
Fundamentals of Contemporary Mathematical Sciences
doi:10.54974/fcmathsci.1470784

(2025) 6(1) 59 – 74

Research Article

Clique Collocation Method to Solve the Third-Order Multisingular

(MS) Functional Differential Equations

Gamze Yıldırım 1,2, Şuayip Yüzbaşı 3*
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Abstract: In this paper, a Clique collocation method is presented to numerically solve the third-order

multisingular (MS) functional differential equation. This method convert this equation to a system of the

algebraic equations via the collocation points and the matrix relations. Also, the error estimation technique

is constituted for the third-order multisingular (MS) functional differential equation. Applications of the

Clique collocation method and the error estimation technique are made for three examples. In addition,

the comparison is made with another method in the literature. The obtained results are tabulated and

visualized to demonstrate the effectiveness of the presented method. Applications of the method and

graphics are made by using MATLAB. According to the applications, it is observed that the results have

quite decent errors.

Keywords: Clique polynomials, collocation method, error estimation, functional differential equations,

singular differential equations.

1. Introduction

Recently, studies on functional differential equations with singular points have been of great

importance for researchers. Functional differential equations are used in many applications such

as electrodynamics [12], models based on chemical kinetics [31], models of population growth [26],

infection models of HIV-1 [27], models of tumor growth [37], B-virus infection hepatitis models

[15] and many more [5, 8, 23, 33, 36]. Differential equations with singular points have been used

in some important application areas such as oscillating magnetic fields [11], study of thermal

explosions model [1], models of the stellar structure [38] and study of the model of isothermal gas

spheres [7]. Many researchers have solved functional differential equations using many methods
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such as one-step implicit methods [3], Taylor polynomial method [35], homotopy analysis method

[4], variational iteration method [10], Laguerre matrix method [42], a matrix-collocation method by

using Müntz-Legendre polynomials [39], two novel memory-based root-finding approaches [30] and

an iterative method [13]. In addition, singularly perturbed differential equations have been solved

using many methods such as spline finite difference method [24], the finite difference methods

[16, 22], the seventh order numerical method [9], B-spline collocation method [20, 21], Bessel

collocation method [40] and Laguerre method [41]. Besides, an approach has been presented to

study the existence, uniqueness and stability of the solutions of nonlinear differential equations with

infinite delay [6]. The collocation methods are one of the methods that obtain effective results to

calculate numerical solutions of differential equations. In the literature, the collocation method

has been used to obtain approximate solutions of many differential equations such as the singular-

perturbation problem [20], general linear differential-difference equations with variable coefficients

[34], the generalized pantograph equations with linear functional argument [35] etc. [29, 40–42].

The clique polynomials were first introduced in [18] and associated with graph theory. Nevertheless,

there are many studies in the literature on the numerical solutions of many differential equations

using Clique polynomials [2, 14, 17, 19, 25, 28, 43]. Effective results are obtained from these

studies. But there is no study in literature yet on the solutions of the third-order multisingular

(MS) functional differential equations using Clique polynomials. Hence, the approximate solution

of this equation is investigated based on Clique polynomials in this paper.

In this study, we consider the model based on the third-order multisingular (MS) functional

differential equations with initial conditions [32]

{
u
′′′

(s + θ1) +
β1

s
u
′′

(s + θ2) +
β2

s2
u
′

(s + θ3) + s u(s + θ4) = α(s),

u(0) = k1, u
′

(0) = k2, u
′′

(0) = k3.
(1)

Here, the parameters β1, β2, θi (i = 1,2,3,4) , kj (j = 1,2,3) are the real constant values and α(s)

is the continuous function.

Our aim is to obtain the approximate solution of (1) in form of the Clique polynomials

uN(s) =
N

∑
n=0

anCn(s), (2)

where N > 0 is chosen to be any positive integer. Here, an and Cn(s) are, respectively, the

unknown coefficients and Clique polynomials described by [19]

Cn(s) =
n

∑
k=0
(
n

k
)sk. (3)

The recursive formulation of the Clique polynomials is
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Cn+1(s) = (1 + s)Cn(s), C0(s) = 1, C1(s) = s + 1. (4)

Let’s summarize rest of this paper as follows: The fundamental matrix relations are presented

in Section 2. The Clique collocation method is presented in Section 3. The error estimation method

is given in Section 4. In Section 5, the applications of the method are made. Also, a comparison

is made with another method in the literature. Thus, the obtained results are interpreted. The

results of the paper are summarized in Section 6.

2. Fundamental Matrix Relations

Let’s start this section by writing the Clique polynomials in matrix form

CN(s) = SN(s)MN , (5)

where CN(s) = [ C0(s) C1(s) ⋯ CN(s) ] , SN(s) = [ 1 s s2 ⋯ sN ] ,

MN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
) (

1
0
) (

2
0
) ⋯ (

N
0
)

0 (
1
1
) (

2
1
) ⋯ (

N
1
)

0 0 (
2
2
) ⋯ (

N
2
)

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ (
N
N
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Secondly, we can express the approximate solutions (2) as

uN(s) =CN(s)AN , (6)

where CN(s) = [ C0(s) C1(s) ⋯ CN(s) ] and AN = [ a0 a1 ⋯ aN ]
T
.

Using relation (5) in (6), we get

uN(s) = SN(s)MNAN . (7)

By taking the derivative of (7), we have

u
′

N(s) = SN(s)PNMNAN , (8)

where

PN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋯ 0 0
0 0 2 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ N 0
0 0 0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, the second and the third derivative of (7) becomes

u
′′

N(s) = SN(s)(PN)
2MNAN (9)
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and

u
′′′

N(s) = SN(s)(PN)
3MNAN . (10)

By writing s→ s + θ4 in (7), we obtain the relation

uN(s + θ4) = SN(s + θ4)MNAN

or since SN(s + θ4) = SN(s)DN(θ4) , we can also write it as

uN(s + θ4) = SN(s)DN(θ4)MNAN , (11)

where

DN(θ4) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ4)

0 (
1
0
)(θ4)

1 ⋯ (
N
0
)(θ4)

N

0 (
1
1
)(θ4)

0 ⋯ (
N
1
)(θ4)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ4)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Similarly, substituting s → s + θ3 , s → s + θ2 and s → s + θ1 , respectively, into (8), (9) and

(10), we have

u
′

N(s + θ3) = SN(s)DN(θ3)PNMNAN , (12)

u
′′

N(s + θ2) = SN(s)DN(θ2)(PN)
2MNAN (13)

and

u
′′′

N(s + θ1) = SN(s)DN(θ1)(PN)
3MNAN , (14)

where

DN (θ3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ3)

0
(
1
0
)(θ3)

1
⋯ (

N
0
)(θ3)

N

0 (
1
1
)(θ3)

0
⋯ (

N
1
)(θ3)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ3)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, DN (θ2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ2)

0
(
1
0
)(θ2)

1
⋯ (

N
0
)(θ2)

N

0 (
1
1
)(θ2)

0
⋯ (

N
1
)(θ2)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ2)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

DN(θ1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
0
0
)(θ1)

0 (
1
0
)(θ1)

1 ⋯ (
N
0
)(θ1)

N

0 (
1
1
)(θ1)

0 ⋯ (
N
1
)(θ1)

N−1

⋮ ⋮ ⋱ ⋮

0 0 ⋯ (
N
N
)(θ1)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally in this section, by writing s→ 0 in (7), (8) and (9), we have, respectively

uN(0) = SN(0)MNAN , (15)

u
′

N(0) = SN(0)PNMNAN (16)

and

u
′′

N(0) = SN(0)(PN)
2MNAN . (17)
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3. Clique Collocation Method

Firstly, we write the relations (11) - (14) instead of (1) and so we have

SN(s)DN(θ1)(PN)
3MNAN +

β1

s
SN(s)DN(θ2)(PN)

2MNAN +
β2

s2
SN(s)DN(θ3)PNMNAN

+s SN(s)DN(θ4)MNAN = α(s).

(18)

Secondly, we obtain

SN(s0)DN(θ1)(PN)
3MNAN +

β1

s0
SN(s0)DN(θ2)(PN)

2MNAN +
β2

(s0)2SN(s0)DN(θ3)PNMNAN + s0SN(s0)DN(θ4)MNAN = α(s0)

SN(s1)DN(θ1)(PN)
3MNAN +

β1

s1
SN(s1)DN(θ2)(PN)

2MNAN +
β2

(s1)2SN(s1)DN(θ3)PNMNAN + s1SN(s1)DN(θ4)MNAN = α(s1)

⋮

SN(sN)DN(θ1)(PN)
3MNAN +

β1

sN
SN(sN)DN(θ2)(PN)

2MNAN +
β2

(sN )2SN(sN)DN(θ3)PNMNAN + sNSN(sN)DN(θ4)MNAN = α(sN)

(19)

by using the collocation points defined as

si = a +
b − a

N
i, i = 0,1, . . . ,N (20)

in the range [a, b] , where a is a sufficiently small positive number in the range 0 < a < 1.

Sytem (19) can also be written, briefly, as

WAN =G, (21)

where

W = (SDN(θ1)(PN)
3
+E1SDN(θ2)(PN)

2
+E2SDN(θ3)PN +E3SDN(θ4))MN ,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α(s0)
α(s1)
⋮

α(sN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

SN(s0)
SN(s1)
⋮

SN(sN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E1 = diag (
β1

si
) , E2 = diag (

β2

(si)2
) , E3 = diag (si) .

As the next step, we write system (15)-(17) instead of any 3 rows of system (21). Thus, we

get

SN(s0)DN(θ1)(PN)
3MNAN +

β1

s0
SN(s0)DN(θ2)(PN)

2MNAN +
β2

(s0)2SN(s0)DN(θ3)PNMNAN + s0SN(s0)DN(θ4)MNAN = α(s0)

SN(s1)DN(θ1)(PN)
3MNAN +

β1

s1
SN(s1)DN(θ2)(PN)

2MNAN +
β2

(s1)2SN(s1)DN(θ3)PNMNAN + s1SN(s1)DN(θ4)MNAN = α(s1)

⋮

SN(sN−3)DN(θ1)(PN)
3MNAN +

β1

sN−3
SN(sN−3)DN(θ2)(PN)

2MNAN +
β2

(sN−3)2SN(sN−3)DN(θ3)PNMNAN + sN−3SN(sN−3)DN(θ4)MNAN = α(sN−3)
SN(0)MNAN = k1

SN(0)PNMNAN = k2
SN(0)(PN)

2MNAN = k3.

(22)

Let’s note that we select the last 3 rows in the system (22). Finally, we solve the obtained

new system and so we calculate the unknown Clique coefficients matrix AN . Hence, we achieve

the Clique polynomial solutions uN(s) by putting the obtained matrix AN into (6).
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4. Error Estimation Technique

Let’s start this section by defining residual function as

RN(s) = L[uN(s)] − α(s). (23)

Since the Clique polynomial solutions satisfy problem (1), we get

{
u
′′′

N(s + θ1) +
β1

s
u
′′

N(s + θ2) +
β2

s2
u
′

N(s + θ3) + s uN(s + θ4) = α(s),

uN(0) = k1, u
′

N(0) = k2, u
′′

N(0) = k3.
(24)

Secondly, we subtract (24) from (1) and so we gain the error problem

{
e
′′′

N(s + θ1) +
β1

s
e
′′

N(s + θ2) +
β2

s2
e
′

N(s + θ3) + s eN(s + θ4) = −RN(s),

eN(0) = 0, e
′

N(0) = 0, e
′′

N(0) = 0.
(25)

Here, u(s) , uN(s) and eN(s) denote, respectively, the exact solution, the Clique polynomial

solution and the actual error function. Also, let’s note that eN(s) = u(s) − uN(s) .

Finally, we solve the system (25) according to Clique collocation method in previous section

and thus we gain the estimated error function

eN,M(s) =
M

∑
n=0

a∗nCn(s), (26)

where a∗n is the unknown coefficients. The error estimation method is important. Because we can

calculate the made error if the exact solution of the problem is not known.

5. Applications

In this section, the applications of methods in previous sections are made using MATLAB.

Example 5.1 Firstly, we consider the model based on the the third-order multisingular (MS)

functional differential equations with initial conditions [32] given as

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = es−1 + 1
s
es+1 + 2

s2
es+2 + ses,

u(0) = 1, u
′

(0) = 1, u
′′

(0) = 1.
(27)

Our aim is to obtain Clique polynomial solutions for N = 3 as:

u3(s) =
3

∑
i=0

aiCi(s), (28)

or

u3(s) = S3(s)M3A3, (29)
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where S3(s) = [ 1 s s2 s3 ] , A3 = [ a0 a1 a2 a3 ]
T
and M3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If we use the relation (20), we write the collocation points for a = 0.01, b = 1 as s0 =
1

100
, s1 =

17
50
, s2 =

67
100

, s3 = 1. Hence, if we utilize the system (21), then we get

WA =G, (30)

where

W = (SD3(−1)(P3)
3 +E1SD3(1)(P3)

2 +E2SD3(2)P3 +E3SD3(0))M3,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

es0−1 + 1
s0
es0+1 + 2

s20
es0+2 + s0es0

es1−1 + 1
s1
es1+1 + 2

s21
es1+2 + s1es1

es2−1 + 1
s2
es2+1 + 2

s22
es2+2 + s2es2

es3−1 + 1
s3
es3+1 + 2

s23
es3+2 + s3es3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S3(s0)
S3(s1)
S3(s2)
S3(s3)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D3(−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D3(1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D3(2) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 4 8
0 1 4 12
0 0 1 6
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D3(0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, E1 = diag (
1

si
) , E2 = diag (

2

(si)2
) , E3 = diag (si) .

Figure 1 (a) shows the exact solution and the approximate solutions for N = 4 and N = 5.

Also, this figure compares these solutions with the solutions of differential transform method (DM)

[32] for N = 4 and N = 6. Figure 1 (b) shows these functions more closely. Accordingly, the closest

result to the exact solution is obtained with our method. In addition, the values of these functions

at some s points are compared with the solutions of DM [32] in Table 1.

Figure 2 (a) compares the actual absolute errors of Example 5.1 with the errors of DM [32]

for N = 4 and N = 5. Accordingly, the results of DM [32] for N = 4 and N = 6 are the same. The

result obtained with our method with N = 4 is better than these results.

The best result is obtained when N = 5 is chosen in our method. In other words, with our

method, a more suitable result is obtained with a smaller N value. Figure 2 (b) visualizes the

actual absolute errors of Example 5.1 for N = 4 and N = 5 and the estimated absolute errors of

Example 5.1 for (N,M) = (4,5) and (N,M) = (5,6) . This shows that the actual and estimated

absolute error for N = 4 and (N,M) = (4,5) overlap. Also, it can be concluded that the actual
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Figure 1: Comparison of solutions of Example 5.1 with DM [32]
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and estimated absolute error for N = 5 and (N,M) = (5,6) are very close. Moreover, it can be

seen from figures that the error decreases as N increases.

Example 5.2 Our second model is [32]

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = s5 + 45s + 48 + 108
s
+ 64

s2
,

u(0) = 1, u
′

(0) = 0, u
′′

(0) = 0.
(31)

The exact solution of this problem is 1+s4 . Our aim is to obtain Clique polynomial solutions

for N = 4 as:

u4(s) =
4

∑
i=0

aiCi(s), (32)

or

u4(s) = S4(s)M4A4. (33)

Utilizing the system (21), we get

WA =G, (34)

where

W = (SD4(−1)(P4)
3
+E1SD4(1)(P4)

2
+E2SD4(2)P4 +E4SD4(0))M4,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s50 + 45s0 + 48 +
108
s0
+ 64

s20
s51 + 45s1 + 48 +

108
s1
+ 64

s21
s52 + 45s2 + 48 +

108
s2
+ 64

s22
s53 + 45s3 + 48 +

108
s3
+ 64

s23
s54 + 45s4 + 48 +

108
s4
+ 64

s24

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By writing s→ 0 in (7), (8) and (9), we have, respectively

u4(0) = S4(0)M4A4, (35)

u
′

4(0) = S4(0)P4M4A4 (36)

and

u
′

4(0) = S4(0)(P4)
2M4A4, (37)

where S4(0) = [ 1 0 0 0 0 ] .

Finally, the approximate solution is obtained 1+s4 by solving the system (34) with conditions

(35), (36) and (37). This is the exact solution.
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Figure 2: Comparison of absolute errors of Example 5.1 with DM [32]
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Example 5.3 Finally, we perform the model based on the the third-order multisingular (MS)

functional differential equations with initial conditions [32]

{
u
′′′

(s − 1) + 1
s
u
′′

(s + 1) + 2
s2
u
′

(s + 2) + su(s) = s4 + s + 18 + 30
s
+ 24

s2
,

u(0) = 1, u
′

(0) = 0, u
′′

(0) = 0.
(38)

The exact solution of this problem is 1+s3 . Our aim is to obtain Clique polynomial solutions

for N = 3 as:

u3(s) =
3

∑
i=0

aiCi(s), (39)

or

u3(s) = S3(s)M3A3. (40)

Utilizing the system (21), we obtain

WA =G, (41)

where

W = (SD3(−1)(P3)
3
+E1SD3(1)(P3)

2
+E2SD3(2)P3 +E3SD3(0))M3,

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s40 + s0 + 48 +
30
s0
+ 24

s20
s41 + s1 + 48 +

30
s1
+ 24

s21
s42 + s2 + 48 +

30
s2
+ 24

s22
s43 + s3 + 48 +

30
s3
+ 24

s23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By writing s→ 0 in (7), (8) and (9), we have, respectively

u3(0) = S3(0)M3A3, (42)

u
′

3(0) = S3(0)P3M3A3 (43)

and

u
′

3(0) = S3(0)(P3)
2M3A3, (44)

where S3(0) = [ 1 0 0 0 ] .

Finally, the approximate solution is obtained 1+s4 by solving the system (41) with conditions

(42), (43) and (44). This is the exact solution.

6. Conclusions

In this paper, we investigate the approximate solution of the third-order multisingular (MS)

functional differential equation via Clique collocation method. In addition to method, we constitute

error estimation technique for the problem. Also, we make applications of the Clique collocation
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method and the error estimation technique for three examples by using MATLAB. Accordingly,

we obtain the exact solution in Example 5.2 and Example 5.3. This result demonstrates the

advantage of our method. In addition, we compare the results with differential transform method

(DM) [32] for Example 5.1. Accordingly, the best result is obtained when N = 5 is chosen in our

method. In other words, with our method, a more suitable result is obtained with a smaller N

value. According to our method, the error decreases as N increases. Moreover, the estimated

errors are close to the actual errors, which shows the importance of the error estimation technique.

From all numerical results, we conclude that the presented method is efficient and reliable. The

presented method can be improved for nonlinear multisingular functional differential equations or

multisingular functional differential equations of fractional-order.
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[39] Yüzbasi Ş., Gök E., Sezer M., A numerical method for solving systems of higher order linear functional

differential equations, Open Physics, 14(1), 15-25, 2016.
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