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Abstract. Let R be a ring which is not commutative. Assume that either

R is alternative, but not associative, or R is associative and any commutator

v ∈ R satisfies: v2 is in the center of R. We show (using commutators) that if

R contains no divisors of zero and char(R) ̸= 2, then R//C, the localization of

R at its center C, is the octonions in the first case and the quaternions, in latter

case. Our proof in both cases is essentially the same and it is elementary and

rather self contained. We also give a short (uniform) proof that if a non-zero

commutator in R is not a zero divisor (with mild additional hypothesis when

R is alternative, but not associative (e.g. that (R,+) contains no 3-torsion),

then R contains no divisors of zero.
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1. Introduction

The main point of this paper is to reprove theorems [5, Main Theorem] and [1,

Theorem A] in a uniform way using commutators. So, the quaternions and the

octonions are treated in a uniform way. This is done in Theorem A. In [1, Theorem

A], Bruck and Kleinfeld proved part (b) of Theorem A using associators.

We also use commutators in Theorem B to show that R contains no divisors of

zero. So we assume that a non-zero commutator is not a divisor of zero in R.

In case (a) of Theorem B we assume (as in case (a) of Theorem A) that (x, y)2 ∈
C, for all x, y ∈ R, where C is the center of R. In case (b) of Theorem B we use

Proposition 2.2(3(ii)) to deduce that (x, y)2 ∈ C, however, we need some extra

assumption to guarantee that R contains no divisors of zero.

Theorem A. Let R be a ring which is not commutative. Suppose that R contains

no divisors of zero, and that the characteristic of R is not 2.

Assume that either
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(a) (Main Theorem of [5]) R is associative and (x, y)2 ∈ C, where C is the

center of R

or

(b) (Theorem A of [1]) R is an alternative ring which is not associative.

Then R//C, the localization of R at its center C, is a quaternion division algebra

in case (a) and an octonion division algebra in case (b).

We note that if x, y ∈ R are non-zero elements such that xy = 0, then we

say that both x and y are zero divisors in R. Recall also that the commutator

(x, y) = xy − yx.

Theorem B. Let R be a unital ring which is not commutative. Let Z be the

commutative center of R, and C be the center of R. Assume that

(i) A non-zero commutator in R is not a divisor of zero in R, and

(ii) one of the following holds:

(a) R is an associative ring such that (x, y)2 ∈ C, for all x, y ∈ R.

(b) R is an alternative ring which is not associative, and Z = C.

Then

(1) R contains no divisors of zero.

(2) Suppose, in addition, that the characteristic of R is not 2, and let R//C

be the localization of R at C. If R is as in (a), then R//C is a quaternion

division algebra, and if R is as in (b), then R//C is an octonion division

algebra.

Remarks 1.1. (1) Note that in part (a) of Theorem A, it is assumed that the

center C of R is nontrivial. The fact that the center of R is nontrivial in

part (b) of Theorem A follows from Proposition 2.2(3(ii)).

(2) The hypothesis that Z = C, in part ii(b) of Theorem B, can be replaced

with any hypothesis that together with the assumption that a non-zero

commutator in R is not a divisor of zero in R, guarantees that R contains

no divisors of zero (this is needed only in the case where R is alternative,

but not associative). A number of such hypotheses are listed in [4].

Indeed part (2) of Theorem B, follows from Theorem A.

(3) In [4, Lemma 2.3(3)] we proved that for an alternative ring R:

If 3x = 0 =⇒ x = 0, for all x ∈ R, then Z = C.

So if 3x = 0 =⇒ x = 0, for all x ∈ R, then Theorem B holds in the case

where R is alternative but not associative.
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2. Preliminaries on alternative rings

Our main references for alternative rings are [2,3]. LetR be a ring, not necessarily

with 1 and not necessarily associative.

Definitions 2.1. Let x, y, z ∈ R.

(1) The associator (x, y, z) is defined to be

(x, y, z) = (xy)z − x(yz).

(2) The commutator (x, y) is defined to be

(x, y) = xy − yx.

(3) R is an alternative ring if

(x, y, y) = 0 = (y, y, x),

for all x, y ∈ R. It is well known and is a theorem of E. Artin, that R is an

alternative ring if and only if any subring of R generated by two elements

is associative. This fact will be used throughout this paper.

(4) The nucleus of R is denoted N and defined

N = {n ∈ R | (n,R,R) = 0}.

Note that in an alternative ring the associator is skew symmetric in its 3

variables ([3, Lemma 1]). Hence (R,n,R) = (R,R, n) = 0, for n ∈ N.

(5) The center of R is denoted C and defined

C = {c ∈ N | (c,R) = 0}.

(6) The commutative center of R is denoted here by Z and defined by

Z = {z ∈ R | (z,R) = 0}.

In the remainder of this section R is an alternative ring which is not asso-

ciative. N denotes the nucleus of R and C its center.

Proposition 2.2. Let R be an alternative ring which is not associative, and let

v ∈ R be a commutator, then

(1) v4 ∈ N.

(2) (v2, R,R)v = 0.

(3) (i) If v is not a zero divisor in R, then v2 ∈ N.

(ii) If (t, s) is not a zero divisor, for all non-commuting t, s ∈ R, then

N = C, so (t, s)2 ∈ C, for all t, s ∈ R.
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Proof. For (1)&(2) see [2, Theorem 3.1]. Part (3(i)) is an immediate consequence

of (2).

For part (3(ii)), let w ∈ R and n ∈ N, and consider the commutator (w, n). Let

x, y, z ∈ R, with (x, y, z) ̸= 0. By [4, Lemma 2.4(5)],

(w, n)(w, n)(x, y, z) = 0.

Since (w, n) is not a zero divisor, we must have (w, n) = 0. As this holds for all

w ∈ R, we see that n ∈ C, thus N = C. Then, by (3(i)), (t, s)2 ∈ C, for all

t, s ∈ R. □

3. The proof of Theorems A and B

In this section R is an alternative ring which is not commutative. We assume

that either

(A) R is one of the two possibilities of Theorem A.

(B) R is unital, it satisfies hypothesis (i) of Theorem B, and it is one of the two

possibilities of hypothesis (ii) of Theorem B.

We let C denote the center of R, and Z denote the commutative center of R. Note

that by Remark 1.1(1), C ̸= 0.

Notice that by hypothesis and by Lemma 2.2(3(ii)),

(x, y)2 ∈ C, for all x, y ∈ R. (3.1)

Lemma 3.1. Assume that R is as in hypothesis B. Let x ∈ R ∖ C. Then there

exists y ∈ R with v := (x, y) ̸= 0, and

(1) v + vx and vx are non-zero commutators.

(2) ax2 + bx+ c = 0, for some a, b, c ∈ C, with a, c non-zero.

Proof. If R is associative, then of course Z = C, while if R is not associative, then

Z = C by hypothesis. Hence Z = C, so y exists.

(1) We have v+vx = v(1+x) = (x, y(1+x)), and vx = (x, yx). By hypothesis

(i) of Theorem B, these commutators are non-zero.

(2) Let α := (v + vx)2 = v2 + v2x + vxv + (vx)2. Then α ∈ C. We have

αx = v2x2 + (v2 + (vx)2)x+ (vx)2. Letting

a := v2, b := v2 + (vx)2 − (v + vx)2 and c := (vx)2,

we see that a, b, c ∈ C, and ax2 + bx+ c = 0, with a ̸= 0 ̸= c. □

Theorem 3.2. R contains no divisors of zero, and every non-zero element x ∈ R

satisfies a quadratic equation ax2 + bx+ c = 0, for some a, b, c ∈ C, with a ̸= 0.
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Proof. If R is as in hypothesis A, this follows from [1, Theorem 4.1].

Suppose R is as in hypothesis B. We first show that R contains no divisors of

zero. Assume first that cr = 0, for some non-zero c ∈ C. Let v := (x, y) be a

non-zero commutator. Then (vc)r = v(cr) = 0, but vc = (x, yc) ̸= 0, hence r = 0,

so c is not a divisor of 0.

Suppose next that x ∈ R ∖ C, and that xs = 0, for some non-zero s ∈ R. Then

we immediately get from Lemma 3.1(2) that cs = 0, a contradiction.

Hence R contains no divisors of zero, so the theorem follows from Lemma 3.1(2).

□

Remark 3.3. In view of Theorem 3.2, we can form the localization of R at C, R//C.

This is the set of all formal fractions x/c, x ∈ R, c ∈ C, c ̸= 0, with the obvious

definitions: (i) x/c = y/d if and only if dx = cy; (ii) (x/c)+(y/d) = (dx+ cy)/(cd);

(iii) (x/c)(y/d) = (xy)/(cd). Then R//C is an alternative ring, and it is easy to

check that the center of R//C is the fraction field of C. Since (x/c, y/d) = (x, y)/cd

in R//C, we may replace R with R//C in Theorem B.

Note also that if R is as in Theorem A, then R//C is unital. Indeed if 1 is the

identity of C//C (the fraction field of C), then (x · 1− x)1 = 0, so x · 1 = x.

Thus from now on we replace R with R//C and assume that R has 1

and that C is a field. We also assume that char(C) ̸= 2.

The following technical lemma will be used to construct an octonion division

algebra inside R, when R is alternative, but not associative.

Lemma 3.4. Suppose R is alternative but not associative. Let a, b ∈ R∖ {0} be a

pair of anticommutative elements of R.

(1) If c ∈ R∖ {0} anticommutes with a and b, then for every permutation σ of

a, b, c

(i) σ(a)
(
σ(b)σ(c)

)
= (sgnσ)a(bc).

(ii)
(
σ(a)σ(b)

)
σ(c) = (sgnσ)(ab)c.

(2) If a2 ∈ C, then a anticommutes with ab.

(3) Suppose that c ∈ R anticommutes with a, b and ab. Let {x, y, z} = {a, b, c},
then

(i) x anticommutes with yz.

(ii) (xy)z = −x(yz), hence (xy)z, x(yz) ∈ {a(bc),−a(bc)}.
(iii) If, in addition, a2, b2, c2 ∈ C, then {a, b, c, ab, ac, bc, a(bc)} is a set of

pairwise anticommutative elements.
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Proof. (1) This appears in [3, Lemma 7, p. 134]. Since associators in R are skew

symmetric, (a, b, c) + (b, a, c) = 0. Hence

0 = (a, b, c) + (b, a, c) = (ab)c− a(bc) + (ba)c− b(ac) = −a(bc)− b(ac),

so b(ac) = −a(bc) this shows 1(i), and the proof of 1(ii) is similar.

(2) a(ab) = a2b = ba2 = (ba)a = −(ab)a.

3(i) We show that a anticommutes with bc, the proof that b anticommutes with ac

is similar. Using (1), we have

a(bc) = −c(ba) = (ba)c = −(bc)a.

3(ii) By 3(i) and (1), (xy)z = −z(xy) = z(yx) = −x(yz). The last part of 3(ii)

follows from (1).

3(iii) First we show that

xy anticommutes with xz. (α)

Indeed, by (1) and (2), (xy)(xz) = −(x(xz))y = −x2(zy), since x2 ∈ C. Similarly

(xz)(xy) = −x2(yz).

Next note that

x anticommutes with x(yz). (β)

This follows from (2) and 3(i), since x2 ∈ C.

Finally we show that

xy anticommutes with x(yz). (γ)

Indeed, by 3(ii) (xy)(x(yz)) = −(xy)((xy)z) = −(xy)2z. And by 3(ii) and 3(i),

(x(yz))(xy) = −((xy)z)(xy) = (z(xy))(xy) = (xy)2z, because (xy)2 ∈ C.

Notice now that 3(iii) follows from (2), 3(i), (α), (β) and (γ). □

The next proposition is the main tool in this paper. It is used to construct a

quaternion division algebra Q inside R, when R is associative, and to prove that

R = Q. It is also used to construct an octonion division algebra O inside R, when

R is alternative but not associative, and to prove that R = O.

Proposition 3.5. Let u1, u2, . . . , un ∈ R ∖ C, n ≥ 2, such that u2
i ∈ C, and

uℓus = −usuℓ, for all distinct ℓ, s. Let

V := C + Cu1 + · · ·+ Cun,

be the subspace of R spanned by 1, u1, . . . , un.
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(1) If p ∈ R satisfies

puℓ + uℓp := dℓ ∈ C, for all ℓ ∈ {1, . . . , n}, (∗)

then the element

m := p−
∑n

i=1(di/2u
2
i )ui, (3.2)

satisfies muℓ + uℓm = 0, for all ℓ ∈ {1, . . . , n}.
(2) If R ̸= V, then there exists p ∈ R∖ V such that the element m of equation

(3.2) satisfies muℓ + uℓm = 0, for all ℓ ∈ {1, . . . , n}, and m2 ∈ C.

Proof. (1) We show that mu1 + u1m = 0, the proof for u2, . . . , un is identical.

mu1 + u1m = pu1 + u1p− d1 −
n∑

i=2

(di/2u
2
i )(uiu1 + u1ui) = 0.

(2) We show that there exists p ∈ R∖V, such that p2 ∈ C, and such that p satisfies

(∗).
Let x ∈ R∖ V. By Theorem 3.2, x satisfies a quadratic, and hence (since C is a

field) a monic quadratic equation x2 − bx+ c = 0, over C. Let p := x− b/2. Then

p /∈ V, and p2 ∈ C. Let u ∈ {u1, . . . un}. Then both p+ u and p− u satisfy a monic

quadratic equation over C. That is

(p+ u)2 = c1(p+ u) + c2

(p− u)2 = c3(p− u) + c4.

Adding we get

(c1 + c3)p+ (c1 − c3)u+ c5 = 0, where c5 = c2 + c4 − 2p2 − 2u2 ∈ C.

Now c1 + c3 = 0, since p /∈ V, and then c1 − c3 = 0, since u /∈ C. We thus get that

pu+ up = c2 − p2 − u2 ∈ C.

Let now m be as in equation (3.2). For i ∈ {1, . . . , n}, set αi := (di/2u
2
i ) ∈ C.

Note that

m2 = p2 +

m∑
i=1

α2
iu

2
i +

m∑
i=1

αi(pui + uip) ∈ C. □

Now we construct the quaternions and the octonions inside R in the respective

cases.

Proposition 3.6.

(1) R contains a quaternion division algebra.

Q = C1+ Ca+ Cb+ Cab, a, b ∈ R∖ {0}, a2, b2 ∈ C.
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(2) If R is alternative, then there exists c ∈ R∖{0} that anticommutes with a, b

and ab above, and such that c2 ∈ C. Hence R contains an octonion division

algebra

O := F1+ Cu1 + Cu2 + Cu3 + Cu4 + Cu5 + Cu6 + Cu7,

where

u1 := a, u2 := b, u3 = ab, u4 := c, u5 = ac, u6 := bc, u7 := (bc)a,

so uℓ ̸= 0, u2
ℓ ∈ C, and uℓus = −usuℓ, for all ℓ, s.

Proof. (1) Let a ∈ R be a non-zero commutator. Thus a2 ∈ C ∖ {0}. Of course

R ̸= F1 + Fa, because R is not commutative. By Proposition 3.5(2), there exists

b ∈ R ∖ {0} such that ab = −ba and b2 ∈ C. Thus Q := C1+ Ca+ Cb+ Cab is a

quaternion algebra. Since, by Theorem 3.2, R contains no divisors of zero, Q is a

division algebra.

(2) By (1) there exist non-zero a, b ∈ R such that ab = −ba and a2, b2 ∈ C. Since

R is not associative R ̸= Q, where Q is as in (1). Hence by Proposition 3.5(2), and

since a, b, ab pairwise anticommute, there exists c ∈ R∖Q, such that c anticommute

with a, b, ab, and c2 ∈ C. By Lemma 3.4(3(iii)), u1, . . . , u7 satisfy the assertion of

part (2).

Set

α := a2, β := b2, γ = c2.

It is easy to check now that {u1, . . . , u7} satisfy the multiplication table on p. 137

of [3] (with 1 = u0). Hence O is an octonion algebra. Since R has no zero divisors,

O is a division algebra (see [6, section III]). □

Lemma 3.7 below will be used to show that R = O, when R is alternative, where

O is as in Lemma 3.6(2) above.

Lemma 3.7. Let m, a, b, c ∈ R∖ {0}, and let {x, y, z} = {a, b, c}. Assume that

(i) x anticommutes with y and yz.

(ii) m anticommutes with x, xy, a(bc).

Then

(1) mx anticommutes with y, yz; m(xy) anticommutes with z, and (mx)y an-

ticommutes with z.

(2) 2m(x(yz)) = 0.
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Proof. (1) First, by Lemma 3.4(3i), mx anticommutes with y. Also, by Lemma

3.4 we get,

(mx)(yz)
3.4(1ii)
= −((yz)x)m

by (ii)
= m((yz)x)

3.4(1i)
= −(yz)(mx),

and

(m(xy))z
3.4(1ii)
= −(z(xy))m

by (ii)
= m(z(xy))

3.4(1i)
= −z(m(xy)).

Also

((mx)y)z
3.4(1ii)
= −(zy)(mx) = (mx)(zy)

3.4(1i)
= −z((mx)y).

(2) We can now use Lemma 3.4(3(ii)) with {m,x, yz}, {mx, y, z} and {m,xy, z}, in
place of {a, b, c}. Thus we have

m(x(yz)) = −(mx)(yz) = ((mx)y)z,

and

m(x(yz)) = −m((xy)z) = (m(xy))z = −((mx)y)z. □

Proof of Theorems A and B. We can now complete the proof of Theorems A

and B. So suppose that R satisfies one of hypotheses (A) or (B). By Theorem 3.2,

R contains no zero divisors. We now assume that the characteristic of R is not 2,

and we replace R with R//C as in Remark 3.3.

Let a, b ∈ R and Q be as in Proposition 3.6(1). Suppose that R is associative

and that R ̸= Q. By Proposition 3.5(2), there exists m ∈ R∖Q that anticommutes

with a, b, ab. But then

m(ab) = (ma)b = −(am)b = −a(mb) = (ab)m = −m(ab).

So 2m(ab) = 0, hence m(ab) = 0. But R has no divisors of 0, a contradiction.

Suppose now that R is alternative but not associative. Let O be as in Proposition

3.6(2). Assume that R ̸= O. By Proposition 3.5(2), there exists m ∈ R ∖ O that

anticommutes with u1, . . . , u7. By Lemma 3.7, 2m(a(bc)) = 0, again a contradiction.

□
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