

 ESKİŞEHİR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY

 A- APPLIED SCIENCES AND ENGINEERING

 Estuscience – Se, 2024, 25 [4] pp. 530-541, DOI: 10.18038/estubtda.1470050

*Corresponding Author: melihagraz@gmail.com

RESEARCH ARTICLE

ADVANCED APPLICATIONS OF PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

IN R FOR SOLVING DIFFERENTIAL EQUATIONS

Melih AGRAZ 1, *

1 Department of Statisitcs, Giresun University, Giresun, Türkiye

melih.agraz@giresun.edu.tr, melihagraz@gmail.com- 0000-0002-6597-7627

Abstract Keywords

Deep learning, a powerful machine learning technique leveraging artificial neural

networks, excels in identifying complex patterns and relationships within data.

Among its innovations is the emergence of Physics-Informed Neural Networks

(PINNs), which have revolutionized the field of applied mathematics by enabling the

solution and discovery of differential equations through neural networks. PINNs

address two key challenges: data-driven solutions, where the model approximates the

hidden solutions of differential equations with fixed parameters, and data-driven

discovery, where the network learns parameters that best describe observed data. This

study explores the implementation of PINNs within the R programming environment

to solve two differential equations: one with boundary conditions 𝑦′ − 𝑦 = 0 with

y(0)=0 and y(e)=1 boundaries and the Burgers’ Equation. The research utilizes R

libraries, including reticulate for Python integration and torch for neural network

operations, to demonstrate the versatility and efficacy of PINNs in addressing both

data-centric solutions and parameter discovery. The results showcase the ability of

PINNs to handle complex, high-dimensional problems, offering a promising

alternative to traditional numerical methods for solving differential equations.

Physics-Informed Neural

Networks (PINNs),

Differential Equations,

R-programming language,

Burgers’ Equation

 Time Scale of Article

Received :17 April 2024

Accepted : 25 November 2024

Online date :27 December 2024

1. INTRODUCTION

Differential equations, encompassing Ordinary Differential Equations (ODEs) and Partial Differential

Equations (PDEs), serve as mathematical models for describing the dynamics of systems across various

disciplines. Since Newton’s Principia, these equations have been fundamental to understanding and

explaining physical laws. The primary objective of differential equations is to derive solutions that

adhere to governing mathematical expressions characterizing the phenomena under study.

Consequently, devising efficient and accurate methods to solve these equations is critical for scientific

advancement and engineering applications.

Deep Learning (DL), a branch of machine learning, employs artificial neural networks with multiple

layers to tackle problems involving regression, pattern recognition, and classification. While

traditionally DL has not been focused on solving differential equations, recent developments highlight

its potential in this domain. The pioneering work by Lagaris et al. [1] laid the groundwork by employing

artificial neural networks for boundary and initial value problems. Cheng et al. [2] extended this idea to

Hamilton-Jacobi-Bellman equations. More recently, the advent of Physics-Informed Neural Networks

(PINNs), introduced by Raissi et al. [3-5] under the mentorship of Karniadakis and colleagues, marked

a significant breakthrough. PINNs utilize deep learning methodologies to address forward and inverse

problems in PDEs, offering an innovative alternative to conventional solvers.

https://orcid.org/0000-0002-6597-7627

Agraz / Estuscience – Se , 25 [4] – 2024

531

Several R packages exist for solving differential equations. For instance:

 The deSolve package (Soetaert et al. [6]) addresses initial boundary problems for

ODEs and PDEs.

 The ReacTran package (Soetaert and Meysman [7]) focuses on reactive transport

equations in 1D, 2D, or 3D domains.

 The rootSolve package (Soetaert [8]) employs the Newton-Raphson method to

determine roots of nonlinear and linear equations.

In contrast, Python provides robust support for PINNs through libraries like PyTorch (Paszke et al. [9])

and TensorFlow (Abadi et al. [10]). However, the absence of an equivalent R package for PINNs

presents a gap in the R ecosystem. This study addresses this limitation by demonstrating the

implementation of the PINNs approach in R, paving the way for the development of a dedicated R

package.

In this study, we first introduce the methodology of PINNs and provide a comprehensive overview of

their workings. We then present two examples to illustrate how PINNs can be applied in R. These

examples cover the definition of loss functions and parameter prediction, highlighting the effectiveness

and versatility of this approach.

2. MATERIAL and METHODS

2.1. Overview of Physics-informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs) were initially proposed by Karniadakis, Raissi, and

colleagues [3-5] as a neural network-based approach for solving partial differential equations (PDEs).

A significant advancement in PINNs was the incorporation of a residual network, which represents a

major innovation. This network incorporates the governing physical equations, utilizes the output of the

deep learning model, and calculates the residual values, as highlighted by Markidis [11].

An equation that illustrates the general form of the partial differential equation addressed by Physics-

Informed Neural Networks (PINNs) is as follows:

𝑢𝑡 + 𝑁 [𝑢; 𝜆] = 0, 𝑥 ∈ Ω, 𝑡 ∈ [0, Ω], 𝑡 ∈ [0, 𝑇]

𝑢(0, 𝑥) = ℎ(𝑥), 𝑥 ∈ Ω (1)

 𝑢(𝑡, 𝑥) = 𝑔(𝑡, 𝑥), 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇]

In this framework, u (that is, u(t, x)) denotes the unknown solution subject to boundary conditions g(t,

x) and initial conditions h(x); essentially, u is the target variable of interest (e.g., representing a wave).

The derivative 𝑢𝑡 denotes the partial derivative of u with respect to time t over the interval [0, T], while

x is an independent spatial variable within the domain Ω. In other words, x and t are the given inputs

(e.g., spatial location x and time t), and N[u; λ] is a linear or nonlinear differential operator characterized

by a set of PDE parameters λ.

In solving the differential equation, the function u is approximated using a fully connected deep neural

network, where (t, x) serve as inputs and 𝑢𝑁𝑁(𝑡, 𝑥) as outputs. A deep neural network comprises multiple

hidden layers, each of which has inputs (X = [𝑥1 , 𝑥2,..., 𝑥𝑖]) and outputs (Y = [𝑦1 , 𝑦2, ..., 𝑦𝑖]).

To simplify the equation, the left-hand side (𝑢𝑡 + 𝑁 [𝑢; 𝜆]) can be expressed as f(t, x), that is,

Agraz / Estuscience – Se , 25 [4] – 2024

532

𝑓(𝑡, 𝑥): = 𝑢𝑡 + 𝑁[𝑢; 𝜆] (2)

The artificial neural network is constructed using hidden layers, where the inputs and outputs of the

layers are transmitted throughout the network according to the formula:

𝜎(𝑤𝑖,𝑗𝑥𝑖 + 𝑏𝑖), (3)

where 𝑏𝑗 and 𝑤𝑖,𝑗 represent biases and weights, respectively. σ(.) denotes the activation function,

typically applied as a hyperbolic tangent activation function for each neuron except for the last layer,

where no additional regularization is applied Cai et al. [12]. The parameters of the neural networks

shared between u(t, x) and f(t, x) are learned by minimizing the loss function.

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑟 + 𝑀𝑆𝐸𝑏 + 𝑀𝑆𝐸0, (4)

where,

𝑀𝑆𝐸0 =
1

𝑁0
 ∑ |𝑢(𝑡𝑖 , 𝑥𝑖) − ℎ𝑖 |2

𝑁0

𝑖=1
, (5)

and

𝑀𝑆𝐸𝑏 =
1

𝑁𝑏
 ∑ |𝑢(𝑡𝑖, 𝑥𝑖) − 𝑔𝑖 |2

𝑁𝑏

𝑖=1
, (6)

and

𝑀𝑆𝐸𝑟 =
1

𝑁𝑟
 ∑ |𝑢𝑡(𝑡𝑖, 𝑥𝑖) + 𝑁𝑥𝑢(𝑡𝑖 , 𝑥𝑖) |2

𝑁𝑟

𝑖=0
. (7)

Here in Equations 4-7, 𝑀𝑆𝐸0, 𝑀𝑆𝐸𝑏 , and 𝑀𝑆𝐸𝑟 correspond to the losses associated with initial

conditions, boundary conditions, and the penalization of residuals in the governing equations,

respectively. To compute the residuals for 𝑀𝑆𝐸𝑟, it is necessary to obtain the derivatives of the

outcomes—namely, 𝑢𝑡 and 𝑁𝑥𝑢 with respect to the inputs. These derivatives are calculated using

automatic differentiation, as described by Baydin et al. [13]. The overall loss function is then optimized

using an algorithm such as stochastic gradient descent (Ruder [31]) or the ADAM optimizer (Kingma

and Ba [14]), among others.

An illustration of the PINNs approach is provided in Figure 1 below. As depicted in Figure 1, a fully-

connected deep feed-forward neural network is utilized to approximate u(t, x). This approximation is

subsequently utilized to formulate the initial conditions loss 𝑀𝑆𝐸0, the boundary conditions loss 𝑀𝑆𝐸𝑏,

and residual loss 𝑀𝑆𝐸𝑟.

Agraz / Estuscience – Se , 25 [4] – 2024

533

Figure 1. Physics-Informed Neural Networks (PINNs) Workflow [32].

Since their introduction, Physics-Informed Neural Networks (PINNs) contributed a significant

impact on fluid mechanics and scientific computing, leading to notable advancements.

Karniadakis and his collaborators have built upon these methodologies, resulting in various

extensions of PINNs. These extensions include stochastic PINNs (Zhang et al. [15]), fractional

PINNs (fPINNs) (Pang et al. [16]), conservative physics-informed neural networks (CPINNs) (Jagtap

et al. [17]), parareal physics-informed neural networks (PPINNs) (Meng et al. [18]), extended physics-

informed neural networks (XPINNs) (Jagtap and Karniadakis [19]), non-local PINNs (nPINNs) (Pang

et al. [20]), PINNs with a variational formulation based on the Galerkin method (hp-VPINN) (Kharazmi

et al. [21]), parallel PINNs (Shukla et al. [22]), Bayesian PINNs (Yang et al. [23]), and approaches for

learning nonlinear operators via DeepONet (Lu et al. [24]). Agraz et al. [32] showed that simple

differential equations can be effectively solved using a single multiplicative neuron.

PINNs can address two distinct problems: data-driven solutions for PDEs and data-driven discovery. In

the first scenario, the model parameter λ remains constant, and PINNs approximate the hidden solution.

In the latter scenario, PINNs are employed to identify the λ parameter that best characterizes the

observed data [3, 25]. This article presents examples and definitions of both solution types, focusing on

two different problems to illustrate the approach’s efficacy. First, we begin by showcasing the solution

to the differential equation y ′ − y = 0 with the initial conditions y(0) = 1 and y(1) = e. This is achieved

through the utilization of the PINNs methodology, complemented by the incorporation of the reticulate

package for data-centric solutions. Second, we tackle the one-dimensional Burgers’ equation Basdevant

et al. [26] using PINNs, employing the torch package Falbel and Luraschi [29] to exemplify a data-

driven discovery scenario. The Burgers’ equation is a fundamental partial differential equation that

stems from the Navier-Stokes equations Raissi et al. [5]. Within this section, we embark on elucidating

the foundational aspects of PINNs within the context of the R community. We commence this

exploration with a clear-cut example centered around a simple differential equation. To facilitate a

comprehensive understanding, the complete code for this illustrative instance is available in

Supplementary A.1 on GitHub. Subsequently, we employ the torch package to tackle the one-

dimensional Burgers’ Equation as put forth by Basdevant et al. [26], leveraging the prowess of the

PINNs approach to unveil insights driven by data. For interested readers, the comprehensive code

pertaining to this particular example can be found in Supplementary A.2 on GitHub.

2. RESULTS

Data-Driven Solution of the y ′ − y = 0

To provide a straightforward introduction to the concept of PINNs, we offer an example that illustrates

how to implement the PINNs approach for solving differential equations from the ground up using R

Agraz / Estuscience – Se , 25 [4] – 2024

534

4.1.3. We begin by outlining a motivating example of a differential equation and its associated initial

conditions, as defined in Equation8.

𝑦′ − 𝑦 = 0, 𝑦(0) = 1, 𝑦(1) = 𝑒 (8)

We initiate by installing and loading the pertinent packages and creating a Python virtual environment

named "r-reticulate." The reticulate package Ushey et al. [27] facilitates the interaction between Python

and R, enabling the utilization of required Python libraries within R. Additionally, we employ the

TensorFlow library Abadi et al.[10], a well-known open-source machine learning framework, to address

neural network and deep learning challenges. The complete code for the solution of y ′ − y = 0 is provided

in Supplementary A.1.

#install_tensorflow(version = "1.15.0")
library(reticulate)
library(tensorflow)
library(ggplot2)
use_condaenv('r-reticulate')

We initiate by outlining the structure of the neural network along with its input and output specifications.

Throughout all the experiments, we employ a 6-layer neural network, each layer comprising 50 neurons.

tf$set_random_seed(1234)
layers <- c(1, rep(50, 5), 1) #number of layers and neurons
N_residual <- 100 #number of residuals
N_test <- 80 #length of test data
x_f <- seq(0, 1, length.out=N_residual)
x <- c(0, 1) #inputs
y <- c(1, exp(1)) # outputs
x_train <- matrix(x, nrow = 2, ncol = 1)
y_train <- matrix(y, nrow = 2, ncol = 1)
x_f_train <- matrix(x_f, nrow = length(x_f), ncol=1)

Subsequently, we generate weights and biases following the truncated normal distribution utilizing a

Xavier initializer, referred to as the xavier_initialization function. Following this, we proceed to create

a fully-connected simple deep feed-forward artificial neural network, constituting the core structure of

the PINNs methodology. In this context, the hyperbolic tangent (tanh) activation function is applied in

each layer, excluding the final layer.

Following the neural network’s construction, we proceed to define f(t, x)

𝑓 ≔ 𝑦′ − 𝑦, (9)

and we can now approximate the u(t, x) with a deep feed-forward artificial neural network. Accordingly,

we define the u(t, x) function below,

u(t,x) <- function(x_){
 u <- neural_network(x_, weights, biases)
return(u)
}

Agraz / Estuscience – Se , 25 [4] – 2024

535

Thereby, f(t, x), PINNs can be determined as,

f(t,x) <- function(x_){
y_ <- u_xt(x_)
y_x <- tf$gradients(y_, x_)[[1]]
Residuals
f <- y_x - y_
return(f)
}

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑟 + 𝑀𝑆𝐸𝑏 , (10)

and the loss function is optimized by an Adam optimizer with the following codes.

loss_bd <- tf$reduce_mean(tf$square(y_pred - y_train))
residual_loss <- tf$reduce_mean(tf$square(f_pred))
Adam_optim <- tf$compat$v1$train$AdamOptimizer(1e-3)
Adam_opt_train <- Adam_optim$minimize(loss_bd+residual_loss)

After training for 10000 epochs, the loss functions are calculated and depicted in Figure 2 as separate

plots.

Figure 2. Total, Boundry (BD) and Residual Loss of the solution of y ′ − y = 0 with PINNs.

According to Figure 2, the Total Loss, Boundary Loss, and Residual Loss are approximately 0.00035,

0.000037, and 0.00031, respectively.

Post-training, we create a plot that showcases both the actual and estimated solutions on the test data.

This comparison is made against the exact solution of the test data using the ggplot2 package Wickham

and Chang]28[, as illustrated in Figure 3.

Agraz / Estuscience – Se , 25 [4] – 2024

536

Figure 3. Comparison of predictions of test data and the exact solution.

According to Figure 3, the PINNs predicted solution accurately approximates the real solution. In

conclusion, the mean squared error loss is computed from the test data and depicted in Figure 4.

Figure 4. Mean squared error of the test data

Data-Driven Discovery of the Burgers’ Equation

In this section, we tackle the one-dimensional Burgers’ equation Basdevant et al. [26] using PINNs,

employing the torch package Falbel and Luraschi [29] to exemplify a data-driven discovery scenario.

The Burgers’ equation is a fundamental partial differential equation that stems from the Navier-Stokes

equations Raissi et al. [5].

Here, we demonstrate Burgers’ equation first for solving forward problems using PINNs.

𝑢𝑡 + 𝜆1𝑢𝑢𝑥 − 𝜆2𝑢𝑥𝑥 = 0, 𝑥 ∈ [−1,1], 𝑡 ∈ [0,1] (11)

Agraz / Estuscience – Se , 25 [4] – 2024

537

We can define f(t, x) as,

𝑓 ≔ 𝑢𝑡 + 𝜆1𝑢𝑢𝑥 − 𝜆2𝑢𝑥𝑥 (12)

in which the deep feed-forward neural network approximates u(t, x), and the PINNs f(t, x) emerges as a

consequence.

We begin by installing and loading the necessary packages. The torch package is an essential open-

source machine learning package developed based on PyTorch Paszke et al. [9]. All the codes for solving

the Burgers’ equation can be found in Supplementary A.2 on GitHub.

library(R.matlab) # reading .mat data
library(pracma)
library(torch)
library(akima)

We start by loading the data.

Load data
data_burger <- readMat("data_burgers_shock.mat")
t <- as.vector(data_burger$t)
x <- as.vector(data_burger$x)
Exact <- t(data_burger$usol)
grid <- meshgrid(x, t)
X <- grid$X T <- grid$Y

The Burgers’ data comprises information labeled as t, x, and usol in list form. We initiate by outlining

the structure of the neural network along with its input and output specifications. Throughout all

experiments, we employ a 9-layer neural network, each layer comprising 20 neurons.

torch_manual_seed(1234)
nu <- 0.01 / pi N_u <- 2000
layers <- c(2, 20, 20, 20, 20, 20, 20, 20, 20, 1)
X_star <- torch_stack(c(torch_flatten(torch_tensor(X)), +
torch_flatten(torch_tensor(T))))$t()
u_star <- torch_flatten(torch_tensor(Exact))$unsqueeze(1)$t()
Domain boundries
lb <- apply(X_star, 2, min)
ub <- apply(X_star, 2, max)
X_u_train <- X_star[id_x,]
u_train <- u_star[id_x]
u_train <- u_train + noise * torch_std(u_train) *
+ torch_randn(dim(u_train))

We create a training dataset containing 2000 randomly generated observations corresponding to both λ

= 1.0 and λ = 0.01/π. This is done to illustrate the effectiveness of the PINNs approach. The positions

of the generated training points are depicted in Figure 5(d). Following this, we update the weights and

biases utilizing a simple feed-forward deep neural network structure and the LBFGS optimizer Liu and

Nocedal [30], aiming to minimize the loss function. After the training process, the PINNs approach

estimates both the u(t, x) solution of the PDEs and the parameters λ = (𝛌𝟏, 𝛌𝟐) that characterize the

underlying dynamics. The predictive accuracy of the PINNs approach is demonstrated in Figure 5(a-c),

Agraz / Estuscience – Se , 25 [4] – 2024

538

while the comparison between the exact and predictive outcomes for noisy and noiseless data is

presented in Table 1.

Table 1. Unequivocally indicates that the PINNs approach adeptly predicts the parameters. Notably, even with 1

 (a) (b) (c)

 (d)

Figure 5: Burgers’ equation: Exact and predicted solutions comparisons for (a) t = 0.25 (b) t = 0.50 (c) t = 0.75 and (d)

predictions are given by a physics neural network of u(t, x) with the training data

Table 1. Correct and predicted parameters of Burgers’ equation

Correct PDEs 𝑢𝑡 + 𝑢𝑢𝑥 − 0.0031831𝑢𝑥𝑥 = 0

Identified PDEs (clean data) 𝑢𝑡 + 0.995469𝑢𝑢𝑥 − 0.0033095𝑢𝑥𝑥 = 0

Identified PDEs (%1 noise) 𝑢𝑡 + 1.000711𝑢𝑢𝑥 − 0.0031104𝑢𝑥𝑥 = 0

Agraz / Estuscience – Se , 25 [4] – 2024

539

3. CONCLUSION

PINNs were first introduced by Karniadakis and his team Raissi et al. [3-5] as an innovative alternative

to numerical solutions for PDEs. PINNs utilize a simple deep feed-forward neural network approach

and employ automatic differentiation techniques Baydin et al. [13] to effectively address PDEs.

In this study, we have demonstrated how to apply the PINNs approach within the R programming

language, leveraging the reticulate and torch packages. As far as our current knowledge extends, this

study stands as the inaugural implementation of PINNs in the R programming language. Initially, we

showcased the solution of a basic differential equation problem, specifically y ′ − y = 0 with conditions

y(0) = 1 and y(1) = e, employing the reticulate package. We also plotted the total error, boundary error,

and residual error, while additionally comparing the exact solution with predictions in a graphical

representation. Our observation confirmed that the PINNs method adeptly predicts the exact solution.

Finally, we calculated the MSE for the test data, resulting in an MSE of 3.571406 × 10−4.

Subsequently, we presented a practical approach for addressing Burgers’ equation using PINNs through

the PyTorch package. In this example, we contrasted the exact parameters with the predicted parameters

of Burgers’ equation, considering both noisy and noiseless data. Our exploration of Burgers’ equation

affirmed the PINNs approach’s capacity to accurately estimate PDE parameters. Furthermore, we

designed interactive solutions for PINNs via the shiny app and the torch package, which can be accessed

on the GitHub page under shiny.R.

To the best of our knowledge, this article constitutes the pioneering effort in implementing the PINNs

approach within the R programming language. In our future endeavors, we aspire to adapt additional

implementations of the PINNs approach to R and develop a dedicated R package for this purpose.

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. George Karniadakis for his gracious support. Dataset used in the study is

available at https://github.com/melihagraz/pinns-shinny-Rcode

CONFLICT OF INTEREST

The author stated that there are no conflicts of interest regarding the publication of this article.

CRediT AUTHOR STATEMENT

Melih Ağraz: Formal analysis, Writing - original draft, Visualization, Investigation, Supervision,

Conceptualization.

REFERENCES

[1] Lagaris I, Likas A, Fotiadis D. Artificial neural networks for solving ordinary and partial

differential equations. IEEE Transactions on Neural Networks, 1998; 9(5): 987–1000. doi:

10.1109/72.712178.

[2] Cheng T, Lewis FL, Abu-Khalaf M. A neural network solution for fixed-final time optimal

control of nonlinear systems. Automatica, 2007; 43(3): 482–490. doi:

https://doi.org/10.1016/j.automatica.2006.09.021. URL

https://www.sciencedirect.com/science/article/pii/S0005109806004250.

Agraz / Estuscience – Se , 25 [4] – 2024

540

[3] Raissi M, Perdikaris P, Karniadaksi GM. Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential

equations. Journal of Computational Physics, 2019; pages 686–707.

[4] Raissi M, Perdikaris P, Karniadaksi GM. Physics informed deep learning (part i): Data-driven

solutions of nonlinear partial differential equations. arXiv preprint. arXiv:1711.10561. 2017a.

[5] Raissi M, Perdikaris P, Karniadaksi GM. Physics informed deep learning (part ii): Data-driven

discovery of nonlinear partial differential equations. arXiv preprint. preprint arXiv:1711.10566.

2017b.

[6] Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: Package deSolve. Journal

of Statistical Software, 2010; 33(9): 1–25. doi: 10.18637/jss.v033.i09.

[7] Soetaert K, Meysman F. R-package reactran : Reactive transport modelling in r. 2010.

[8] Soetaert K. rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of ordinary

differential equations. R package 1.6. 2009.

[9] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An imperative style,

high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-

Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32. Curran

Associates, Inc.; 2019. pages 8024–8035.

[10] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software

available from tensorflow.org.

[11] Markidis S. The old and the new: Can physics-informed deep-learning replace traditional linear

solvers? Frontiers in big Data, 2021; 4: 669097.

[12] Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis G. Physics-informed neural networks (pinns)

for heat transfer problems. Journal of Heat Transfer, 2021; 143. doi: 10.1115/1.4050542.

[13] Baydin A, Pearlmutter B, Radul A, Siskind J. Automatic differentiation in machine learning: A

survey. Journal of Machine Learning Research, 2018; 18: 1–43.

[14] Kingma D, Ba J. Adam: A method for stochastic optimization. International Conference on

Learning Representations, 2014.

[15] Zhang D, Lu L, Guo L, Karniadakis G. Quantifying total uncertainty in physics-informed neural

networks for solving forward and inverse stochastic problems. Journal of Computational Physics,

2019; 397. doi: 10.1016/j.jcp.2019.07.048.

[16] Pang G, Lu L, Karniadakis G. fpinns: Fractional physics-informed neural networks. SIAM

Journal on Scientific Computing, 2019; 41: A2603–A2626. doi: 10.1137/18M1229845.

[17] Jagtap A, Kharazmi E, Karniadakis G. Conservative physics-informed neural networks on

discrete domains for conservation laws: Applications to forward and inverse problems. Computer

Methods in Applied Mechanics and Engineering, 2020; 365: 113028. doi:

10.1016/j.cma.2020.113028.

Agraz / Estuscience – Se , 25 [4] – 2024

541

[18] Meng X, Li Z, Zhang D, Karniadakis G. Ppinn: Parareal physics-informed neural network for

time-dependent pdes. Computer Methods in Applied Mechanics and Engineering, 2020; 370:

113250. doi: 10.1016/j.cma.2020.113250.

[19] Jagtap A, Karniadakis G. Extended physics-informed neural networks (xpinns): A generalized

space-time domain decomposition based deep learning framework for nonlinear partial

differential equations. Communications in Computational Physics, 2020; 28: 2002–2041. doi:

10.4208/cicp.OA2020-0164.

[20] Pang G, D’Elia M, Parks M, Karniadakis G. npinns: Nonlocal physics-informed neural networks

for a parametrized nonlocal universal laplacian operator. algorithms and applications. Journal of

Computational Physics, 2020; 422: 109760. doi: 10.1016/j.jcp.2020.109760.

[21] Kharazmi E, Zhang Z, Karniadakis GE. hp-vpinns: Variational physics-informed neural networks

with domain decomposition. Computer Methods in Applied Mechanics and Engineering, 2021;

374.

[22] Shukla K, Jagtap AD, Karniadakis GE. Parallel physics-informed neural networks via domain

decomposition. Journal of Computational Physics, 2021; 447: 110683.

[23] Yang L, Meng X, Karniadakis GE. B-pinns: Bayesian physics-informed neural networks for

forward and inverse pde problems with noisy data. Journal of Computational Physics, 2021; 425:

109913.

[24] Lu L, Jin P, Pang G, Zang H, Karniadakis G. Learning nonlinear operators via deeponet based on

the universal approximation theorem of operators. Nature Machine Intelligence, 2021; 3: 218–

229. doi: 10.1038/s42256-021-00302-5.

[25] Raissi M, Karniadakis GE. Hidden physics models: Machine learning of nonlinear partial

differential equations. Journal of Computational Physics, 2018; 357: 125–141.

[26] Basdevant C, Deville M, Haldenwang P, Lacroix J, Ouazzani J, Peyret R, et al. Spectral and finite

difference solutions of the burgers equation. Computational Fluid Dynamics. 1986; pages 23–41.

[27] Ushey K, Allaire J, Tang Y. reticulate: Interface to ’Python’, 2022. URL

https://rstudio.github.io/reticulate/, https://github.com/rstudio/reticulate.

[28] Wickham H, Chang W. Ggplot2: Create Elegant Data Visualisations Using the Grammar of

Graphics, 2016. URL URLhttps://CRAN.R-project.org/package=ggplot2.

[29] Falbel D, Luraschi J. torch: Tensors and Neural Networks with ’GPU’ Acceleration, 2022. URL

https://torch.mlverse.org/docs,https://github.com/mlverse/torch.

[30] Liu DC, Nocedal J. On the limited memory bfgs method for large scale optimization.

Mathematical Programming, 1989; 45: 503–528.

[31] Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747. 2016.

[32] Agraz, M. Evaluating single multiplicative neuron models in physics-informed neural networks

for differential equations. Scientific Reports, 2024, 14(1), 19073.

