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Abstract  Keywords 

In this paper, we investigate the general solutions to the Kolmogorov-Petrovskii-

Piskunov equation using the generalized Kudryasov method. It was demonstrated that 

all produced answers are supplied by exponential function solutions using the 

symbolic computer program Maple. These solutions are helpful for fluid dynamics, 

optics, and other fields. Lastly, we have presented some graphs for exact solutions of 

these equations with special parameter values. For the development of this method, 

the versatility and dependability of programming offer eclectic applicability to high-

dimensional nonlinear evolution equations. The obtained results provided us with 

valuable insights on the suitability of the novel Kudryashov technique. 
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1. INTRODUCTION 

 

Partial differential equations are an important part of applied mathematics. Many physical, social and 

natural events have been solved by modeling with non-linear partial differential equations. Examples of 

these include plasma physics, optical communications, laser technology, signal processing, and others, 

representing a significant challenge. Applied mathematicians have developed some methods to solve 

these models. Some of these methods; symmetry method [1], (G’/G)-expansion method [2], tanh-coth 

method [3], Baclund transformation method [4], exp-function method [5], first integral method [6], 

Kudryashov method [7] and so on. 

 

Generalized Kudryashov method is one of the method to solve nonlinear partial differential equations. 

Also the generalized Kudryashov method is a more useful and effective approach to study consistent 

solutions of NLEEs. Therefore, we used this method to study the Kolmogorov-Petrovskii-Piskunov 

equation. The aim of this research is to create new analytical solutions for the Kolmogorov-Petrovskii-

Piskunov equation using the method mentioned above. 

 

𝑢𝑡 − 𝑢𝑥𝑥 + 𝜇𝑢 + 𝑣𝑢2 + 𝛿𝑢3 = 0.                                                                                                                (1) 
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This equation, the process we will examine in this article, first appeared in the examination of genetic 

models. It was used in some physics, biological and physical models. The KPP equation includes various 

nonlinear equations well known in mathematical physics; the Newell-Whitehead equation for 𝜇 = −1, 

𝑣 = 0, 𝛿 = 1 values, the FitzHugh-Nagumo equation for 𝜇 = 𝑎, 𝑣 = −(𝑎 + 1), 𝛿 = 1 values, and it is 

a special case of Fisher equation 𝜇 = −1, 𝑣 = 1, 𝛿 = 0 [8].  

 

In this study, firstly the steps of the generalized Kudryashov method will be defined. Then, by applying 

the generalized Kudryashov method to the Kolmogorov-Petrovskii-Piskunov equation, traveling wave 

solutions will be obtained for six different cases. In addition, 2D and 3D graphics of these solutions 

drawn with Maple will be given according to the special selected values. The results obtained will be 

shared in the last section. 

 

2. GENERALIZED KUDRYASHOV METHOD 

 

In this section, the working algorithm of the generalized Kudryashov method will be examined. Firstly, 

let's consider a nonlinear partial differential equation as follows. 

 

(𝑢, 𝑢𝑡, 𝑢𝑥 , 𝑢𝑡𝑡, 𝑢𝑥𝑦, 𝑢𝑥𝑥, … ) = 0                                                                                                                 (2) 

 

where  , represents to a polynomial containig derivates of 𝑢𝑖(𝑖 = 𝑥, 𝑦, … . , 𝑡). 
 

Step 1: To reduce this partial differential equation to an ordinary differential equation, we substitute the 

equivalents of the partial derivatives in the equation using the 𝑢(𝑥, 𝑦, … , 𝑡) = 𝑈(𝜗), 𝜗 = 𝑧1𝑥 + 𝑧2𝑦 +
⋯ + 𝑧𝑛𝑡 travelling wave equation, where 𝑧𝑘(𝑘 = 1,2,3, … 𝑛) are constants. Then we obtain the 

following ordinary differential equation 

 

𝐺(𝑈, 𝑈𝜗, 𝑈𝜗𝜗, 𝑈𝜗𝜗𝜗, … ) = 0.                                                                                                                  (3) 

 

Step 2: In the generalized Kudryashov method, the solution of the ordinary differential equation seek 

in rational form as follows. 

 

𝑈(𝜗) =
∑ 𝑎𝑖𝑄𝑖(𝜗)𝑁

𝑖=0

∑ 𝑏𝑗𝑄𝑗(𝜗)𝑀
𝑖=0

                                                                                                                                            (4) 

 

where 𝑎𝑖(𝑖 = 0,1, … , 𝑁), 𝑏𝑗(𝑗 = 0,1, … , 𝑀) are different coefficients of 𝑄𝑖(𝜗), 𝑄𝑗(𝜗) that are not zero. 

𝑄(𝜗) is the following function which is the solution of the equation 𝑄′(𝜗) = 𝑄2(𝜗) − 𝑄(𝜗) 

 

𝑄(𝜗) =
1

1+𝐴𝑒𝜗                                                                                                                                               (5) 

 

here, A is the integral constant and is a non-zero and positive real number to be determined later. 

 

Step 3: We need M and N values to find the 𝑈(𝜗) solution given in (4). To find these values, we use 

homogenous balance between the highest degree nonlinear term and the highest order linear term in the 

ordinary differential equation. 

 

Step 4: After substituting Solution (4) into Equation (2), the left-hand side of Equation (2) can be 

converted into a polynomial in powers of 𝑄(𝜗). Collecting the terms that include the same power of 

𝑄(𝜗) and equating each coefficient equal to zero, one obtains an algebraic equation system for unknown 

values. 

 



Aydın and Tascan / Estuscience – Se , 25 [2] – 2024 

 

322 

Step 5: We solve the algebraic equations in the Step 4 with the help of Maple. Substituting the obtained 

values into Solution (4) by considering Equation (5), the solutions of the NLPE in equation (1) can be 

obtained. 

 

3. APPLICATION OF THE GENERALIZED KUDRYASHOV METHOD TO THE 

KOLMOGOROV-PETROVSKİİ-PİSKUNOV EQUATION 
 

In this section, the exact solutions of the KPP equation will be found by the generalized Kudryashov 

method. 

 

If the wave transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜗) = 𝑘𝑥 − 𝑤𝑡 is applied to the KPP equation in partial 

differential form given in (1), we obtain the following ordinary differential equation. 

 

−𝑤𝑈𝜗 − 𝑘2𝑈𝜗𝜗 + 𝜇𝑢 + 𝑣𝑈2 + 𝛿𝑈3 = 0.                                                                                              (6) 

 

Considering the homogenous balance between the highest order derivative term 𝑈𝜗𝜗 with the highest 

degree nonlinear term 𝑈3, 

 

3𝑁 − 3𝑀 = 𝑁 − 𝑀 + 2.                                                                                                                         (7) 

 

If we choose M=1, then N=2 and equation (4) takes the form 

 

𝑈(𝜗) =
𝑎0+𝑎1𝑄(𝜗)+𝑎2𝑄2(𝜗)

𝑏0+𝑏1𝑄(𝜗)
,                                                                                                                       (8) 

 

where 𝑎0, 𝑎1, 𝑎2, 𝑏0 and 𝑏1 are constants to be determined later. 

 

Substituting Solution (8) into the Equation (6) yields a polinamial in 𝑄(𝜗). A system of algebraic 

equations is obtained by setting each coefficient of the equation to zero. 

 

𝑄6 = −2𝑘2𝑎2𝑏1
2 +  𝛿𝑎2

3, 
 

𝑄5 = −6𝑘2𝑎2𝑏0𝑏1 +  3𝑘2𝑎2𝑏1
2 +  3𝛿𝑎1𝑎2

2 +  𝑣𝑎2
2𝑏1 −  𝑤𝑎2𝑏1

2, 
 

𝑄4 = −6𝑘2𝑎2𝑏0
2 +  9𝑘2𝑎2𝑏0𝑏1 −  𝑘2𝑎2𝑏1

2 +  3𝛿𝑎0𝑎2
2 +  3𝛿𝑎1

2𝑎2 +  𝜇𝑎2𝑏1
2 +  2𝑣𝑎1𝑎2𝑏1 +  𝑣𝑎2

2𝑏0 −
 3𝑤𝑎2𝑏0𝑏1 +  𝑤𝑎2𝑏1

2,  
 

𝑄3 = 2𝑘2𝑎0𝑏0𝑏1 +  𝑘2𝑎0𝑏1
2 −  2𝑘2𝑎1𝑏0

2 − 𝑘2𝑎1𝑏0𝑏1 +  10𝑘2𝑎2𝑏0
2 −  3𝑘2𝑎2𝑏0𝑏1 +  6𝛿𝑎0𝑎1𝑎2 +

𝛿𝑎1
3 +  𝜇𝑎1𝑏1

2 +  2𝜇𝑎2𝑏0𝑏1 +  2𝑣𝑎0𝑎2𝑏1 +  𝑣𝑎1
2𝑏1 +  2𝑣𝑎1𝑎2𝑏0 +  𝑤𝑎0𝑏1

2 −  𝑤𝑎1𝑏0𝑏1 −  2𝑤𝑎2𝑏0
2 +

 3𝑤𝑎2𝑏0𝑏1,  
 

𝑄2 = −3𝑘2𝑎0𝑏0𝑏1 − 𝑘2𝑎0𝑏1
2 +  3𝑘2𝑎1𝑏0

2 +  𝑘2𝑎1𝑏0𝑏1 −  4𝑘2𝑎2𝑏0
2 +  3𝛿𝑎0

2𝑎2 +  3𝛿𝑎0𝑎1
2 +

𝜇𝑎0𝑏1
2 +  2𝜇𝑎1𝑏0𝑏1 +  𝜇𝑎2𝑏0

2 +  2𝑣𝑎0𝑎1𝑏1 +  2𝑣𝑎0𝑎2𝑏0 +  𝑣𝑎1
2𝑏0 +  𝑤𝑎0𝑏0𝑏1 −  𝑤𝑎0𝑏1

2 −
 𝑤𝑎1𝑏0

2 +  𝑤𝑎1𝑏0𝑏1 +  2𝑤𝑎2𝑏0
2,  

 

𝑄1 = 𝑘2𝑎0𝑏0𝑏1 −  𝑘2𝑎1𝑏0
2 +  3𝛿𝑎0

2𝑎1 +  2𝜇𝑎0𝑏0𝑏1 +  𝜇𝑎1𝑏0
2 +  𝑣𝑎0

2𝑏1 +  2𝑣𝑎0𝑎1𝑏0 −  𝑤𝑎0𝑏0𝑏1 +
 𝑤𝑎1𝑏0

2,  
 

𝑄0 = 𝛿𝑎0
3 +  𝜇𝑎0𝑏0

2 +  𝑣𝑎0
2𝑏0.  

 

Using Maple to solve the aforementioned system of algebraic equations yields the following cases. 
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Case 1: 

 

𝑣 =  −
(8𝑘2+ 𝜇)√2

4√
1

𝛿
𝑘

,  

𝑤 =  −2𝑘2 +
𝜇

2
,  

𝑎0 =  2√2√
1

𝛿
𝑏0𝑘,  

𝑎1 =  −4𝑘𝑏0
√2

√
1

𝛿
𝛿

,  

𝑎2 =  2√2√
1

𝛿
𝑏0𝑘,  

𝑏1 =  −2𝑏0. 
 

When the found values are substituted in the 𝑈(𝜗) solutions with using Equation (5) in Equation (8), 

the following solution 𝑈1.1(𝜗) is obtained. 

 

𝑈1.1(𝜗) =
2𝑘√2𝐴2𝑒2𝜗

√
1

𝛿
𝛿(𝐴2𝑒2𝜗− 1)

.                                                                                                                                         (9) 

   

After converting solution  𝑈1.1(𝜗) from an exponential function to a hyperbolic function, we obtained 

at the following solution. 

 

𝑈1.2(𝜗) = 2𝑘√2𝐴2 𝑐𝑜𝑠ℎ(𝜗)+𝑠𝑖𝑛ℎ(𝜗)

√
1

𝛿
𝛿(𝐴2 𝑐𝑜𝑠ℎ(𝜗)+ 𝐴2 𝑠𝑖𝑛ℎ(𝜗)−𝑐𝑜𝑠ℎ(𝜗)+𝑠𝑖𝑛ℎ(𝜗))

                                                                (10) 

 

where 

 

𝜗 =  𝑘𝑥 −  𝑡 (−2𝑘2 +
𝜇

2
) .                                                                                                                                       (11) 

 

Since A is free constant, we can choose the values of A randomly. If we take A=1 in solution 𝑈1.2(𝜗), 

the Equation (6) has the following singular soliton solution  

 

𝑈1.3(𝜗) = 𝑘√2
(𝑐𝑜𝑡ℎ(𝑘𝑥 − 𝑡(−2𝑘2+

𝜇

2
))+ 1)√𝛿

𝛿
.                                                                                           (12) 

 

Solution  𝑈1.1(𝜗) contains unknown values of 𝛿, A, k. and 𝜇. When we choose these values as 𝛿 =
1, 𝐴 = 5, 𝑘 = 1 and 𝜇 = 1, we obtain the 3 and 2-dimensional graphics in Figure 1. 
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Figure 1. Solution 𝐔𝟏.𝟏(𝝑) when  𝛅 = 𝟏, 𝐀 = 𝟓, 𝐤 = 𝟏, 𝛍 = 𝟏; in the range of x=[-10,10], t=[-5,5]. 

 

Case 2: 

 

𝜇 =  2𝑘
√2√𝛿

𝑣

2
− 𝑘𝛿

𝛿
,  

𝑤 =  −𝑘
√2√𝛿𝑣 − 3𝑘𝛿

𝛿
,  

𝑎0 =  0, 

𝑎1 =  −√2𝑏0
𝑘

√𝛿
,  

𝑎2 =  −9𝑘2 𝑏0

𝑣
,  

𝑏1 =
9√2√𝛿𝑏0𝑘

2𝑣
 .  

 

When the found values are substituted in the 𝑈(𝜗) solutions in Equation (8), the following solution 

 𝑈2(𝜗) is obtained. 

 

𝑈2(𝜗) = 2𝑣
−𝑎2√𝛿+ √2𝑏0𝑘(1 + 𝐴𝑒𝜗)

√𝛿(9√2𝑏0𝑘(1 +𝐴𝑒𝜗)√𝛿+ 2𝑣(1 +𝐴𝑒𝜗)
2

𝑏0)
                                                                                        (13) 

 

where 

 

 𝜗 = 𝑘𝑥 +  𝑡𝑘
√2√𝛿𝑣 − 3𝑘𝛿

𝛿
.                                                                                                                   (14) 

 

When we choose the values as 𝛿 = 5, 𝐴 = 5, 𝑘 = 1 and 𝑣 = 1 in solution 𝑈2(𝜗), we obtain the 3 and 

2-dimensional graphics in Figure 2. 
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Figure 2. Solution 𝐔𝟐(𝛝) when  𝛅 = 𝟓, 𝐀 = 𝟓, 𝐤 = 𝟏, 𝐯 = 𝟏; in the range of x=[-10,10], t=[-5,5]. 

 

Case 3: 

 

𝑣 =  −2𝛿
2𝑘2+ √2√(2𝑘4+ 𝑘2𝜇)+ 𝜇

√((4𝑘2+ 2√2√(2𝑘4+ 𝑘2𝜇)+ 𝜇))

,  

𝑤 = (4 (4𝑘2 +  2√4𝑘4 + 2𝑘2𝜇 + 𝜇) 𝛿
𝑘2

𝜇2 +  (4𝑘2 +  2√4𝑘4 + 2𝑘2𝜇 + 𝜇)
𝛿

𝜇
−

𝛿)
𝜇2

2(4𝑘2+ 2√4𝑘4+2𝑘2𝜇+𝜇)
  

𝑎1 =  −2𝑎0 , 

𝑎2 =  −32 (
(𝑘2−

𝜇

8
)√2√(2𝑘4+ 𝑘2𝜇)

2
+  𝑘2 (𝑘2 +

𝜇

8
))

𝑎0

𝜇(4𝑘2+ 2√2√(2𝑘4+ 𝑘2𝜇)− 𝜇)
,  

𝑏0 =  √4𝑘2 +  2√4√𝑘4 + 2𝑘2𝜇 + 𝜇)𝛿
𝑎0

𝜇
,  

𝑏1 =  −2√4𝑘2 +  2√4√𝑘4 + 2𝑘2𝜇 + 𝜇)𝛿
𝑎0

𝜇
.  

 

When the found values are substituted in the 𝑈(𝜗) solutions in Equation (3.3), the following  𝑈3(𝜗) 

solution is obtained. 

 

𝑈3(𝜗) =
4𝐴2𝑒2𝜗𝑘2𝜇 + 2𝐴2𝑒2𝜗√2𝑘4+𝑘2𝜇√2𝜇 − 𝐴2𝑒2𝜗𝜇2− 32𝑘4− 16√2√2𝑘4+𝑘2𝜇𝑘2− 8𝑘2𝜇 + 𝜇2

√(4𝑘2+2√2√2𝑘4+𝑘2𝜇+𝜇)𝛿(4𝑘2+ 2√2√2𝑘4+𝑘2𝜇− 𝜇)(𝐴2𝑒2𝜗− 1)

                          (15) 

                                                                                                                                                           

where 

 

𝜗 =  𝑘𝑥 −  𝑡
(4(4𝑘2+ 2√4𝑘4+2𝑘2𝜇+𝜇)𝛿

𝑘2

𝜇2+ (4𝑘2+ 2√4𝑘4+2𝑘2𝜇+𝜇)
𝛿

𝜇
−𝛿)𝜇2

2(4𝑘2+ 2√4𝑘4+2𝑘2𝜇+𝜇)
.                                                        (16) 

 

Solution  𝑈3(𝜗)  contains unknown values of 𝑎0, 𝛿, A, k and 𝜇. When we choose these values as 𝑎0 =
1, 𝛿 = 0.1, 𝐴 = 2, 𝑘 = 1 𝑎𝑛𝑑 𝜇 = 0.01, we obtain the 3 and 2-dimensional graphics in Figure 3. 
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Figure 3. Solution U3(ϑ) when a0 = 1, δ = 0.1, A = 2, k = 1, μ = 0.01; in the range of x=[-20,20], t=[-5,5]. 
 

Case 4: 

 

𝛿 =  𝑣2 √(𝜇2+4𝑤2− 2𝑤

2𝜇(−𝜇+ √(𝜇2+4𝑤2)− 4𝑤(−𝜇 +√(𝜇2+4𝑤2 )+ 4𝜇2− 8𝜇𝑤 + 8𝑤2
,  

𝑘 =
√−𝜇+√𝜇2+4𝑤2

2
,  

𝑎1 =  −2𝑎0 ,  

𝑎2 =  𝑎0
3𝜇 − 3√(𝜇2+ 4𝑤2)+ 2𝑤

𝜇 − 2√(𝜇2+ 4𝑤2)+ 4𝑤
,  

𝑏0 =  −𝑣
𝑎0

𝜇 +√𝜇2+4𝑤2− 2𝑤
 ,  

𝑏1 =  2𝑣
𝑎0

𝜇 +√𝜇2+4𝑤2− 2𝑤
.  

 

When the found values are substituted in the 𝑈(𝜗) solutions in Equation (8), the following  𝑈4(𝜗) 

solution is obtained. 

 

𝑈4(𝜗) = −2

(𝐴2(√𝜇2+4𝑤2− 2𝑤 −
𝜇

2
)𝑒2𝜗+

√𝜇2+4𝑤2

2
+ 𝑤 − 𝜇)(𝜇 + √𝜇2+4𝑤2− 2𝑤)

𝑣(−𝜇 + 2√𝜇2+4𝑤2− 4𝑤)(𝐴2𝑒2𝜗− 1)
,                                           (17)                                                               

 

where 

 

𝜗 =  √−𝜇 + √𝜇2 + 4𝑤2 𝑥

2
−  𝑤𝑡.                                                                                                       (18)                 

 

When we choose the values as 𝑎0, 𝐴 = 5, 𝑤 = 1, 𝑣 = 1 and 𝜇 = 1 in solution 𝑈4(𝜗), we obtain the 3 

and 2-dimensional graphics in Figure 4. 
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Figure 4. Solution U4(ϑ) when a0 = 1, A = 5, w = 1, v = 1, μ = 1; in the range of x=[-10,10], t=[-5,5]. 

 

Case 5: 

 

𝑘 =  √2√𝛿
𝑤

𝑣
, 

𝜇 =  −
16𝛿2𝑤2 − 𝑣4

4𝛿𝑣2
, 

𝑎1 =  −2𝑎0, 

𝑎2 =  
8𝑤𝛿𝑎0

4𝛿𝑤 −  𝑣2
, 

𝑏0 =  
2𝛿𝑣𝑎0

4𝛿𝑤 −  𝑣2
, 

𝑏1 =  −
4𝛿𝑣𝑎0

4𝛿𝑤 −  𝑣2
. 

 

When the found values are substituted in the 𝑈(𝜗) solutions in Equation (3.3), the following  𝑈5(𝜗) 

solution is obtained. 

 

𝑈5.1(𝜗) =
−𝐴2(−4𝛿𝑤 + 𝑣2)𝑒2𝜗+ 𝑣2+ 4𝑤𝛿

2𝛿𝑣(𝐴2𝑒2𝜗− 1)
.                                                                                                            (19)  

 

After converting solution 𝑈5.1(𝜗) from an exponential function to a hyperbolic function, we obtained at 

the following solution. 

 

𝑈5.2(𝜗) =
−𝐴2(−4𝛿𝑤 + 𝑣2)(𝑐𝑜𝑠ℎ(2𝜗)+𝑠𝑖𝑛ℎ(2𝜗))+ 𝑣2+ 4𝛿𝑤

2𝑣𝛿(𝐴2(𝑐𝑜𝑠ℎ(2𝜗)+𝑠𝑖𝑛ℎ(2𝜗))− 1)
                                                                              (20) 

 

where 

 

𝜗 = −√2√𝛿
𝑤

𝑣
 𝑥 −  𝑤𝑡.                                                                                                                                (21)               

 

Solution  𝑈5.1(𝜗)  contains unknown values of 𝑎0, A, w, v and 𝛿. When we choose these values as 𝑎0 =
1, 𝐴 = 5, 𝑤 = 1, 𝑣 = 1 𝑎𝑛𝑑 𝛿 = 9, we obtain the 3 and 2-dimensional graphics in Figure 5. 
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Figure 5. Solution 𝐔𝟓(𝛝) when 𝐚𝟎 = 𝟏, 𝐀 = 𝟓, 𝐰 = 𝟏, 𝐯 = 𝟏, 𝛅 = 𝟗; in the range of x=[-10,10], t=[-5,5]. 
 

Case 6: 

 

𝑘 =
√−𝜇+√𝜇2+4𝑤2

2
,  

𝑣 =  (−𝜇 − √𝜇2 + 4𝑤2 −  2𝑤)
𝛿

√𝛿(√𝜇2+4𝑤2+2𝑤

,  

𝑎1 =  −2𝑎0, 

𝑎2 = 2𝑎0
−(−9𝜇3+ 27𝜇2𝑤 − 36𝜇𝑤2+ 16𝑤3)√𝜇2+4𝑤2− 32𝑤4+ 72𝑤3𝜇 − 58𝑤2𝜇2+ 27𝜇3𝑤 − 9𝜇4

(9𝜇3− 16𝜇2𝑤 + 8𝜇𝑤2)√𝜇2+4𝑤2+ 16𝑤3𝜇 − 32𝑤2𝜇2+ 20𝜇3𝑤 − 9𝜇4
,  

𝑏0 = √𝛿√𝜇2 + 4𝑤2 + 2𝛿𝑤  
𝑎0

𝜇
,  

𝑏1 =
 4𝛿𝑎0(27𝜇4−90𝜇3𝑤 +146𝜇2𝑤2−112𝜇𝑤3+ 32𝑤4)√𝜇2+4𝑤2+ 64𝑤5− 224𝑤4𝜇 +300𝑤3𝜇2−208𝑤2𝜇3+ 90𝜇4𝑤 − 27𝜇5

√𝛿√𝜇2+4𝑤2+2𝑤𝜇(9𝜇2√𝜇2+4𝑤2−16𝜇𝑤√𝜇2+4𝑤2+8𝑤2√𝜇2+4𝑤2−9𝜇3+20𝜇2𝑤−32𝜇𝑤2+16𝑤3)(3𝜇 −3√𝜇2+4𝑤2+ 4𝑤)

 .  

 

When the found values are substituted in the 𝑈(𝜗) solutions in Equation (8), the following  𝑈5(𝜗) 

solution is obtained. 

 
𝑈6(𝜗) =

−

((
(𝑤2− 2𝜇𝑤 +

9
8𝜇2)𝜇𝐴2𝑒2𝜗

2
− 2𝑤3+ 4𝜇𝑤2−

19𝜇2𝑤

8
+

9𝜇3

16
)√𝜇2+4𝑤2+ 𝐴2𝜇(𝑤3− 2𝜇𝑤2+

5

4
𝜇2𝑤−

9

16
𝜇3)𝑒2𝜗− 4𝑤4+ 8𝑤3𝜇 −

21𝑤2𝜇2

4
+

17𝜇3𝑤

8
−

9𝜇4

16
)(

3𝜇

4
−

3√𝜇2+4𝑤2

4
+ 𝑤)√(𝛿(√𝜇2+4𝑤2+ 2𝑤))

2(1 + 𝐴𝑒𝜗)𝛿((
1

2
𝑤4−

7

4
𝑤3𝜇 +

73

32
𝑤2𝜇2−

45

32
𝜇3𝑤 +

27

64
𝜇4)√𝜇2+4𝑤2+ 𝑤5−

7𝑤4𝜇

2
+

75𝑤3𝜇2

16
−

13𝑤2𝜇3

4
+

45𝜇4𝑤

32
−

27𝜇5

64
)(𝐴𝑒𝜗− 1)

  

                                                                                                                                                              (22) 
                                                                                                                                                                                                                               

where 

 

𝜗 = √−𝜇 + √𝜇2 + 4𝑤2 𝑥

2
−  𝑤𝑡.                                                                                                        (23)         

  

When we choose the values as 𝜇 = 5, 𝐴 = 5, 𝑤 = 1 𝑎𝑛𝑑  𝛿 = 5 in solution 𝑈6(𝜗), we obtain the 3 and 

2-dimensional graphics in Figure 6. 
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Figure 6. Solution 𝐔𝟔(𝛝) when 𝛍 = 𝟓, 𝐀 = 𝟓, 𝐰 = 𝟏, 𝛅 = 𝟓; in the range of x=[-1,1], t=[-5,5]. 
 

4. CONCLUSION 

 

In this study, we examined some exact solutions of the Kolmogorov-Petrovskii-Piskunov equation using 

the generalized Kudryashov method. We reduced this partial differential equation to an ordinary 

differential equation with the traveling wave equation. We investigated the solution form in accordance 

with the steps of the generalized Kudryashov method. As a result, we found six cases. We obtained six 

solutions from these six cases, and in addition to these solutions, we found two singular soliton solutions. 

For our solutions, we had 3D and 2D graphics drawn with the help of Maple. The newly found 

hyperbolic function solutions may be particularly useful in understanding long-wave propagation, 

shallow water wave dynamics, and physical phenomena in plasma fluid. The results showed us the 

applicability of the generalized Kudryashov method to the KPP equation. 
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