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Abstract 

A novel weak form quadrature element method (QEM) is presented for free vibration analysis of hybrid nonlocal Euler-

Bernoulli beams with general boundary conditions. For demonstrations, the stiffness and mass matrices of a beam 

element with Gauss-Lobatto-Legendre (GLL) nodes are explicitly given by using the nodal quadrature method together 

with the differential quadrature (DQ) law. Convergence studies are performed and comparisons are made with exact 

solutions to show the excellent behavior of the proposed beam element. Case studies on hybrid nonlocal Euler-Bernoulli 

beams with different length scale parameters have been conducted. Accurate frequencies of the beams with different 

combinations of boundary conditions are obtained and presented. 

Keywords: Weak form quadrature element method, hybrid nonlocal Euler-Bernoulli beam, multiple boundary 

conditions, free vibration. 

1. Introduction 

Due to its efficiency, the continuous mechanics approach is frequently used by researchers to study 

the behavior of free vibration of micro/nano-sized structures [1]. The nonlocal continuum theory [2-

6] and the strain gradient elasticity theory [7-9] are the widely used theories of modeling the micro/ 

nano-scaled structures. 

The hybrid nonlocal Euler-Bernoulli beam models, proposed very recently by Lim et al. [10], possess 

two or more independent small length-scale parameters and may model the micro/nano-structures 

more accurately. However, it is difficult to get analytical solutions for hybrid nonlocal Euler-

Bernoulli beams with general boundary conditions. Therefore, numerical methods should be resorted 

to for solutions. 

Various efficient numerical methods [4,9,11-22] can be employed to get accurate solutions of hybrid 

nonlocal Euler-Bernoulli beams. The discrete singular convolution (DSC) [11-14], the differential 

quadrature method (DQM) and differential quadrature element method (DQEM) [15-18] belong to 

the strong form methods. The finite element method (FEM) [4,9] and the weak form quadrature 

element method (QEM) [18-22] belong to the weak form methods. If the boundary conditions are not 

appropriately applied, the DQM may result spurious complex eigen-values [15]. Being a high order 

FEM, applying multiple boundary conditions by the QEM is very simple. The QEM possesses the 

accuracy of the global methods such as the DSC, DQM and DQEM as well as the flexibility of the 
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local methods such as the FEM [20] and thus is used in present investigation. Up to dated research 

work related to the QEM has been well documented by Wang, Yuan and Jin [20]. 

The objective of this paper is to propose a novel weak form quadrature beam element for the free 

vibration analysis of the hybrid nonlocal Euler-Bernoulli beams. The stiffness and mass matrices of a 

beam element with Gauss-Lobatto-Legendre (GLL) nodes are explicitly given for the first time via 

the nodal quadrature method together with the differential quadrature (DQ) law. The rate of 

convergence of the proposed quadrature beam element is studied. Free vibration of hybrid nonlocal 

Euler-Bernoulli beams with different combinations of boundary conditions is analyzed. Some 

conclusions are drawn at the end of this paper. 

2. Higher-order nonlocal strain gradient theory 

Denote x the longitudinal coordinate measured from the middle point of the hybrid nonlocal Euler-

Bernoulli beam. Denote I, A, E,  and w the second moment of the cross-sectional area, the cross 

sectional area, Young’s modulus, the mass density, and the transverse displacement, respectively. 

For the free vibration analysis, the simplified higher-order nonlocal strain gradient theory of the 

hybrid nonlocal Euler-Bernoulli beam is given by [10,17] 

 
4 6 2

2 2 2 2

4 6 2
( )

d w d w d w
EI l EI A w ea A

dx dx dx
                                          (1) 

 

where symbols l and ea represent the independent length-scale parameters, and is the circular 

frequency. 

The shear force, bending moment and high order bending moment are defined as [10,17] 
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To obtain the solutions by the weak form quadrature element method (QEM), the expressions of 

strain energy and kinetic energy are needed for derivations of the stiffness and mass matrices of the 

quadrature beam element. For free vibration analysis, the corresponding strain energy of the hybrid 

nonlocal Euler-Bernoulli beam element is given by 
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where symbol L is the length of the beam element. 

The corresponding kinetic energy of the hybrid nonlocal Euler-Bernoulli beam element is given by 
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It was pointed out early [17] that the hybrid nonlocal Euler-Bernoulli beam has totally twenty-

one combinations of boundary conditions. For the QEM, however, only essential boundary 

conditions are needed and given. Adopt the notations presented in [17], the essential boundary 

conditions of the hybrid nonlocal Euler-Bernoulli beam are 

(a) Simply supported end-a (Sa): 

 
2

2
0,   0  

d w
w

dx
                                                                     (7) 

 

(b) Simply supported end-b (Sb): 

 

0w                                                                                        (8) 

 

(c) Clamped end-a (Ca): 

 
2

2
0

dw d w
w

dx dx
                                                                    (9) 

 

(d) Clamped end-b (Cb): 

 

0 
dw

w
dx

                                                                       (10) 

 

(e) Free end-a (Fa): 

 
2

2
0 

d w

dx
                                                                          (11) 

 

(f) Free end-b (Fb): all three boundary conditions are natural ones.  

3. Formulation of the weak form quadrature beam element 

Consider an N -node weak form quadrature beam element. The non-dimensional coordinates of the 

element node are denoted by  ( 1,2,..., )k k N  , where 2 /x L  . In present investigation, Gauss-

Lobatto-Legendre (GLL) points are used as element nodes for simplicity considerations, and 

( 1, 2,..., )k k N 
 
are the roots of the following equation, 

 

 2 1( )
1 0NdP

d





                                                          (12) 

 

where 
1( )NP 

is the (N-1)th order Legendre polynomial. 

The weights of nodal quadrature corresponding to integration point k , i.e., kH , are given by 

 



X. Wang 

68 
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Since no explicit formulas exist to compute k and kH , the short subroutine listed in reference [20] is 

used to calculate the GLL points and their corresponding weights conveniently with any N. 

The displacement function within the quadrature beam element is assumed as 
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where the shape function ( )jh x is also called Hermite function and its order is (N+3), 

  1,2,...,j jw j N   , (1)

1 1N w   , (1)

2N Nw   , (2)
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4N Nw   , 1 1Nh   , 2N Nh   , 

3 1Nh    , 4N Nh    , and   1,2,...,j jh j N  , respectively. 

The thk order derivative of the displacement function ( )w x with respect to x at point i is given by 
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where ( )k

ijQ is called the weighting coefficient of the thk order derivative with respect to x. 

Let ( )jl x be the Lagrange interpolation function defined by 
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Then the shape functions of the quadrature beam element are given by [17] 
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The strain energy of the beam element is obtained by substituting Eq. (14) into Eq. (5) and then 

integrated numerically using the nodal quadrature method, i.e., the N-point GLL quadrature. After 

doing so, U is given by 
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Elements in the stiffness matrix of the quadrature beam element ˆ[ ]k are given by 
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By the same token, the kinetic energy of the beam element is obtained by substituting Eq. (14) into 

Eq. (6) and then integrated numerically using the nodal quadrature. After doing so, T is given by 
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Elements in the consistent mass matrix of the quadrature beam element ˆ[ ]m are given by 
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In Eq. (23) and Eq. (24), 
kih and

kjh are defined as 
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And (1) (1) (2) (2) (3) (3), , , , ,ki kj ki kj ki kjQ Q Q Q Q Q are the weighting coefficients of the first, second and third order 

derivatives with respect to x. 

The weighting coefficients of k-th order derivative, ( )k

ijQ , can be explicitly computed by [17] 
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In Eqs. (26)-(29), (0) ( ) ( )j i j i ijl x l x   , ( ) ( )n

j il x should be dropped when 0n  since the coefficient 

associated with it is zero, where 1 1( ),  ( 1,2,3)n k i i   . Since nodal quadrature is used, ( ) ( )k

j il x  

( 1,2,3k  ) can be computed explicitly by using the formulas of the DQM as follows [18], 
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And 
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It is easy to see that ( ) 0k

ijQ  when k>N+3, since ( )jh x is a (N+3)th order polynomial. 

If only one element is used to model the entire beam, the equation of motion can be symbolically 

written as 

 

    2ˆ ˆ[ ]k m                                                                                     (32) 

 

Eliminating the rows and columns in ˆ[ ]k and ˆ[ ]m  in Eq. (32) which correspond to the zero 

displacements (i.e., the essential boundary conditions) yields 

 
2[ ]{ } [ ]{ }k m                                                                          (33) 

 

Solving Eq. (33) by a generalized eigen-solver yields the frequencies of the hybrid nonlocal Euler-

Bernoulli beam. 

If more beam elements are used to model the entire beam structure, the assemblage procedures are 

exactly the same as the ones of the finite element method [20]. 

It is worth notice that the problem of spurious complex eigen-values will never occur since both 

stiffness matrix and mass matrix are symmetric matrices. It is also worth notice that both stiffness 

and mass matrices are not fully integrated, since the nodal quadrature is only exact for a polynomial 

of (2N-3)th degrees and less. If fully integrated stiffness and mass matrices are required, then Gauss 

quadrature should be used for efficiency considerations and ( ) ( 1,2,3)k

ijQ k   at Gauss integration points 

should be computed differently. More precisely, ( ) ( )k

j il x in Eqs. (26)-(29) should be computed 

differently since the DQ law cannot be directly employed. The method proposed by author’s group 

[19-22] should be used to compute ( ) ( 1,2,3)k

ijQ k  explicitly and conveniently. 

4. Results and discussion 

 

For convenience in presentation, three non-dimensional parameters are introduced, i.e., /l L  , 

/ea L   and 2 /A EI   . One N-node element is used to model the entire beam for simplicity. 

For the Sa-Sa beam, the exact solution of the frequency parameter can be easily obtained by using 

Navier solution method [17]. The exact non-dimensional frequency parameter is given by 

 

 
2 2 2 2 2

2 2 2

1
 ( 1,2,...)

1

n n
n

n

  


 


 


                                                   (34) 
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where n is the mode number. 

Convergence studies are performed first. The number of nodes N varies from 7 to 19. Figure 1 shows 

the convergence rate of the proposed element. The Sa-Sa beam with 0.16   and 0.1  is considered. 

The absolute differences between the QEM data and analytical solutions are presented. It is seen that 

the proposed QEM exhibits the exponential rate of convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Convergence rate of the proposed beam element 

To demonstrate the high accuracy of the QEM further, the Sb-Sb beam with 0.2  and 0.14  is 

analyzed. Since analytical solution is not available, thus the results obtained by the DQEM [17] with 

N=119 are served as the reference data. Figure 2 shows the variation of the first five frequency 

parameters with the number of nodes. It is seen that the rate of convergence is high and the QEM 

with N=13 can yield accurate first five frequency parameters. It was reported early [17] that the 

DQEM with N=13 can yield accurate first five frequency parameters for the hybrid nonlocal Euler-

Bernoulli beam. This indicates that the QEM possesses the same accuracy of the DQEM. 

 

 

 

 

 

 

 

 
Fig. 2. Convergence of the first five frequency parameters 
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The variations of the first six frequency parameters of a Ca-Fa beam with one of the small length-

scale parameter are shown in Fig. 3. One of the two small length-scale parameters is fixed and the 

other varies from 0.008 to 0.2. 

 

 
Fig.3. Effect of small length-scale parameters on the frequencies of the Ca-Fa beam 

To ensure the solution accuracy, the QEM results are obtained by using one 19-node beam element. 

It is clearly seen that the first six frequency parameters increase with the increase of   but decreases 

with the increase of  , and the effect of  and on frequencies is appreciated and opposite. The 

influence degree is quite different and also increases with the increase of mode numbers. It is easy to 

get accurate frequencies for beams with other boundary conditions and small length-scale parameter 

by the proposed QEM. Results are omitted to save the space.  

5. Conclusions 

A novel weak form quadrature element method is presented for free vibration analysis of hybrid 

nonlocal Euler-Bernoulli beams. Explicit formulas to compute the element stiffness and mass 

matrices are given via nodal quadrature and the DQ law. It is shown that the QEM has exponential 

rate of convergence. Numerical results show that the proposed QEM is computationally efficient and 

capable of obtaining accurate solutions of the hybrid nonlocal Euler-Bernoulli beams with any 

combination of boundary conditions and length-scale parameters. It is seen that the effect of the two 

length-scale parameters on the frequency of the beam is opposite. It is demonstrated that the QEM 

possesses advantages of the flexibility of the FEM and high accuracy of the DQEM. Present research 

extends the application range of the weak form quadrature element method. 
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