 2 m/seé.
The resulting parameters aké = 0.48, k; = 0.005 andS" = 81.80. It is again observed that the
lateral acceleration stays below the computed maximumlered®n such that the vehicle can
follow the reference trajectory.
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The last experiment in this section is concerned with the cs double lane change wity =
7.4 m atvy = 20 m/sec andmax = 2 m/seé. The resulting parameter values are= 0.44, k =

0.017 andS" = 6294 m. Fig. 18 shows that the computed reference trajectospitable for
vehicle following.
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4.3. Lane Change Experimentsfor Wet Roads

This section considers the same type of experiment as inrthvéopis section for the case of wet
roads. That ispy = 0.5. Fig. 19 displays the case af = 20 m/sec an@ax = 2 m/seé with the
parameter valued* = 0.44,kj = 0.01 andS* = 58.08 m. Fig. 20 shows the casewf= 40 m/sec
and amax = 2 m/seé with the parameter values* = 0.47, ki = 0.003 andS = 10947 m. In
comparison to the case of dry roads, it is observed that thpated trajectories are longer. This
is expected to the reduced available lateral force. In smhdiboth figures show that the computed
trajectories are suitable for vehicle following and theederation bound is always met.

5. Conclusion

The development of self-driving vehicles is an emergingetttboth in industry and the recent
academic literature. Performing autonomous lane chamsgasei of the important tasks when real-
izing self-driving vehicles. In practical applicationsjs required to compute vehicle trajectories
for lane changes in real-time, while ensuring that the cdegbtrajectories are suitable for the
respective driving situation and can be safely followed ékigles.

The main subject of this paper is the computation of vehiegttories for lane changes depend-
ing on the driving situation. This paper first points out thatertain type of bi-elementary paths,
which is based on clothoid curves, is suitable for perfogriane changes. As the first contribu-
tion, this paper develops an efficient method for computimggarameters of such bi-elementary
path based on a Newton iteration. As the second contributiig paper determines an analytical
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bound on the path curvature depending on the maximum velpfile of a vehicle during a lane
change. Using this bound, this paper proposes a compuhpioocedure for selecting the param-
eters of bi-elementary paths that are suitable for lanegié&majectories. This parameter selection
can be efficiently carried out in real-time based on the airvehicle velocity and a bound on
the admissible acceleration. Simulation experiments @itlonlinear vehicle model show that the
proposed method determines suitable lane change tragsctor
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This paper focuses on the case of straight roads. In futum,vitis intended to extend the
obtained results to the case of curved roads. In additiom jdimt computation of an optimal
velocity profile and the desired lane change trajectorymatars will be investigated.
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Appendix A. Proof of Theorem 1

We first state an existing result regarding the convergehtgedNewton method from [5].

Proposition 3. Consider a functiorf : z— f(z) : [a,b] — R. Assume thaf (z) is twice differen-
tiable and satisfies the following conditions f@pb]:
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1. f(a) <0andf(b) >0

2. f'(z) > 0on[a,b]

3. f(z) > 0on[a,b
Then, the Newton iteration converges to a unique solutfoof the equationf (z) =0 in [a,b] if
the starting value fulfillgzy > z*.

In order to prove Theorem 1 we show that (28) fulfills the ctinds in Proposition 3. We consider
the functionf (a) = fi(a) in (28) and write

fi(a) =gu(a,y) =AY A yk
with
gi(a,y) = 2a (yD(a) sin(a/2) + (1 y) sin(a)).
That is,g01(a,y) depends o,y andg;(0,y) = O such that the offset valuf (0) = —AY A yk;

is only determined by\Y, A, y andk;. The evaluation ofj;(a,y) for values ofy € (0,1] and the
relevant range ofr € [0, 71/4] is given in Fig. 21.

—y=0
—y=0.2
——y=04
—y=0.6
—y=0.8

y=1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
a [rad]

FIGURE 21. gi(a,y) andg;(a,y) for y € (0,1] anda € [0, 11/4].

Focusing on the intervdb, b] = [0, 17/4], it is readily observed thai;(a,y) = g1(0,y) = O for

all y € (0,1] andgs (b) = g1(11/4) > 0.577. In order to apply Proposition 3 1), it must hold that
fi(a) < 0 andfi(b) > 0. Considering thaf;(a) = gi(a,y) —AY A yk; andAY >0A >0,y >0,

ki > 0, itis clear that

fi(a) = f1(0) = 91(0,y) —AY A yky = —AY A yky < 0.

Then, it must be confirmed thd{(b) = f1(11/4) = g1(11/4,y) — AY A yk; > 0. To this end, we
determine the largest value &Y A yk;. It holds by assumption thate (0,1), y € (0,1}, 0<k; <
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0.05 andAY < 10. Together, the desired bound evaluates to
AY A yk; <10-1-0.05=0.5< myingl(b, y) = 0.577.

That is, indeedf;(b) > 0 such that condition 1) in Proposition 3 is fulfilled.
In addition, it holds that
fi(a) =qi(a,y) >0
for all values ofy € (0,1}, A € (0,1), AY andk; and f{(a) = g{(a,y) is always positive for
a € [0,11/4] as can be verified by Fig. 21. Hence, condition 2) and 3) in &sitipn 3 are also

true.

Since it is assumed that only angles in the intefalt/4] are suitable for lane changes, it suffices
to choosenp = 11/4 in order to fulfill all conditions in Proposition 3.

Appendix B. Proof of Theorem 2

In order to prove Theorem 2 we show that (44) fulfills the ctiods in Proposition 3. For each
value ofy, we consider the functiofi(S) = fs(S y) in (44). Inspecting (43), it holds thd(S, y)
can be written as

fs(S'y) =gs(Sy) —AY.

The functiongs(S, y) is shown for different values of, amax, Vo andu in Fig. 22.

Focusing on the intervah, b] = [0,500 for S, it is readily observed thais(a, y) = gs(0,y) = 0
for all y € [0.3,1] andgs(b) = g1(500) > 10.32. In order to apply Proposition 3 1), it must hold
that fs(a, y) < 0 andfg(b, y) > 0. Considering thafs(S y) = gs(S y) — AY andAY > 0, itis clear
that

fs(a,y) = fs(0,y) = gs(0,y) —AY = —AY < 0.

Similarly, it is confirmed that
fs(b,y) = fs(500,y) = gs(500 y) —AY > 10.32— 10> 0.

Hence, condition 1) in Proposition 3 is fulfilled.
In addition, it holds that
fs(Sy)=gs(Sy) >0
for all values ofy € [0.3,1] and f{(Sy) = g&(S y) is always positive foiS e [0,500 as can be

verified by Fig. 22. Hence, condition 2) and 3) in Propositioare also true.

Since it is assumed that only arc-lengths in the intef92800 are suitable for lane changes, it
suffices to choos& = 500 in order to fulfill all conditions in Proposition 3.
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FIGURE 22. Evaluation offsin (44) for different values of.



