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Research Article

Abstract − This study concerns the Sylvester matrix equation in the quaternion setting
when the coefficient matrices as well as the unknown matrix have quaternion entries. We
propose a global Generalized Minimal Residual (GMRES) method for the solution of such
a matrix equation. The proposed approach works directly with the Sylvester operator to
generate orthonormal bases for Krylov subspaces formed of matrices. Then, the best ap-
proximate matrix solution to the Sylvester equation at hand in such a Krylov subspace is
constructed from a matrix minimizing the Frobenius norm of the residual. We describe how
this minimization of the residual norm can be carried out efficiently and report numerical
results on real examples related to image restoration.
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1. Introduction

The Sylvester matrix equation is of the form

AX + XB = C (1.1)

where X is the n×m unknown matrix, and A, B, and C are given matrices with appropriate sizes [1].
Such a matrix equation and its special case, a Lyapunov matrix equation [2], arise in fields, such as
control theory, eigenstructure assignment, model reduction, image restoration problems, numerical
solutions of ordinary differential equations [3–9]. On the other side, quaternions have applications
in various fields, including those from computer science, quantum mechanics, signal and color im-
age processing [10, 11]. Due to these wide ranges of applications for Sylvester equations, as well as
quaternions, the problem of obtaining solutions to (1.1), specifically over the skew-field of quaternions,
has attracted considerable attention [12–15]. Matrix equations other than Sylvester equations over
quaternions have also been studied in the literature [16–21].

In general, direct or iterative numerical methods are employed to find the solutions of (1.1) depending
on the size of A and B. When the coefficient matrices have sizes of a few hundred at most, the
problem is referred to as a small- or medium-scale problem. For these problems, the most efficient
method is a direct method proposed by Bartels and Stewart [22]. This method is based on the Schur
decompositions of the coefficient matrices A and B, resulting in a Sylvester matrix equation in a
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1Department of Mathematics, Faculty of Arts and Sciences, Kırklareli University, Kırklareli, Türkiye

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0001-5893-7080
https://doi.org/10.53570/jnt.1469996


Journal of New Theory 47 (2024) 39-51 / A Global Krylov Subspace Method for the Sylvester Quaternion Matrix Equation 40

simplified form that is easily solved by back substitution. When both coefficient matrices are small,
but one is significantly smaller than the other, Golub et al. have presented a variant of Bartels and
Stewart algorithm by means of the Hessenberg decomposition of the larger coefficient matrix [23]. A
classical alternative approach is to turn the Sylvester matrix equation into a linear system by using the
Kronecker product and vec operator. Then, the LU factorization with partial pivoting can be applied
to this linear system for finding the solution. Apart from these methods, if only one of n and m is large,
several approaches are available based on a decomposition of the smaller coefficient matrix. However,
these approaches are not useful when both n and m are large (i.e., typically larger than 200). In the
case of such large problems, commonly employed techniques to solve Sylvester equations are alternate
direction implicit (ADI) iteration and projection methods. For instance, Krylov subspace methods are
commonly employed projection methods for such large Sylvester equations when coefficients matrices
are sparse. For large Sylvester matrix equations over real or complex fields, block and global Krylov
subspace methods have attracted substantial interest in the literature [24–34]. While a block Arnoldi
process constructs orthonormal bases for several subspaces of Cn or Rn, simultaneously, the global
Arnoldi process constructs an orthonormal basis for a subspace of a space of matrices.

Linear matrix equations over quaternions rather than over real or complex numbers come up with
additional challenges, especially as the multiplication of two quaternion scalars is not commutative.
It is possible to convert a quaternion matrix equation into a real or a complex matrix equation by
employing real or complex representations of quaternion matrices. However, this conversion is usually
not desirable since it results in matrices in the converted matrix equation that are twice or four times as
large as the matrices in the original problem. On the other hand, structure-preserving Krylov subspace
methods have become popular recently to overcome the increase in the size of the matrices when such
a conversion is applied [19–21]. Some other approaches for solving linear quaternion matrix equations
work on a right or a left Hilbert space over quaternions equipped with a proper inner product [17,18].

In this study, we consider (1.1) with non-Hermitian and nonsingular coefficient matrices A and B of
size n× n and m×m, respectively, when n and m are large. We aim to find the solution by means of
a global Generalized Minimal Residual (GMRES) algorithm operating on the Krylov subspaces of the
space of n×m quaternion matrices. We directly work with the original quaternion matrices without
using real or complex representations of quaternion matrices and exploit a real inner product defined in
the space of n×m quaternion matrices. Our approach applies the Sylvester operator X 7→ AX + XB

at every iteration when adding a new direction to the Krylov subspace.

We present our study in the following order. In Section 2, the preliminaries for quaternion matrices,
useful identities, and problem reformulation are presented. In Section 3, the global Arnoldi process to
construct an orthonormal basis for a matrix Krylov subspace is described, and then the global GMRES
method to retrieve the best approximation in this matrix Krylov subspace is presented. Finally, in
Section 4, the efficiency and accuracy of the proposed approach are illustrated with examples related
to image restoration.

2. Preliminaries

In this section, we summarize quaternions and some of their properties. The division ring H of
quaternions is given by

H = {q0 + q1i + q2j + q3k | i2 = j2 = k2 = −1, ij = −ji = k, q0, q1, q2, q3 ∈ R}

For q = q0 + q1i + q2j + q3k ∈ H, the conjugate and the modulus of q are

q̄ = q0 − q1i− q2j − q3k
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and
|q| =

√
qq̄ =

√
q2

0 + q2
1 + q2

2 + q2
3

respectively.

Since the multiplication of the quaternion units i, j, and k are non-commutative, the multiplication
of a quaternion scalar p ∈ H with another quaternion scalar q ∈ H is usually not commutative. Thus,
the n-tuples of H denoted by Hn can be regarded either as a right vector space or a left vector space
over the division ring H, depending on whether the multiplication in Hn with quaternion scalars is
defined from the right or from the left, respectively. In this study, we consider Hn together with the
multiplication with scalars from the right, that is, Hn as a right vector space. A possible real inner
product on Hn is

⟨u, v⟩ =
n∑

i=1
Re (vi ui) (2.1)

for u, v ∈ Hn. The right vector space Hn with (2.1) is commonly referred to as a right quaternionic
Hilbert space. We define the norm of a vector u ∈ Hn in this right quaternionic Hilbert space as

∥u∥ =

√√√√ n∑
i=1

Re (ui ui) =

√√√√ n∑
i=1
| ui |2 (2.2)

We denote the set of n×m matrices with quaternion entries with Hn×m, which can also be regarded as a
right vector space over H together with the multiplication with quaternion scalars from the right. The
basic linear algebra terminology, definitions, and standard notations for a vector space over complex
numbers also apply to a right vector space over quaternions. In particular, the notations X∗ and v∗

are reserved for the conjugate transposes of X ∈ Hn×m and v ∈ Hn, respectively. Multiplication of
two quaternion matrices of suitable sizes is defined analogously to the multiplication of two complex
matrices. If a matrix X ∈ Hn×n satisfies X∗X = I, then X is called a unitary matrix. On the other
hand, if X ∈ Hn×n satisfies X∗ = X, then X is called Hermitian. Moreover, X ∈ Hn×n is invertible if
there exits X−1 ∈ Hn×n such that XX−1 = X−1X = I. In this work, we make use of the real inner
product on Hn×m defined as

⟨X, Y ⟩F = Re (tr (Y ∗X)) (2.3)

for X, Y ∈ Hn×m. The norm of X ∈ Hn×m induced by (2.3) is

∥X∥F =
√

Re (tr (X∗X)) =

√√√√ n∑
i=1

m∑
j=1
| xij |2 (2.4)

Note that (2.4) is an extension of the Frobenius norm defined for complex matrices to quaternion
matrices.

We provide a generalization of the definition of a block-partitioned matrix product introduced origi-
nally by Bouyouli et al. [35] to the setting of quaternion matrices equipped with (2.3).

Definition 2.1. Let A = [A1A2 · · ·Ap] ∈ Hn×mp and B = [B1B2 · · ·Bl] ∈ Hn×ml with Ai, Bj ∈ Hn×m

for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}. Then, the p × l matrix A∗3B is defined by (A∗3B)ij =
⟨Ai, Bj⟩F , for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}.

If the product of A∗3A is equal to the p× p identity matrix, that is if

⟨Ai, Aj⟩F =

 1, i = j

0, i ̸= j

for i, j ∈ {1, 2, . . . , p}, then the matrix A is called F-orthonormal.
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In the next subsection, we formally introduce our problem, as well as basic notions concerning the
important ingredients of the problem, including the Sylvester operator.

2.1. Problem Reformulation

Any A ∈ Hn×m can be uniquely expressed as

A = A1 + A2j or A = Re(A1) + Im(A1)i + Re(A2)j + Im(A2)k

for some A1, A2 ∈ Cn×m. For a matrix A ∈ Hn×n, a scalar λ ∈ H is called a right eigenvalue of A if

Ax = xλ

holds for some nonzero x ∈ Hn. We remark that if λ ∈ H is a non-real right eigenvalue, then
Axs = xs(s−1λs) , for all nonzero s ∈ H, therefore s−1λs is also an eigenvalue of A. Hence, we refer
to the set

EA(λ) :=
{

s−1λs : s ∈ H, s ̸= 0
}

as the equivalence class of λ ∈ H. Consequently, if a quaternion matrix has a non-real eigenvalue,
then it has infinitely many non-real eigenvalues. The equivalence class of a non-real eigenvalue has
only one pair of complex conjugate scalars, i.e., EA(λ) ∩ C =

{
λ, λ

}
. If the imaginary part of a right

complex eigenvalue is nonnegative, it is called a standard eigenvalue. Any n× n quaternion matrix
has exactly n standard eigenvalues counting the multiplicities [18,36].

Consider the Sylvester matrix equation

AX + XB = C (2.5)

such that A ∈ Hn×n, B ∈ Hm×m, and C ∈ Hn×m. It follows from Theorem 2.2.4.1 in [37] that (2.5)
has a unique solution if and only if

Λ(A) ∩ Λ(−B) = ∅

where Λ(·) denotes the set of standard eigenvalues of its quaternion matrix argument. In other words,
(2.5) has a unique solution if and only if the quaternion matrices A and −B do not have any common
standard eigenvalue.

Associated with every Sylvester equation, there is a Sylvester operator. Formally, the Sylvester oper-
ator S : Hn×m → Hn×m for given A ∈ Hn×n and B ∈ Hm×m is defined as

S(X) = AX + XB (2.6)

From (2.5) and (2.6),
S(X) = C (2.7)

We define the norm of the operator S by

∥S∥ = max
∥X∥F =1

∥S(X)∥F

where ∥·∥F is defined by (2.4). The adjoint of S is denoted by S∗ and is given by

S∗(Y ) = A∗Y + Y B∗

for Y ∈ Hn×m. Given X ∈ Hn×m and Y ∈ Hn×m, the equality ⟨S(X), Y ⟩F = ⟨X, S∗(Y )⟩F holds
where the inner product ⟨·, ·⟩F is defined as in (2.3).

In the rest of this paper, we focus on the solution of (2.5) by means of a global Krylov subspace method
assuming that (2.5) has a unique solution. Our approach makes use of the associated Sylvester operator
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frequently. In the next section, we describe a global Arnoldi process to construct an orthonormal basis
for a Krylov subspace, as well as a global GMRES method to find the best solution of (2.5) in a least-
squares sense in an affine space associated with this Krylov subspace.

3. Solution of the Sylvester Quaternion Matrix Equation by Global GMRES

3.1. The Global Arnoldi Process

Suppose that X0 ∈ Hn×m is an approximate solution of (2.7), and R0 = C−S(X0) is the corresponding
residual. The quaternion matrix Krylov subspace Kk (S, R0) ⊂ Hn×m associated with (2.6) and the
residual R0 that we will be dealing with is given by

Kk (S, R0) := span{R0, S(R0), . . . , Sk−1(R0)}

= {α0R0 + α1S(R0) + · · ·+ αk−1Sk−1(R0) | α0, α1, . . . , αk−1 ∈ R}
(3.1)

for a prescribed integer k. Note that in (3.1) the operator Si(R0) is defined recursively by S(Si−1(R0)),
for i ∈ {1, 2, . . . , k − 1}, and S0(R0) = R0. We remark that the set Hn×m over the field of real numbers
is indeed a real vector space. Moreover, Kk (S, R0), a subset of Hn×m, equipped with real scalars, is
a real vector space as well, hence a subspace of Hn×m.

The global Arnoldi process, described formally in Algorithm 1, is a procedure that constructs an F-
orthonormal basis for the Krylov subspace Kk (S, R0). At termination, the process generates the set
of matrices {Q1, Q2, . . . , Qk} that forms an orthonormal basis for Kk (S, R0) with respect to the inner
product ⟨X, Y ⟩F = Re(tr(Y ∗X)), for X, Y ∈ Hn×m.

Algorithm 1 Global Arnoldi Process

1: R0 ← C − S(X0)

2: Set Q1 = R0
∥R0∥F

3: for j = 1 to k do

4: V ← S(Qj)

5: for i = 1 to j do

6: hij ← ⟨Qi, V ⟩F

7: V ← V −Qihij

8: end for

9: h(j+1)j ← ∥V ∥F . If h(j+1)j = 0, then stop.

10: Qj+1 ← V
h(j+1)j

11: end for

12: Q̃k ← [Q1Q2 . . . Qk], Q̃k+1 ← [Q̃k Qk+1] and H̃k is as in (3.4).
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From the global Arnoldi process above, the recurrence for j ∈ {1, 2, . . . , k},

S(Qj) =
j+1∑
i=1

Qihij (3.2)

is immediate. Moreover, it can be verified in a straightforward manner that (3.2) above yields the
relation

S(Q̃k) = Q̃k+1(H̃k ⊗ I) (3.3)

where I is the m ×m identity matrix and H̃k ∈ R(k+1)×k is the Hessenberg matrix whose the entry
(i, j) is hij produced by the global Arnoldi process,

H̃k =



h11 h12 · · · h1(k−1) h1k

h21 h22 · · · h2(k−1) h2k

0 h32 · · · h3(k−1) h3k

0 0 . . . ...
...

...
... · · · hk(k−1) hkk

0 0 · · · 0 h(k+1)k


(3.4)

Here and throughout the rest of this paper, F⊗G represents the Kronecker product of the real matrices
F and G. In the next subsection, we present the global GMRES method for retrieving the solution of
(2.7) by making use of Q̃k and H̃k generated by the global Arnoldi process.

3.2. The Global GMRES Method

For a given initial estimate X0 ∈ Hn×m for the solution of (2.7), our global GMRES method at the kth
iteration finds Xk minimizing ∥C − S(X)∥F over all X ∈ X0 +Kk(S, R0). For all Xk ∈ X0 +Kk(S, R0)
can be expressed as

Xk = X0 +
k∑

i=1
y

(k)
i Qi

for some real scalars y
(k)
i for i ∈ {1, . . . , k}, or equivalently

Xk = X0 + Q̃kYk

for Yk = y(k) ⊗ I ∈ Rkm×m where y(k) :=
[
y

(k)
1 y

(k)
2 . . . y

(k)
k

]T
. Thus, recalling R0 = C − S(X0), the

residual Rk = C − S(Xk) can be written as

Rk = R0 − S(Q̃kYk) (3.5)

The minimization of ∥C − S(X)∥F overall X ∈ X0 + Kk(S, R0) is equivalent to the minimization of
∥Rk∥F with Rk of (3.5) and Yk = y(k) ⊗ I, for some y(k) ∈ Rk. In other words, we would like to solve
the following minimization problem over y(k) ∈ Rk:∥∥∥R0 − S

(
Q̃k(y(k) ⊗ I)

)∥∥∥
F

= minimum

Using the linearity of the operator S and (3.3), the last minimization can be rewritten as∥∥∥R0 − Q̃k+1(H̃k ⊗ I)(y(k) ⊗ I)
∥∥∥

F
= minimum (3.6)

It follows from the description in Algorithm 1 that R0 = βQ1 for β := ∥R0∥F , or equivalently
R0 = Q̃k+1(βe1⊗ I) where e1 is the first column of the (k + 1)× (k + 1) identity matrix. Hence, (3.6)
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can further be simplified as∥∥∥Q̃k+1
(
(βe1 − H̃ky(k))⊗ I

)∥∥∥
F

=
∥∥∥(βe1 − H̃ky(k))⊗ I

∥∥∥
F

= minimum (3.7)

The first equality in (3.7) follows from the fact that Q̃k+1 = [Q1Q2 · · · Qk+1] where {Q1, Q2, · · · , Qk+1}
is an orthonormal set with respect to the inner product ⟨·, ·⟩F , inducing the Frobenius norm ∥ · ∥F .
As a result, our least squares problem reduces to finding y(k) such that∥∥∥βe1 − H̃ky(k)

∥∥∥ = minimum (3.8)

where ∥·∥ is the Euclidean norm on Rk+1. At iteration k of the global GMRES method, we solve this
real least-squares problem over the variable y(k) ∈ Rk.

A typical approach to solve (3.8) efficiently is triangularizing H̃k unitarily. Specifically, we transform
the Hessenberg matrix H̃k into an upper triangular matrix Ũ by applying k square unitary matrices
W1, W2, . . . , Wk from left, that is

WkWk−1 . . . W1H̃k = Ũ =



ũ11 ũ12 · · · ũ1k

0 ũ22 . . . ũ2k

0 0 . . . ...
...

... · · · ũkk

0 0 . . . 0


where Wj ∈ R(k+1)×(k+1), for j ∈ {1, 2, . . . , k}, is given by

Wj =


Ij−1 0 0

0 Pj 0

0 0 Ik−j

 (3.9)

for a Givens rotator Pj ∈ R2×2 and Iℓ denoting the identity matrix of size ℓ× ℓ. For completeness, an
efficient realization of these ideas to turn the Hessenberg matrix H̃k into an upper triangular form Ũ

is given in Algorithm 2.

Algorithm 2 Triangularization of the Hessenberg Matrix H̃k

1: for j = 1 to k do

2: y(j) ← H̃k(j, j + 1 : j)

3: ỹ ← y(j)

∥y(j)∥

4: u← H̃k(j + 1, j : k)

5: H̃k(j + 1, j + 1 : k)← −ỹ2H̃k(j, j + 1 : k) + ỹ1H̃k(j + 1, j + 1 : k))

6: H̃k(j + 1, j)← 0

7: H̃k(j, j : k)← ỹ1H̃k(j, j : k) + ỹ2u

8: end for

9: Ũ ← H̃k
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In the description in Algorithm 2, the notation H̃k(ℓ, ℓ1 : ℓ2) is reserved for the row vector formed of
the entries of H̃k on the ℓth row with column indices from ℓ1 to ℓ2. Moreover, the unitary matrices
W1, W2, . . . , Wk triangularizing H̃k can be formed using the vectors y(1), y(2), . . . , y(k) generated by
Algorithm 2. Specifically, Wj is as in (3.9) with the Givens rotator Pj defined as

Pj = 1
∥y(j)∥

 y
(j)
1 y

(j)
2

−y
(j)
2 y

(j)
1


for j ∈ {1, 2, . . . , k}.

Once H̃k is triangularized into Ũ , (3.8) can be solved efficiently. In particular, as (2.2) is invariant
under unitary transformations, (3.8) can equivalently be expressed as

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



û1

û2
...

ûk

ûk+1


−



ũ11 ũ12 · · · ũ1k

0 ũ22 . . . ũ2k

0 0 . . . ...
...

... · · · ũkk

0 0 . . . 0


y(k)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= minimum

where
[û1 û2 . . . ûk+1]T := WkWk−1 . . . W1(βe1)

can be obtained by applying the rotators P1, P2, . . . , Pk in this order to βe1. It follows that the solution
y

(k)
∗ of (3.8) is the solution of the upper triangular system

ũ11 ũ12 . . . ũ1k

0 ũ22 . . . ũ2k

...
... . . . ...

0 0 · · · ũkk

 y =


û1

û2
...

ûk

 (3.10)

and can be retrieved by back substitution.

Once we have y
(k)
∗ at hand, the best approximate solution Xk in X0+Kk(S, R0) for AX +XB = C that

is Xk minimizing ∥C−(AX +XB)∥F over all X ∈ X0 +Kk(S, R0)), is given by Xk = X0 +Q̃k(y(k)
∗ ⊗I).

An outline of the overall global GMRES method is provided in Algorithm 3.

Algorithm 3 The Global GMRES Method to Solve the Sylvester Quaternion Matrix Equation
1: Apply Algorithm 1.

In particular, form the matrix Q̃k = [Q1Q2 · · ·Qk] such that {Q1, Q2, . . . Qk} forms an orthonormal
basis for Kk(A, R0), as well as the Hessenberg matrix H̃k as in (3.4) satisfying (3.3).

2: Use Algorithm 2 to Triangularize H̃k.
Specifically, unitarily transform H̃k into the upper triangular matrix Ũ , and keep also the rotation
vectors y(1), y(2), . . . , y(k) that define the unitary transformation.

3: Apply Unitary Transformation from Step 2 to βe1.
Apply the unitary transformation from the previous step to βe1 by making use of y(1), y(2), . . . , y(k)

to obtain [û1 û2 . . . ûk+1]T .

4: Find the Solution y
(k)
∗ of the Upper Triangular System in (3.10).

5: Form Xk = X0 + Q̃k(y(k)
∗ ⊗ I), Which is the Best Approximate Solution of AX + XB = C

in X0 +Kk(S, R0).
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4. Numerical Examples

In this section, we demonstrate the effectiveness of the proposed global GMRES approach for (2.5) by
conducting numerical experiments on examples related to color image restoration.

A color image can be encoded as an n×m quaternion matrix of the form

Q = Ri + Gj + Bk

where R, G and B are n×m real matrices represent the color image’s red, green, and blue components.
Let A and B be the blurring quaternion matrices of the form

A = A1 + A2i + A3j + A4k and B = B1 + B2i + B3j + B4k

for some real matrices Aj and Bj such that j ∈ {1, 2, 3, 4}. The constant parts A1 and B1 of blurring
matrices A and B are specified as

aij , dij =
{

1
σ

√
2π

e− (i−j)2

2σ2 , |i− j| ≤ r

0, otherwise

whereas the non-constant parts, i.e., the coefficient matrices for i, j, and k parts, of A and B are given
by

aij , dij =
{

1
10

1
σ

√
2π

e− (i−j)2

2σ2 , |i− j| ≤ r

0, otherwise

for prescribed positive real number r and σ. By applying the Sylvester operator we obtain AX +XB =
C where C is the quaternion matrix corresponding to the blurred image. On the other hand, given
A, B, and C, the solution X to the Sylvester equation AX + XB = C is the quaternion matrix
corresponding to the original color image that we would like to restore back.a as as a sas a sa

Example 4.1. We report results illustrating the effectiveness of our proposed approach on such
Sylvester equations obtained from the two original color images depicted in Figures 1(a) and 2(a).
The images are stored as n×m quaternion matrices, with sizes 583× 500 and 500× 752, respectively.
We set σ = 10 and r = 10 in both of the examples, and the resulting blurred images C by the
application of the Sylvester operator are shown in Figures 1(b) and 2(b). We apply Algorithm 3 to
solve AX + XB = C approximately by setting the number of iterations equal to k = 2, k = 4, k = 10,
and k = 50. The restored images corresponding to the approximate solutions after so many iterations
are shown in 1(c)-(f) and 2(c)-(f). Finally, the convergence of the algorithm is illustrated in Figure 3
by plotting the residual norms as a function of number of iterations k. To be precise, the plot on the
top in Figure 3 depicts the residual norm ∥Rk∥F for the approximate solution Xk by Algorithm 3 as a
function of the number of iterations k for the parrot example. The plot at the bottom does the same
for the tiger example.

(a) Original im-
age

(b) Degraded
image

(c) Restored im-
age for k=2

(d) Restored im-
age for k=4

(e) Restored im-
age for k=10

(f) Restored im-
age for k=50

Figure 1. This concerns the parrot example. Original and blurred images are illustrated in (a) and
(b), respectively. The restored images obtained by applications of Algorithm 3 with k = 2, k = 4,
k = 10, and k = 50 iterations are depicted in (c)-(f)
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(a) Original im-
age

(b) Degraded
image

(c) Restored im-
age for k=2

(d) Restored im-
age for k=4

(e) Restored im-
age for k=10

(f) Restored im-
age for k=50

Figure 2. The images are similar to those in Figure 1 but now for the tiger example. In particular, (a)
and (b) are the original and blurred images, whereas (c)-(f) are restored images retrieved by applying
Algorithm 3 with k iterations

Figure 3. The residual norms for the approximate solutions by Algorithm 3 are plotted as a function of
number of iterations k. The top and bottom plots concern the parrot and tiger examples, respectively
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5. Conclusion

We have proposed an iterative algorithm for solving a Sylvester quaternion matrix equation, especially
the large-scale setting when at least one of the coefficient matrices is large. The proposed algorithm
is a global GMRES method operating on a Krylov subspace of a vector space of quaternion matrices.
An Arnoldi process based on repeated applications of the Sylvester operator is presented to construct
an orthonormal basis for this Krylov subspace. We have also discussed how the determination of the
best solution to the Sylvester equation in this Krylov subspace minimizing the Frobenius norm of the
residual can be converted into a standard least-squares problem in Rn, which in turn paves the way
for efficient computation of the best solution. Finally, we have illustrated on numerical examples that
the proposed approach works effectively on Sylvester equations that need to be solved to retrieve the
originals of degraded color images. A natural extension of the approach introduced here that could
be considered as future work is a conjugate gradient method for solving Lyapunov quaternion matrix
equations.
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[18] S. Şimşek, A block quaternion GMRES method and its convergence analysis, Calcolo 61 (2) (2024)
Article Number 33 27 pages.
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