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Abstract 

Artificial intelligence (AI) is a field within computer science that has vast applications and has 

transformed medical technologies. It is often regarded to be the branch of computer science 

that can handle complicated problems with minimal theory and many applications. AI is utilized 

to assist researchers in the analysis of large data sets, enabling precision medicine and 

assisting physicians in improving patient outcomes. New techniques in AI can bring together 

various types of data to make sense of new information obtained from multiomics datasets. 

Analyzing high-quality data combined with machine learning, a subset of AI, can help modify 

patients' unhealthy behaviors, predict risk or recurrence of chronic diseases after a surgical 

and curative treatment, prediction of progression and survival rates of patients with chronic 

diseases, therapeutic need, generation of improved clinical trial interpretations and 

identification of new targets. However, to effectively implement precision medicine in 

healthcare, a more user-friendly interface would be required. If AI technologies are applied 

correctly, fairly and robustly, in close cooperation with human intelligence, it is expected to 

open up new possibilities for effective and personalised healthcare services worldwide. In this 

review, the general outlines of AI technology, its application areas in healthcare and its future 

are overviewed. 
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Introduction 

The cost of healthcare is soaring 

everywhere. The rising prevalence of 

chronic illnesses, longer life expectancies, 

and the ongoing development of expensive 

new treatments all contribute to this trend. 

It is therefore not surprising that academics 

project a dismal future for the viability of 

healthcare systems globally. Artificial 

intelligence (AI) holds the potential to 

mitigate the effects of these advancements 

by enhancing and optimizing healthcare 

expenditures (1). When smartphones, 

wearables, sensors, and communication 

systems first appeared, medical 

technologies were primarily known as 

traditional medical devices (such as 

implants, stents, and prosthetic limbs). 

However, with the advent of these devices 

and their capacity to house AI-powered 

tools (like applications) in incredibly small 

forms, medical technology underwent a 

revolution. AI is a field within computer 

science that has vast applications and has 

transformed medical technologies. It is 

often regarded to be the branch of computer 

science that can handle complicated 

problems with minimal theory and many 

applications (2). AI is utilized to assist 

researchers in the analysis of large data sets, 

enabling precision medicine and assisting 

physicians in improving patient outcomes. 

AI algorithms can help doctors to make 

better decisions (“clinical decision 

support”, CDS), localize tumors in 

magnetic resonance (MR) images, read and 

analyze reports written by radiologists and 

pathologists, and much more. In the near 

future, reports that are legible by humans 

may also be produced with the aid of 

generative AI and natural language 

processing (NLP) systems like Chat 

Generative Pre-trained Transformer 

(ChatGPT) (3). AI includes various 

techniques such as machine learning (ML), 

deep learning (DL), and NLP. AI was still 

in its infancy and mostly the focus of 

scholarly research at the time. John 

McCarthy first used the phrase "Artificial 

Intelligence" in 1956 at the Dartmouth 

Conference. The modern AI era began with 

this occurrence. Expert and rule-based 

systems were the main topics of AI research 

in the 1960s and 1970s. But the lack of 

additional data and processing power made 

this strategy impractical. Artificial 

intelligence (AI) research turned to ML and 

neural networks in the 1980s and 1990s, 

enabling machines to learn from data and 

gradually improve their performance (4). 

New techniques in AI can bring together 

various types of data to make sense of new 

information obtained from multiomics 

datasets. Analyzing high-quality data 

combined with machine learning, a subset 
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of AI, can help modify patients' unhealthy 

behaviors (5), predict risk or recurrence of 

chronic diseases after a surgical and 

curative treatment (6), prediction of 

progression and survival rates of patients 

with chronic diseases (7), therapeutic need, 

generation of improved clinical trial 

interpretations and identification of new 

targets (8). The application of AI models for 

diagnostic and prognostic assessments is 

widely accepted in the context of some 

cancers (9). The ability of AI models to 

discover nonlinear patterns embedded 

within complex multivariate datasets could 

potentially lead to a better understanding of 

the complex mechanisms underlying 

carcinogenesis and cancer progression (10). 

In the last decade, there has been a massive 

increase in the number of large and complex 

omics datasets, especially thanks to large-

scale consortium projects such as the 

Cancer Genome Atlas (TCGA), which has 

sampled multiomics measurements from 

more than 30,000 patients and dozens of 

cancer types (11, 12, 13). These rich omics 

data provide unprecedented opportunities to 

systematically characterize the underlying 

biological mechanisms in cancer evolution 

and understand how the tumor 

microenvironment (TME) contributes to 

this evolution (12, 14). However, the idea 

that AI is essentially an opaque "black box" 

that cannot be mechanically interpreted and 

therefore cannot meet the required high 

level of accountability, transparency and 

reliability in medical decision-making has 

led to major criticism of the incorporation 

of AI, especially deep learning, into medical 

fields. "Black box" AI models produce 

results with remarkable accuracy, but no 

one can understand and analyze how the 

algorithms arrive at their predictions (15). 

When AI suggests a decision, decision 

makers need to understand the underlying 

reasons. In recent years, AI researchers 

have been conducting extensive research to 

open this "black box" concept and 

transform it into a transparent system. At 

the forefront of this research is Explainable 

Artificial Intelligence (XAI), also referred 

to as the "white box" (16) (Figure 1). 

Explainability is the ability to explain AI 

decision-making in terms understandable to 

humans about how a decision is made (17). 

This system aims to achieve more 

transparent, more reliable and interpretable 

results by explaining to users what it has 

done, what it is doing and what it will do 

thanks to its developed algorithm (18). In 

the XAI method, the whole process can be 

analyzed retrospectively (15). Although 

studies on the use of AI in medicine have 

increased in recent years, XAI system 

studies using explainable algorithms have 

just started. Breast cancer is the leading 

cause of cancer-related deaths worldwide 

and is the most common type of cancer 

among women (19). Amoroso et al. used an 
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XAI modeling for breast cancer treatments 

and showed that XAI can summarize the 

most important clinical feature for 

oncological treatments designed for the 

patient and the patient (20). 

 

 

 

Figure 1. AI concepts (21). 

In this review, the general outlines, 

application areas, future and possible 

ethical problems of artificial intelligence 

technology in healthcare are discussed. 

 

Artificial Intelligence Applications in 

Medicine 

AI in Pathology image processing 

Digital pathology is becoming an 

increasingly important technological 

requirement in the laboratory setting and 

plays a crucial role in contemporary clinical 

practice (22). Histopathologists can now 

handle digital slide photos with greater ease 

and flexibility than they could ten years ago. 

They can also exchange images for 

telepathology and clinical use because to 

advancements in processing power, more 

rapid networks, and less expensive storage. 

Whole slide imaging (WSI), which enables 

total slides to be photographed and 

permanently saved at high resolution, has 

evolved during the last 20 years in 

pathology digital imaging (23). The FDA 

has approved digital pathology's WSI 

system, ushering in a new era for digital 

image analysis in the field (24, 25). AI has 

primarily been utilized in radiology and 

cardiology for image-based diagnosis up to 

now. With multiple research organizations 

and committed businesses, the field of 

active research on its application to 

pathology is growing. The images produced 

by WSI are an abundant supply of 

information; their size (100k x 100k is not 

uncommon) makes them more complex 

than many other imaging techniques; they 

also have color information (H&E and 

immunohistochemistry); there is no obvious 

anatomical orientation as in radiology; 

information is available at multiple scales 

(e.g., 4x, 20x); and there are multiple z-
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stack levels (each slice contains a limited 

thickness and depending on the plane of 

focus, it will result in various images). It is 

obvious that an ordinary reader cannot 

possibly extract all visual information (23, 

24). WSI is currently in use for training at 

tumor boards, conferences, online seminars, 

and presentations (22). With WSI 

capabilities, AI tools can aid in the 

continued education of the upcoming 

generation of pathologists by offering 

standardized, interactive digital slides that 

are available for sharing at anytime, 

anywhere, to numerous users (22, 26). 

Based on histological characteristics, AI 

can be utilized to forecast prognosis and 

treatment outcomes. Important information 

might be succinctly provided by directly 

connecting images of various tumor 

characteristics, the surrounding 

microenvironment, and genetic data with 

survival outcomes as well as response for 

adjuvant/neoadjuvant therapy (27). Wang et 

al. used H&E stained tissue microarray 

slides to build a machine learning model 

that predicted recurrence in early-stage non-

small cell lung cancer (NSCLC) based on 

nuclear orientation, nuclear shape, texture, 

and tumor architecture. In two validation 

cohorts, the prediction of their model 

proved to be an independent prognostic 

factor, with 82% and 75% accuracy for 

recurrence prediction, respectively (28). In 

2018, Saltz et al. brought attention to the 

prognostic implications of AI tools. They 

employed a convolutional neural network to 

enhance pathologist feedback for the 

automated identification of the spatial 

organization of tumor-infiltrating 

lymphocytes in images obtained from The 

Cancer Genome Atlas. According to their 

research, this characteristic can predict the 

course of 13 different cancer subtypes (29). 

Similar research by Yuan et al. provided a 

model to examine the lymphocytes' spatial 

distribution in relation to tumor cells on 

triple-negative breast cancer white matter 

irradiation. They discovered a clear 

relationship between the spatial distribution 

of immune cells in ER-positive breast 

tumors and late recurrence, in addition to 

identifying three distinct types of 

lymphocytes (30). 

Commentation of Biochemical and 

Clinical Tests with Artificial Intelligence 

Artificial intelligence (AI) has been also 

more and more empiercing into the world of 

health science applications. The foremost 

areas are biochemical and clinical tests. 

Because both the patients and clinicians 

always expect to get the most accurate and 

smooth results from the laboratories, the 

hand of AI could provide not only an 

opportunity for accelerating the process for 

obtaining results, but also annihilate the 

erroneous laboratory results at the best. 

Moreover, AI has been also being used for 

proper selection of sample in clinical trials 
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and detection of very early signs of adverse 

effects or toxicity (31).  

Biochemical tests have been displaying a 

great diversity and there are lots of 

parameters which could be handled 

successfully by AI software. For instance, 

oxidative stress parameters and anti-

oxidative capacity have been attempted to 

commit in order to predict certain 

neurodegenerative diseases such as 

Alzheimer’s and Parkinson diseases (32). In 

clinical tests, as we mentioned that AI could 

be very useful for contemplating a clinical 

trial at the very beginning, there also have 

been lots of ventures to be able to use the AI 

for interpretation of biochemical or clinical 

test results. For instance, according to the 

one of previous studies, software algorithms 

are proved to have been producing more 

rapid and precise diagnosis in comparison 

to pathologists themselves (33). 

Artificial Intelligence in Precision 

Medicine and Genomics 

Precision medicine, also known as 

personalized medicine, is an innovative 

approach to prevent or treat diseases by 

taking into account differences in an 

individual's genetic history, environment 

and lifestyle. Precision medicine recognises 

the critical fact that not all patients respond 

in the same way to the same treatment. It 

takes a patient-centred approach by 

analysing clinical, genomic and 

pharmacogenomic data, rather than a 

symptom-centred approach. In the 

conventional healthcare system, clinicians 

tend to plan treatment on the basis of 

symptoms. Since the symptoms can vary 

greatly among individuals, genomic, 

metabolic and clinical data should be 

utilized together in order to create a more 

personalised treatment plan. In this way, the 

quality of healthcare services can be 

improved through the application of 

personalised precision medicine approaches 

rather than the symptom-based approach of 

the traditional healthcare system. 

Artificial intelligence can be used in 

medicine in two different ways: virtual and 

physical. The virtual use of AI includes 

applications ranging from electronic health 

records to neural networks that guide 

patient treatment. Physical machines, such 

as artificially intelligent prosthetics for the 

disabled and robots that assist in surgery, 

are the physical subset of artificial 

intelligence. The most common 

applications of precision medicine are 

genetic screening for disease prediction and 

diagnosis, and pharmacogenomics for drug 

response prediction (34). Artificial 

intelligence and machine learning 

techniques have been shown to be useful in 

calculating genetic risk for diseases and in 

determining 'polygenic risk scores' to 

identify individuals at high genetic risk for 

certain diseases. Predictive algorithms can 

identify disease groups not recognised by 
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clinicians and can guide the selection of 

personalised treatment options for these 

patients. Another option is to monitor 

people with a genetic predisposition to the 

disease on an ongoing basis, allowing early 

diagnosis at the onset of the disease. This 

would avoid the need for complex 

treatments. By applying artificial 

intelligence techniques to new generation 

sensors, such monitoring can be further 

developed. 

Genomic studies and the next-generation 

sequencing have progressed at an 

exponential rate from the first descriptions 

of DNA by Watson, Crick and Franklin in 

1953. Sequencing technologies have 

reached a stage where the entire genome can 

be sequenced in one day. While whole 

genome sequencing (WGS) covers the 

entire genome, whole exome sequencing 

(WES) focuses only on the protein-coding 

regions and both produce massive amounts 

of genomic data to analyse. It is important 

to help scientists understand how genetic 

variation is linked to a disease by affecting 

critical cellular processes such as cell 

development, cell differentiation, 

metabolism and DNA repair (35). Several 

deep learning models have been developed 

to analyse large genomic datasets and 

identify genetic variants within a whole 

genome, for example DeepVariant is an 

analysis pipeline, a deep convolutional 

neural network model (36). DeepVariant 

can call genetic variants from next-

generation DNA sequencing data, enabling 

patient stratification based on statistically 

significant variants associated with a 

disease phenotype. 

DeepSEA is another deep learning 

algorithm that can specifically identify 

functional effects of non-coding variants 

with single-nucleotide sensitivity, which is 

a difficult task due to the large number of 

these variants throughout the genome. 

DeepSea has been trained on regulatory 

sequences, chromatin profiles that play an 

important role in epigenetics and gene 

regulation at the transcriptional level, to 

predict changes, especially SNPs with a 

functional difference that are associated 

with a particular disease or phenotype (37). 

Epigenomics is responsible for the 

regulation of gene expression without 

altering the DNA sequence, adding another 

layer of complexity to the genome. 

Recently, machine learning models have 

emerged to identify epigenetic changes. For 

example, DeepBind has been developed to 

analyse disease-associated genetic variants 

that can alter transcription factor binding 

and alter gene expression. It is based on 

deep convolutional neural networks and is 

designed to predict the sequence specificity 

of DNA and RNA binding proteins (38). 

Other tools for identifying histone protein 

modifications are DeepHistone and 

DeepChrome (39, 40). These tools were 



M. Öztatlıcı et al. 

114 

 

developed to predict epigenetic changes, 

specifically histone modifications that 

regulate gene expression (41). 

While AI is being used to develop 

personalised medicine, there are limitations 

to consider. When predicting trends in a 

target individual's health data that may 

indicate a change in health status, based on 

data collected from a large number of 

individuals, it is important to remember that 

the data collecting from each individual is 

not ergodic. It has been argued by Fisher et 

al. important individual-level relationships 

are often missed by big data analyses, which 

combine information about many 

individuals to identify patterns that reflect 

population-level relationships between data 

points (42). Inferences based on group-level 

data can only be generalised to individual 

experience or behaviour for ergodic 

processes. However, medical data are 

unlikely to be ergodic as they vary between 

individuals and change over time. 

Therefore, in order to predict the target 

individual's health trajectory, more data 

points should be collected for each 

individual and the prediction should rely 

more on the existing data points for that 

target person rather than the population 

level data. It has been suggested that 

researchers across the medical sciences 

should clearly test the equivalence of 

processes at the individual and group levels 

(42). 

Machine Learning In 

Pharmacogenomics 

Pharmacogenomics (PGx) involves 

understanding how a patient's genetic 

profile affects how they respond to drugs, 

predicting how an individual metabolises 

drugs and potential side effects. It is well 

known that genetic variations can affect 

drug response, particularly variations in 

genes involved in the absorption, 

distribution and metabolism of drugs, all of 

which affect the pharmacodynamics and 

pharmacokinetics of a drug. The aim of the 

pharmacogenomics is to prescribe the most 

effective drug at the correct dose, 

minimising the risk of side effects, 

increasing treatment efficacy and enabling 

personalised medicine by identifying a 

patient's genetic variations. FDA released a 

guidance in 2013 for pharmaceutical 

industry and the researchers engaged in 

drug development to provide 

recommendations on when and how 

genomic information should be utilised 

(43). Pharmacogenomics assessment is 

recommended to implement in early phase 

clinical trials to identify populations based 

on genetic effects on drug exposure, dose-

response, common adverse reactions and 

early efficacy should receive lower or 

higher doses of a drug or longer titration 

intervals. Although this approach has not 

yet been widely adopted by pharmaceutical 

companies, applications of artificial 
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intelligence methods for patient 

stratification using clinical and genomic 

data are emerging and are expected to grow 

rapidly. Patient stratification involves the 

complex integration of heterogeneous 

sociometric, demographic and biomedical 

data to classify patients into subpopulations 

for clinical practice and clinical trial design. 

In order to identify better treatment options, 

electronic health records-linked DNA 

biorepositories have successfully used in 

predictive modeling with the integration of 

pharmacogenomic and sociometric data 

such as gender, age etc. Here are the some 

examples of recently published open source 

deep learning softwares applying artificial 

intelligence to patient stratification and 

healthcare coordination: Deep Patient is an 

unsupervised deep learning method for 

augmenting clinical decision systems and 

deriving patient representations. 

Hierarchical regularities and dependencies 

have been captured in the aggregated 

electronic health records of approximately 

700,000 patients. Deep Patient can predict 

the likelihood of patients developing 

various diseases (44). DeepCare is another 

deep dynamic memory model for predictive 

medicine. This model uses electronic health 

record data, including medication codes, 

diagnoses and procedures, to predict 

unplanned readmissions and high-risk 

patients for mental health and diabetes 

patient cohorts (45). 

Drug Discovery and Repurposing 

Drug design is generally recognised as a 

specific stage in the drug discovery process. 

It focuses on the development, optimisation 

and refinement of potential drug 

compounds. Drug repurposing is a faster 

and more cost-effective process than 

developing new medicines from scratch. It 

is focused on the discovery of novel 

pharmaceutical uses for drugs that were 

originally developed for specific medical 

indications. In silico studies involve many 

tasks performed on computer to assist drug 

screening, drug design and repurposing via 

investigating the interactions between 

targets and drugs. Computational drug 

design is not a new concept. However, with 

advances in hardware and software, the use 

of computational approaches, AI and 

machine learning models has increased 

rapidly. Deep learning models, including 

neural networks, have been developed to 

study drug-drug interactions, drug-target 

interactions, protein-protein interactions, 

DNA-protein interactions and examining 

disease mechanisms. Experimental methods 

for studying these interactions are labour-

intensive, time-consuming and expensive. 

AI models have great potential to reduce the 

time and cost required for such analysis and 

subsequently for drug discovery. Studies 

focusing on drug-drug interactions try to 

understand how a drug works when it’s 

given simultaneously with another drug and 
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how this might change the way the drug 

works. A detailed examination of all AI-

based software and tools used for drug 

discovery is beyond the scope of this 

review. However, we can give AlphaFold2 

developed by Google DeepMind, 

DeepChem, DeepBind as examples of the 

most commonly used AI-based softwares 

for drug development, discovery and 

analysis (46, 47, 48). Interested readers are 

referred to the excellent review by Qureshi 

et al. (49). 

Concluding Remarks and Future 

Perspectives 

Healthcare is moving towards more 

personalised and targeted approaches to 

diagnosis, treatment and prevention. 

Artificial intelligence, clinical genomics, 

big data and pharmacogenomics are 

therefore critical to the future development 

of precision medicine. By harnessing the 

power of genomic and molecular data, 

precision medicine will help healthcare 

professionals and researchers access larger 

amounts of medical data and make more 

accurate diagnoses. There is currently no 

system that can simultaneously compare 

multi-omics data to predict more accurate 

and personalised outcomes. To effectively 

implement precision medicine in 

healthcare, a more user-friendly interface 

would be required. If AI technologies are 

applied correctly, fairly and robustly, in 

close cooperation with human intelligence, 

it is expected to open up new possibilities 

for effective and personalised healthcare 

services worldwide. 
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