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ABS TRAC T  

 
Bioreactor landfills (BRLs) aim to increase moisture content of municipal solid waste to enhance the biodegradation 
kinetics of the organic fraction and biogas production. Prediction of biogas production is a key tool to design an 
appropriate energy recovery system from BRLs. In this paper, a fuzzy-based model to predict methane generation in 
full scale BRLs is proposed. Eleven deterministic inputs (pH, RedOx potential, chemical oxygen demand, volatile fatty 
acids, ammonium content, age of the waste, temperature, moisture content, organic fraction concentration, particle 
size and recirculation flow rate) were identified as antecedent variables. Two outputs, or consequents, were chosen: 
methane production rate and methane fraction in the biogas. Antecedents and consequents were transported in the 
fuzzy domain by a fuzzyfication procedure and then linked by 84 IF-THEN rules, which stated the effects of the input 
parameters in a linguistic form. The fuzzy model was built and tested on seven lab-scale studies, representing 
different operational conditions and waste qualities. The fuzzy model showed good performances in the prediction of 
methane generation, although lab-scale studies depicted ideal conditions that can be hardly reached in real BRLs. In 
order to deal with higher heterogeneities and lower data availability typical of full-scale landfills, new antecedents 
and rules were added to the proposed model. With few adjustments based on the available information, the fuzzy 
model could be applied to a retrofit BRLs located in Northern Italy. The results confirmed that fuzzy macro-approach 
can be a powerful and flexible tool able to model the complex processes taking place in BRLs. 
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1. INTRODUCTION 

 
The concept of bioreactor landfill (BRL) has been 
introduced in the last few decades with the aim of a 
more rapid degradation of the organic fraction of 
municipal solid waste (MSW) [1]. BRLs have been 
suggested as a more sustainable alternative to 
conventional “dry tomb” landfills [2]. The main 
advantages of this technology can be achieved thanks 
to moisture increase of waste through leachate 
recirculation as the processes are strongly dependent 
on moisture content. The liquid injected into the 
landfill body stimulates microbial activity by 
promoting higher distribution of substrates, nutrients 
and From the pioneering work of Pohland [4], a 
number of studies have shown the positive effects of 
leachate recirculation on MSW degradation, either at 
laboratory scale [5]-[10] or on- site applications [11]-
[16]. The main advantage of bioreactor landfills is the 
rapid stabilization of organic fraction, which can be 

reached in 5-10 years instead of 30-50 years of the 
conventional landfill [17]. Biogas production can be 
therefore increased with more volumes in less time, 
improving the efficiency of the energy recover. 
Moreover, long-term environmental impact and post-
closure care costs can be reduced [11]. The major 
initial investments and costs related to the liquid 
injection system and operations can be offset by a 
number of economic benefits arising from the 
management of the BRL, including lower costs for 
treatment and disposal of leachate and the use of 
biogas for electric energy generation [18]. Although 
they represent a more sustainable alternative to 
conventional landfills, BRLs alone are not sufficient. In 
the perspective of sustainable landfilling, also the 
amount of biodegradable MSW destined to disposal 
should be reduced with appropriate pretreatments. 
The emission potential of waste can be reduced to 
large extent during pretreatments so that, compared 
to un-pretreated waste, significantly reduced 
emissions occur [19]. Mechanical-biological treatment 
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(MBT) represents a widespread option for the 
stabilization of the biodegradable fraction in the 
residual MSW. MBTs combine mechanical processes, 
such as shredding and sorting, with biodrying and 
biostabilization in order to obtain a more 
homogeneous and less biodegradable waste [20]-[22]. 
MBT waste still contains at least 5-20% of the organic 
biodegradable fraction, which can be finally treated in 
the landfill body. The combination of MBT and BRL 
technologies represent an emerging choice in those 
Italian districts without incineration facilities, aiming 
to reduce the amount of landfilled organic waste and 
to optimize energy recovery [23], [25]. In such 
emerging scenarios with lower organic content and 
different landfill configurations, where few and 
sometimes controversial data are available from 
previous studies [20], [23], [25] it becomes 
challenging to predict methane production without 
introducing high uncertainties. The prediction of 
biogas production in the landfill is commonly affected 
by uncertainties, due to the heterogeneity of the 
system, whose properties are changing both spatially 
and temporally during the landfill life. A landfill is a 
complex system in which different and interconnected 
processes take place. Biological processes play the 
main role in waste degradation, but they are strictly 
related to others of different nature such as  
physico-chemical, hydrological and geotechnical 
processes [26]. The description of all the processes 
involved become more challenging in case of BRLs, 
due to additional liquid injections and moisture 
distribution into the landfill body. Generally, biogas 
generation rates are estimated using mathematical 
models dependent upon poorly defined factors, thus 
introducing significant uncertainty in the modelling 
process and therefore in the its estimations [27]. In 
the literature, the most used model is the first-order 
[28]-[31], described by Equation (1): 

       
                                                                                                         

where Q is the methane production (m3 yr-1), M is the 
disposed waste (ton), L0 is the biochemical methane 
potential (BMP) (m3 ton-1), t is the time after waste 
placement in the landfill (yr), ti is the lag phase 
between the placement and the start of production, k 
is the first-order rate constant (yr-1). Models like 
Equation (1) are intended for single batches or single 
years; every batch has to be integrated along the year 
the landfill was in service in order to build the whole 
gas generation curve, valid for the entire landfill. The 
first-order model is the most reliable model since the 
outcomes of the zero-order model present relatively 
high errors while higher order models have more 
complicated procedures in order to estimate the 
parameters, which are not justified by the increase in 
accuracy [27]. First-order model has two main 
adjustable parameters: the BMP (L0), and the methane 
generation rate constant k. Both of them can be 
defined through lab-experimentations, pilot-scale 
cells or from ranges of the literature, in order to 
obtain a best-fit on field data and minimize the 
residual errors between the predicted and the 
experienced methane production [26]. In the pilot- 
scale study by Bilgili [30], BMP test was used to 
determine initial and remaining L0 during the 
landfilling operations. However, it is often challenging 
to obtain accurate field-scale data in order to calculate 

and validate the model parameters [27], [29], [32], 
[33]. In attempt to solve the limitations of 
deterministic approaches, artificial intelligence based 
models, such as fuzzy logic, have recently been 
conducted in the modeling of complex systems, thanks 
to their predictive capabilities by handling a large 
number of parameters of non-linear nature [34]-[36]. 
As reported in the pioneering work of Ruggeri and 
Sassi on fuzzy modeling of bioreactors [37], if the 
complexity of a system increases, its quantitative 
information become more and more incomplete. The 
use of macro-approach based on qualitative 
knowledge about BRLs behavior can offer an easier 
alternative in CH4 production modeling. Fuzzy 
approach is a macro-approach that is able to consider 
numerous aspects affecting a specific process, without 
the necessity to handle differential equation models 
with high computational efforts. In its knowledge-
based structure different sources of information can 
be combıned, not only experimental data but also 
literature, theoretical findings and expertise. As 
reported by Turkdogan-Aydinol and Yetilmezsoy [34], 
in the prediction of biogas and methane production 
rates of a pilot-scale anaerobic digester treating 
molasses wastewater, the applicability of fuzzy logic is 
very simple and there is no need to define the 
complex reactions and their mathematical description 
or accurate biochemical pathways. To date, few 
studies have proposed the application of fuzzy logic in 
the estimation of methane production from BRLs. 
Garg [33] proposed a multilevel fuzzy composite 
programming method to combine various parameters 
affecting landfill gas extraction into a biogas potential 
index. In addition, a fuzzy logic controller was 
developed to identify the operational phase of a BRL 
[36]. Another artificial intelligence based model, that 
is artificial neural networks, was used to predict 
methane fraction in biogas by considering leachate 
components from a BRL [38].In this paper, we 
propose the use of a fuzzy-logic- based model to 
estimate methane generation from BRLs at different 
operating conditions and waste qualities [3], [7]-[9], 
[24]. Methane production rate and methane 
concentration in the biogas were predicted from 11 
input parameters describing (i) leachate quality, such 
as pH, RedOx potential (ORP), chemical oxygen 
demand (COD), volatile fatty acids (VFA), ammonium 
content; (ii) waste quality, such as age, moisture 
content (MC), organic fraction concentration, particle 
size; (iii) operational conditions, such as temperature 
and leachate recirculation flow rate. In a first step, the 
fuzzy model was developed using experimental data 
from seven lab-scale studies simulating BRLs. The 
seven studies were selected because they were 
representative of BRLs with different properties and 
operating conditions. In this way it was possible to 
develop a model that could be applied in a wide range 
of scenarios. The second step consisted in modeling 
the full-scale case study of Cerro Tanaro (CT) landfill, 
a retrofit BRLs for MBT waste located in Northern 
Italy. Using the previously developed model as a basis, 
new inputs and rules were added in order to adjust 
the model for the prediction of CH4 generation from a 
single gas extraction well. Finally, the modeling was 
extended to the entire volume of CT landfill and an 
estimation of its heterogeneity could be made by 
comparing the model results to the actual landfill 
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data. The main aims of this study were to confirm the 
potential use of fuzzy macro-approach for complex 
processes taking place in BRLs and to offer a valid 
basis of a biogas prediction tool for BRLs, which can 
be easily adapted to various site-specific conditions. 

 
2. MATERIALS AND METHODS 

 
2.1. Fuzzy-Logic-Based Model from Lab-Scale 

Studies Input and Output Parameters 

 
Eleven input parameters were selected among the 
main factors influencing methane production in BRLs 
(Table 1). Methane production rate and methane 
concentration in biogas were the two desired outputs 
(Table 1). The input parameters describing the 
leachate quality were chosen because they provide 
information about waste decomposition phase and 
waste stabilization [36], [38]: anaerobic digestion is 
stable for pH in the range 6.5-7.5; ORP shows if a 
reducing environment is present to support 
methanogenesis; COD is and indirect measurement of 
the total oxydable organic content; VFAs is an 
indication of how the acidogenic and methanogenic 
microorganisms interactions are well balanced, in fact 
if acidogenic phase prevails high amount of VFAs 
causes a decrease of pH with the inhibition of CH4 
production; accumulation of NH4+ due to recirculation 
can lead the concentrations of NH4+ in the inhibition 
range [7]. Waste quality parameters such as waste age 
and percentage of organic fraction are indexes of how 
much biodegradable matter can be converted into 
methane. In the most of laboratory experimental 
works, the waste was previously shredded, because 
lower particle size increases the available surface for 
microorganisms and nutrients distribution, hence 
decreasing mass transfer phenomena always present 
in such systems. Due to the difficulties in taking into 
account this kind of phenomena by a deterministic 
approach, mean particle size of waste was selected as 
macro parameter able to give indication of the 
amplitude of the mass transfer phenomena. Optimized 
moisture content provides an aqueous environment 
containing the necessary nutrients and microbes able 
to improve micro/macro convective phenomena in 
the waste [39]. Regarding the operational conditions, 
most of the landfills operate in the mesophilic field, in 
the range 30-35 °C, depending on climate conditions. 
A proper flow rate for leachate recirculation should 
increase MC and liquid distribution, without causing 
flushing of organic matter and methanogens bacteria 
[26]. Methane generation can be estimated through 
the two outputs methane production rate and 
methane concentration in the biogas. The fuzzy logic 
based model thus offers a tool to predict an efficient 
energy recovery strategy of BRLs. The cumulative 
methane production was calculated from the methane 
production rate with Equation (2): 

    
 ∑                                                                                                         

 

   

 

where QCH4 is the cumulative CH4 production (L kg-1), 
Ri is the CH4 production rate at day i (L kg-1 day-1),  t 
is the time interval with rate Ri (days), n is the total 
time of operation (days). 

Table 1. Input and output parameters of the fuzzy-logic-

based model for laboratory BRL 

 Parameters 

 INPUTS 

Leachate quality 

pH 

ORP (mV) 

COD (mg O2 L-1) 

VFA (g CH3COOH L-1) 

NH4+ (mg L-1) 

Waste quality 

Age (yr) 

Moisture content (% w/w) 

Organic Fraction (% w/w) 

Particle size (cm) 

Operational conditions 

Temperature (°C) 

Recirculation flow rate (% V water/V 

waste day-1) 

 OUTPUTS 

Methane generation 
CH4 production rate (L kg-1 day-1) 

CH4 concentration in biogas (% v/v) 

 
2.2. Fuzzy Model Development of Lab-Scale BRLs 

 
The fuzzy logic based model of BRLs was developed 
using data from different literature sources, all at lab- 
scale, working in different operating conditions and 
different initial waste compositions. The 
implementation of the model was carried out by using 
the Fuzzy Logic Toolbox present in MATLAB 
(MATLAB® V8.3). Here only a brief introduction on 
fuzzy logic is reported, major details can be found in 
[40], its application in bioreactor engineering is 
presented in [41] while a model for biogas estimation 
in anaerobic digestion in described in [34]. A general 
fuzzy model has basically four steps: (i) fuzzification 
which permits to move from the deterministic to the 
fuzzy dominion, (ii) fuzzy rules definition in order to 
describe the reality to be modeled, (iii) fuzzy 
inference engine which handle fuzzy variable inputs 
to obtain fuzzy outputs, and (iv) defuzzification 
procedure to convert the fuzzy output back to the 
deterministic dominion. 

In the first step, the numerical values of inputs and 
outputs from [3], [7]-[9], [24] were converted into 
linguistic terms, fuzzy sets, thus defining the 
antecedents and consequents of the system. The 
degree of truth of a fuzzy set A (verbal variables such 
as low, medium, high etc.) is defined by a value of 
membership function (MF), µA, in the interval [0 1], 
differently from conventional deterministic numerical 
sets where an element either belongs or does not 
belong to a particular set (µA= 0 or µA=1). Abdallah 
[36] reported that this distinctive feature is 
advantageous in case of controlling a landfill where 
the change in input variables does not cause the 
controlled process to shift abruptly from one state to 
another. MFs can be represented in different shapes 
such as triangular, trapezoidal, Gaussian or Sigmoid, 
depending on the system under study. Among them, 
triangular and trapezoidal are the most used, due to 
their simple handling and implementation [35]. In our 
case, all the MFs for both antecedents and 
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consequents presented trapezoidal shape, as shown in 
Equation (3): 

 

     

{
  
 

  
 

     
   

   
      

       
   

   
      

     

                                                                         

where µA is the MF of a vector x, and a, b, c, d are four 
scalar parameters. As example, the MFs of two of the 
eleven antecedents inputs are showed in Fig. 1 with 
their shape and linguistic labels: very low (VL), low 
(L), medium low (ML), medium (M), medium high 
(MH), high (H) and very high (VH); the same 
linguistics variable were adopted for the two 
consequents. The second step, concerning the 
definition of fuzzy relations between antecedents and 
consequents, resulted in 84 rules in the form of IF- 
THEN statements, which were established through the 
experience and the experimental data sets. 
Approximately 70% of the available crisp data were 
used to train the model and build the corresponding 
fuzzy rules with the Fuzzy IF-THEN Rule Editor on the 
MATLAB® environment. An example of one of the IF- 
THEN rules is presented below: 

IF ‘PH’ is ‘M’ & ‘ORP’ is ‘M’ & ‘COD’ is ‘VL’ & ‘VFA’ is 
‘VL’ & ‘NH4’ is ‘VL’ & 

‘MC’ is ‘L’ & ‘T’ is ‘M’ & ‘ORG’ is ‘M’ & ‘SIZE’ is ‘M’ & 
‘FLOWRATE’ is ‘VL’ 

THEN ‘CH4 RATE’ is ‘VL’ & ‘CH4%’ is ‘VL’. 

 

 
Fig 1. Membership functions of the fuzzyfied inputs: a) “pH” 

and b) “ORP” (mV). 

Once the MFs and the rules had been built, it was 
possible to enter the fuzzy model with a set of inputs 
and obtain the corresponding outputs. The 
experimental data of laboratory tests of different 
Authors under different operational conditions were 
used as inputs, Table 2 reports the main 
characteristics of experimental tests. The model was 
tested on the total number of available inputs from 

the chosen lab-scale studies. The fuzzy outputs were 
calculated through the fuzzy inference engine that 
processes the fuzzy inputs based on their relevant 
fuzzy rules. Mamdani-type fuzzy inference method 
was chosen, as it is the most commonly applied fuzzy 
methodology [34]. The last step is the defuzzification 
procedure, which incorporates different fuzzy sets to 
give a single crisp value in the deterministic domain 
for the two outputs. The defuzzification method here 
used was the centroid or center of gravity method 
which is the most popular among different 
defuzzification methods [42],[43]: 

       
∑         

∑       
 

                                                                                               

Where (yi)d is the defuzzified output, r is the number 
of fired rules for the specific situation, yi is the output 
value in the i subset and µi is the MF value of yi. 

 
Table 2. Summary of the different characteristics of the 

seven lab-scale studies used. 

Ref. 
Study 

Main characteristic 

[7] 
29% organic content; low initial MC; constant 
low leachate recirculation rate 

[7] 

8 years old waste; 29% organic content; low 
initial MC; constant low leachate recirculation 

rate 

[3] 

tropical climate; 55% organic content; 
recirculation rate of leachate + water 

increasing with time 

[3] 
tropical climate; 55% organic content; 
recirculation rate of only leachate increasing 
with time 

[9] 

aerobically pretreated waste; 40% organic 
content; constant low leachate recirculation 

rate 

[8] 
synthetic waste; 45% organic content; constant 
leachate recirculation rate 

[24] 
MBT waste, low biodegradable waste, leachate 

  recirculation rate decreasing with time 

 
2.3. Extension of Fuzzy Model to CT Landfill Case 

Study 

 
The case study of CT landfill depicts a scenario typical 
of small/medium Italian waste management facilities 
without incineration plants. CT landfill had been 
originally built as a conventional landfill for non- 
hazardous pretreated wastes. After source 
segregation, the residual MSW was pretreated in a 
MBT plant in order to reduce considerably the amount 
of organic waste destined to landfilling, according to 
the EU Landfill Directive (Directive 1999/31/EC). Low 
water content and lack of rapidly degradable matter 
implied slow biogas production and long post- 
management period. With the Bio.Lea.R. Project [47] 
financed by EU Life+ Program, part of CT landfill was 
equipped with a leachate recirculation system, in 
order to optimize the moisture content and the energy 
recovery with a retrofit BRL technology. The landfilled 
MSW was hence characterized by a low organic 

a

) 

b
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content, which had been pretreated by means of 
aerobic MBT and partially bio-decomposed in the 
conventional landfill operations. The peculiarity of 
this case study made it difficult to predict biogas 
production with conventional deterministic biogas 
models, due to the lack of information regarding the 
kinetics of methane generation from that specific low 
biodegradable waste. Moreover, the amount of 
moisture increase into the landfill body under 
leachate recirculation could not be quantified. 
Although experimental tests were conducted at lab- 
scale and pilot-scale to investigate the behavior of CT 
landfill [24], they represented an ideal scenario with 
very little spatial heterogeneities, which is very 
difficult to obtain at full scale. The up-scaling of the 
laboratory results to the full-scale BRLs is not an easy 
task due to the different scale of heterogeneity of the 
mass of waste and the spatial/temporal changes of the 
leachate properties that cannot be controlled. These 
were the main reasons why the use of fuzzy logic 
seemed to be a proper choice to model methane 
generation from CT landfill. However, the fuzzy-logic- 
based model developed on lab-scale studies had to be 
adjusted to obtain a better fitting of the different 
conditions and the lower data availability 
encountered in the full scale plant of CT. The 
extension of the fuzzy-model based on the laboratory 
results to full scale landfill was reached by two steps: 
first a cylindrical volume, around a single biogas 
extraction well, was modeled introducing additional 
antecedents able to depict the heterogeneities of the 
well behavior calibrated on the quality and the 
quantity of biogas experimentally evaluated, and then 
the extension to the entire volume of the landfill by 
considering the total experimentally evaluated biogas 
produced, as described in the following sections. 

 
2.4. Fuzzy-Logic-Based Model for a Single Well of 

CT Landfill 

 
The leachate recirculation system of CT landfill mainly 
consists of 8 sub-irrigation rings of 20 m diameter, 
located at the top of 8 gas extraction wells, under the 
final waste capping, as shown in Fig 2. Leachate 
recirculation was initially conducted on three 
injection rings, chosen because their relative wells 
gave the worse performances in term of methane 
generation. At the beginning of the experimentation, 
the injection was performed on one ring at a time, in 
order to monitor if some liquid leakage could occur, 
with a flow rate in the range 5-2.5 m3 h-1, 8 hours per 
day. In particular, the gas extraction well named 
CTB110 (Fig 2.) had the longest injection time and its 
data on methane production were used for the fuzzy-
logic modeling. In order to apply the fuzzy model on 
CT landfill, a cylindrical volume around one biogas 
extraction well was chosen as control volume. Taking 
into consideration that a depression at the head of the 
well of around 15-20 cm H20 generates a depression 
which propagates till around 10 m in the landfill body 
of usual compaction (0.5-0.7 ton m3) [48], the 
dimensions of the control volume were assumed to be 
cylindrical with 10 m radius and 13 m height, that is 
the actual height of CT landfill. The control volume 
consisted in approximately 3,500 ton of pretreated 
waste. 20 sets of crisp experimental data from the 

monitoring of leachate and biogas quality, along 1.5 
years (January 2014 to July 2015), were used to 
develop the fuzzy model. The first problem 
encountered dealt with the data of monitoring of 
leachate, since they were representative of the 
leachate of the entire landfill and did not depict the 
specific conditions of the control volume alone. 
Moreover, in contrast to what happened in lab-scale, 
where temperature was maintained constant, at full- 
scale local changes of the leachate temperature 
occurred depending on the seasonal variation (10 – 
30 °C). Although temperature inside the CT landfill 
body could not be monitored, by analyzing the 
available data, it was noticed that during the summer 
an increase of methane generation was registered 
from CTB110 under leachate recirculation. 

In order to fuzzy model the biogas production from 
the well two new antecedents were added to the lab 
fuzzy based model. The first originated by the 
observation of behaviors under seasonal temperature 
variation above reported; antecedent called “season” 
was used. Another important parameter is the 
moisture content of the landfill body that could not be 
monitored at the full-scale plant. 

Considering that the moisture is dependent on the 
quantity of recirculated leachate, another antecedent 
was added “Vrec”, which is the volume of leachate re-
added in the landfill; this is considered an index able 
to give information of the moisture present in the 
landfill. 
 

 

Fig 2. Illustrations of the sub-irrigation system in CT landfill: 

a) detail of a sub-irrigation ring around one gas extraction 

well; b) landfill surface showing, gas extraction system 

(yellow lines), and leachate injection system (blue lines) with 

the 8 sub-irrigation rings [47]. 

The final adjustment made on the lab fuzzy-logic-
based model regarded the addition of a membership 
function named very very low, “VVL”, in the output 
variable of CH4 production rate. This was necessary in 
order to capture the changes in methane production 
at the very lower rates recorded on the full-scale, 
compared to the ranges obtained at lab-scales.Thanks 
to the above described adjustments, whose MFs are 
reported in Fig 3, on the model developed from lab-
scale studies, it was possible to build 20 new IF-THEN 
rules, able to simulate the behavior of CTB110. In 
order to avoid overfitting, the fuzzy model was then 
tested on other 10 sets of data, in addition to the 20 
sets used to develop the model. 

a 
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Fig 3. Extension of fuzzy model to biogas capture well: MFs 

of the new antecedents a) “season” and b) cumulative 

volume of leachate recirculated “Vrec” (m3) and the modified 

label of output c) “CH4 rate” (L kg-1 day-1). 

 
2.5. Extension of the Fuzzy-Logic-Based Model on 

the Entire CT Landfill Volume 

 
The fuzzy-logic-based model of a single gas extraction 
was used to simulate the entire volume of CT landfill. 
It was assumed that each of the 26 vertical wells 
behaved following the IF-THEN rules developed for 
the well CTB110, as if the waste properties were 
homogeneously distributed on the entire volume. By 
comparing the fuzzy model results on biogas 
production with the actual biogas data of all the 26 
wells, it was possible to evaluate the spatial 
heterogeneity via a Heterogeneity Index (HI), 
expressed as discrepancy between the predicted and 
the observed data of the total biogas production rate 
from CT landfill: 

   |   
∑        

    
⁄ 

   

∑
       

    
⁄ 

   

|                                                                            

where P and O are the predicted and the observed 
values, respectively, of methane production rate 
(RATE) and methane fraction (%) of the ith well. 

 
 
 
 
 

3. RESULTS AND DISCUSSION 

 
3.1. Lab-Scale BRL Fuzzy Model 

 
The outputs of the fuzzy-logic-based model were 
compared with the experimental data from [3], [7]-
[9], [24]. The proposed model could fit reasonably 
well the experimental data from 7 lab-scale studies 
simulating BRLs working at different conditions and 
with different MSW qualities (Table 2). Fig 4 and Fig 5 
show a good agreement between observed and 
predicted data from two of the selected lab-scale 
study, while Fig 6 illustrates the goodness of fit with 
the performance indicators R2 for all the laboratory 
data. The fuzzy model fitted the experimental 
methane production data reasonably well, with small 
deviations and coefficient of determination of 0.96 
and 0.95 for cumulative and fraction of CH4, 
respectively. The results suggested that the approach 
chosen, although applied on lab-scale studies, could be 
a valid basis to predict landfill gas production from 
BRLs with a wide range of operational conditions and 
it paved the way for the application of fuzzy modeling 
on the full-scale. 

 
Fig 4. Comparison of experimental data and fuzzy modelling 

results of a) cumulative methane production and b) methane 

fraction from [7]. 

 

 
Fig 5. Comparison of experimental data and fuzzy modelling 

results of a) cumulative methane production and b) methane 

fraction from [24] 
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Fig 6. Linear regression between the fuzzy model outputs 

and the corresponding lab experimental data with the 

resulting R2 for a) cumulative methane production and b) 

methane fraction in the biogas.  

 
3.2. Full-Scale BRL Fuzzy Model 

 
On the basis of the data available on the full-scale 
plant of CT landfill, the proposed lab fuzzy-logic- 
model was adjusted in order to predict methane and 
biogas production from pretreated MSW under 
leachate recirculation. Although this case study was 
characterized by lack of information from the 
previous literature, fuzzy modelling represented a 
valid tool which could be easily adapted to the specific 
system under study. The prediction of methane 
generation from well CTB110 gave good results. Fig 7 
shows the comparison of predicted and detected 
results. The performance indicator R2 of 0.99 and 
0.66 for cumulative methane production and methane 
percentage, respectively confirmed a good agreement 
between the predicted and the actual data, especially 
for the first output. 

In order to extend the model on the entire volume of 
BRL, the modified fuzzy model developed on the 
single well CTB110 was applied to all the 26 wells 
present in CT landfill. By comparing the total biogas 
generation rate observed and predicted on one day, it 
was possible to quantify approximately the spatial 
heterogeneity of the system with the calculation of the 
index HI through Equation (8), which resulted of 
9.7%. It means that approximately 90.3% of the total 
volume of CT landfill behaved as the modelled control 
volume around well CTB110 in terms of biogas 
production rate, expressed as fraction between the 
two outputs CH4 rate and CH4 fraction. The HI index is 
a corrective index of the fuzzy model output in the 
simulation of other full scale BRL landfill with similar 
quality of refuses and under similar environmental 
condition of CT landfill. For different situations the 
above procedure permits to evaluate analogous HI 
index. 

 
Fig 7. Comparison of one well of Cerro Tanaro full plant 

experimental data and prediction from modified fuzzy-logic- 

based model for a) cumulative methane production and b) 

methane fraction from one gas extraction of CT landfill. 

The results obtained by applying the fuzzy-logic-
based model on the full-scale confirmed the flexibility 
of fuzzy modelling, thanks to its learning structure 
able to represent complex systems with any kind of 
available information. Without formulating 
complicated mathematical equations, it was possible 
to adapt the model to the specific scenario 
represented by CT landfill. This approach can be 
further applied on a number of different BRL 
technologies, with no need of detailed data, which are 
often difficult to collect and manage in the case of full-
scale facilities. 

 
4. CONCLUSION 

 
A fuzzy-logic-based model was developed for the 
evaluation of methane production rate and methane 
fraction in landfills under leachate recirculation, using 
experimental data of literature of lab-scale studies 
simulating BRLs. In new generation landfills, aiming at 
more sustainable waste management, biogas 
generation estimation is a key tool to run an efficient 
energy recover and to evaluate energetic and 
environmental sustainability. In complex and 
heterogeneous system, such as a BRL, the existing 
models are often affected by high uncertainties due to 
the difficulty in identifying all the interconnected 
processes and in collecting all the necessary data. The 
fuzzy-logic-based model proposed can be a simpler 
alternative to the deterministic approaches, which 
need complex and tedious mathematical formulations 
with difficult tuning parameters. The fuzzy model 
showed good performances in the prediction of 
methane generation for different lab-scale BRLs. The 
results showed good agreement between the 
observed and the predicted data, suggesting that the 
approach chosen, although applied on lab-scale 
studies, could be a valid basis to predict landfill gas 
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production from BRLs with a wide range of 
operational conditions. 

The proposed fuzzy model was then applied on the 
full-scale case study of CT landfill, a retrofit BRL 
treating MBT waste. Although this case study was 
characterized by lack of information from the 
previous literature, fuzzy modeling represented a 
valid tool which could be easily adapted to the specific 
system under study. Few adjustments were made on 
the model in order to better fit the data of methane 
generation, based on the available inputs. 
Additionally, by applying the model on a smaller 
control volume of landfill and extending the results on 
the entire landfill volume, it was possible to quantify 
approximately a mean value of the spatial 
heterogeneity of CT landfill. It resulted that the 
proposed fuzzy model was able to predict 90.3% of 
the total biogas production rate, suggesting that 9.7% 
of the waste volume had a different behavior of the 
selected control volume of landfill due to its 
heterogeneities. 

Finally, the results obtained both on lab-scale and the 
extension to full-scale confirmed that fuzzy approach 
is a powerful and flexible tool that, thanks to its 
learning structure, is able to model the complex 
processes taking place in BRLs, with no need of 
sophisticated mathematical modeling and accurate 
value of parameters, but simply the necessity of 
accurate as much as possible, of the site-specific 
information. 
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