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Abstract

We show that a nonlinear difference equation recently considered in this journal is a special
case of a solvable class of nonlinear difference equations and that the difference equation
is closely related to a difference equation previously considered in the literature. We give
some detailed theoretical explanations for the closed-form formulas for the solutions to
the four special cases of the difference equation considered therein without giving any
theoretical explanations related to them, and also show that several statements on the
long-term behaviour of positive solutions to the difference equation given therein are not
true.
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1. Introduction

Let N = {1,2,...}, Z be the set of whole numbers, N, = {n € Z:n >k}, k€ Z, R
be the set of reals, and C be the set of complex numbers. If s,t € Z, s < t, then j = s,1,
is a notation which we use for the expression: j = s,...,t, j € Z. If | € Z, we regard
Héj ¢; = 1, where ¢; is a sequence of numbers defined on a domain I C Z.

Solvability of difference equations is one of the first problems that attracted attention
to scientists. The papers and books [4, 8, 13-16] present some of the oldest results in
the research domain. Closed-form formulas for solutions to linear homogeneous difference
equations with constant coefficients of small orders were given in [8], whereas a method
for solving the equations of any order was given in [4]. For more information on solvability
of difference equations see, for instance [5,10,17-19].

The bilinear difference equation

axy +b
x = —, n€Ny, 1.1
n+1 CTn +d 0 ( )
is transformed to a linear homogeneous difference equation of second order, so it is also
solvable (see, e.g., [12,14]). Some other information and results on the equation and its

applications can be found, for example, in [1,5,6,11,12,19,28,29,34, 38].
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One of the important things related to the solvable difference equations and systems of
difference equations is their direct or potential applicability (see, e.g., [8,10, 17,24, 39]).
They are also useful in some comparison results [3,27]. There are also some connections
with the numerical mathematics [7].

Investigation of the behaviour of solutions to concrete difference equations and systems
is an area of some recent interest. Some of the investigations are devoted to finding
invariants and closed-form formulas for the general solutions to the equations and systems.
One can consult, for example, the following recent papers: [2,11,20-23,25,26,28-38], as
well as the papers on these topics quoted therein. These papers present some methods for
finding solutions or invariants, based on some scientific investigations.

On the other hand, in the last two decades appear more and more papers which do not
give any explanations for the formulas and claims presented therein, many of which are,
unfortunately, not true.

The difference equation

by 2

—nne2 e N, 1.2
CTp—2 + dr,_3 0 (1.2)

Tpt1l = ATy +

where the parameters a,b,c,d and the initial values xz_;, j = 0,3, are positive numbers,
was considered in [9].

Here we show that Eq.(1.2) is a special case of a solvable class of difference equations,
and that it is closely related to a difference equation previously considered by one of the
authors in [9]. Further, we give some detailed theoretical explanations for the closed-form
formulas for the solutions to the four special cases of the difference equation considered
therein without giving any theoretical explanations connected to them. Finally, we show
that several statements on the long-term behaviour of positive solutions to Eq.(1.2) are
not true. In the investigation we use some methods and ideas related to the ones, for
example, in [28-30, 34, 38].

2. Analyses, theoretical explanations and counterexamples

Here we analyse and compare the results in [9], with some in the literature, give some
detailed theoretical explanations for the closed-form formulas for the solutions to the four
special cases of the difference equation considered therein, and give several comments and
counterexamples.

2.1. On solvability of Eq.(1.2)

One of the authors in [9], had previously considered the following difference equation:

by -3

- _ ntm=3 e N, 2.1
Tptl = ATy + i o+ dry_s n 0 (2.1)

where the parameters a, b, ¢, d and the initial values x_;, j = 0, 3, are positive numbers.

If we write Eq.(1.2) in the form
(ac+ b)xp—2 + adx,—3

= , € Ny, 2.2

Tt = CTp—2 + dry_3 " 0 (2:2)
and Eq.(2.1) in the form
_ d+b)zy,_

Tpil = Tp actn—s + (ad + b)zn 3, n € Ny, (2.3)

Cxp—2 + dr,_3
we see that both equations belong to the same class of difference equations, namely, to
the following one

QTp_2 + 5xn73
n
YTpn—2 + 0Tp—3

, n € Ny, (2.4)

Tnt+1 =X
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where the parameters «, 3,7,d and the initial values z_;, j = 0, 3, are positive numbers,
as it was assumed in [9].

Remark 2.1. It is easily seen that the assumption on the positivity of the parameters
a,3,7,6 and the initial values x_;, j = 0,3, is, more or less, an artificial assumption.
The only reason for posing them, which is justified to some extent, is to avoid dealing
with undefined solutions to Eq.(1.2) and Eq.(2.1), that is, to avoid that the denominator
Ccxn—o+dx,_3 is equal to zero for some n € Ny. Hence, we may assume that the parameters
and the initial values belong to R or C, and ignore the solutions which are not defined for
all n € N_s.

Motivated by Eq.(2.1), in [35] we studied a generalization of Eq.(2.4) and proved, among
other ones, the following theorem.

Theorem 2.2. Assume a,3,7,6 € R, a® 4+ % # 0 # ~% + 62, g is a strictly monotone
and continuous function, g(R) =R and g(0) = 0. Then, the equation

ag(zn—2) + B9(Tn—3)
Y9(n—2) + 69(xn_3)

Tpp1=g (g(xn) ) , n € Ny, (2.5)

s solvable in closed form.
Moreover, if v # 0 and

A= (a+6)? —4(ad — By) #0

then the general solution to Eq.(2.5) is given by

m
T3m =g (9(36—3) H y3iy3i—1y3i—2> ; (2.6)

i=0
m

T3mi1 =g <9($—2) Hy3i+1y3iy3i—1> : (2.7)
i=0
m

T3mi2 =g (g(w—l) 1T y3i+2y3i+1y3i> : (2.8)
i=0

for m € N_1, where

Y3mY3m—1Y3m—2

g(@_1) gl@—1)
(g(xo))_)\2+,))\m_(g(xo)_>\ + ))\m v

g(xz_1 g(xz_1)
g(z—1) m+1 g(z—_1) m+1
<(g(z§) —d DN - (I - M DN _5)
(B2 = de + AP — (S — M+ 2
glz—2) o + )\m-‘rl glz—2) )\ + )\m—i-l
g e
G — e+ DN = (G -+ Y
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Y3m+1Y3mY3m—1
_ (G e DN - G - M g
o A+

(572 —det DN - (G52 - M+ 2t
(<gg<§f°3>A L A oy R +>Am+1_5>
(%_)‘ ) (;Efol)) ) v
y ((gm_A 2 T (G = Vm“—‘s) 2.10)
(S — Mt DM = (g — M 2y 1)

Y3m+2Y3m+1Y3m
o g(xz—1)
g9(z—2)

(ZEi:;% ~ ot )X”+1 R ) LU

(= = (8

(B O G

(3= — o+ PN - GRS — M+ DN 2.11
g(zo) m __ [ 9(zo) S\ ym - > ( )
Gty — e+ - oy — M+ N Y

for m € Ny, and

N ooatdEVA et - VA

1= 2’}/ 2 = 2’7 .

We will not repeat the proof of the theorem given in [35]. However, we will mention
the key points of the proof of the theorem for the completeness and benefit of the reader.

From Eq.(2.5) and the monotonicity of the function g, it is immediately seen that the
following relation holds

O‘g(xnf2) + Bg(lin%S)

T =g(x , n € Np. 2.12
o) =96 o)+ dg(rns) ’ 212

The change of variables

yn = g(l.n) 5 n e N—Q,
9(Tn-1)
transforms Eq.(2.12) to
AYp—2 + B

= Wn2T P 2.13
it YYn—2 + o ( )

for n € Ny.
Eq.(2.13) is a difference equation with interlacing indices. For a precise definition, some
discussions on such difference equations and systems, and some example, see [31,34].
Hence, the sequences

27(7]1) = Ysm—j, m€N0> j:0727

satisfy the relation

G _ oz + /3
m+1 = 727(7]1) L5
for m € Ny, j = 0,2, that is, they are three solutions to the bilinear difference equation
azm + 6
Vam + 6

; (2.14)

Zm+1 = m € Np.
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As we have already mentioned in the first section, it is well known that the difference
equation is solvable in closed form, and that it can be solved by several methods (see, for
instance, [1,5,10,12-14,17,19]).

Let v # 0 and
()
. 5
A9 = “"(Lj)l ~ s meNy, j=02 (2.15)
Um,

(if v = 0 then the equations in (2.14) are linear in m), then from (2.14) we get
Py =t Suly + (a8 = By)u) =0, (2.16)
for m € Ny, j =0, 2.

Eq.(2.16) is a linear homogeneous difference equation with constant coefficients of second
order. So, we can find closed-form formulas for the general solution to the equation by
using the formulas by De Moivre and D. Bernoulli ([4,8]), from which the formulas for the
general solutions to Eq.(2.14) are obtained, and consequently the formulas for solutions
to Eq.(2.13), from which the general solution to Eq.(2.5) is found.

So, in [35], we proved that Eq.(1.2) is also solvable. This shows that Egs.(1.2) and (2.1)
could have been studied together.

Remark 2.3. Note that in [9] are presented some closed-form formulas for the following
four special cases of Eq.(1.2):
TnTn—2

= —_— 2.17
Pat1 =Tn ¥ Tp—2 + Tp—3 ( )
Tnp1 =T + — N2 (2.18)

Tpn—2 — Tn-3
InTn—2
xT =, - — 2.19
i " Tpn—2 + Tn—3 ( )
Tl =y — —n2 (2.20)

Tp—9 — Tp-3
for n € Ny.
It was not explained therein why these very special cases are chosen for presenting their

general solutions. Note that Theorem 2.2, in fact, shows that the equation in these four
cases is not distinguished in any way, to be considered separately in an investigation.

Remark 2.4. The closed-form formulas for solutions to Egs.(2.17)-(2.20) in [9] can be
obtained from Theorem 2.2. Note that Eq.(1.2) is a special case of Eq.(2.5) with
g(xr)=2, a=ac+b, f=ad, y=c and §=d.

This means that Theorem 2.2 gives a theoretical explanation for all the formulas given in
[9]-

3. On the solutions to Egs.(2.17)-(2.20) in [9]

The formulas for solutions to Eqs.(2.17)-(2.20) given in [9] are presented in terms of a
specially chosen sequence. Now we will explain how the representations of the solutions
can be obtained from Theorem 2.2. Before this, we need to mention a known sequence,
which essentially appears in the representations.

Recall that the sequence (fy,)nen satisfying the difference equation

Jnt2 = for1+ fn, neEN, (3-1)
and the initial conditions

jﬁ ::17 jb:: 1
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is called the Fibonacci sequence. Some properties of the sequence can be found, for
example, in [39] (see, also [12]). From the De Moivre formula given in [8] we have

-ty
n=———=—, NnE N, 3.2
f 7 (3.2)
where
1 5 1—-+5
f = +2\[ and  ty = Q\T. (3.3)

Formula (3.2) can be found in D. Bernoulli’s paper [4]. It is a special case of the generalized
Fibonacci sequence (see [28,38]). Since (3.1) implies

fn = fn+2 - fn+17

we see that f,, can be also calculated for n < 0, and that formula (3.2) holds for every
n € 2.
Note also that from (3.3) and some simple calculations we get

3+5 _3-5
2 2

3 =

and 3 (3.4)

Example 3.1. Consider Eq.(2.17). Note that in this case we have a = b =c=d = 1,
which implies that o = 2, 8 =« = J = 1. Hence, by using Theorem 2.2, we have that the
general solution to Eq.(2.17) is

m ﬂ_)\Q_i_l))\H-l (mo _)\ +1)>\i+1
T3m =T — 3H )\ 4 ))\7, ( 0 )\1+1))\1 -
(ﬁ — Ao+ DA = (=22 = A+ 1)ast
(E—AQ‘i‘l))\z (L;—)\l-i-l))\é
)

=2 - + DA (222 N 1) A5H
x(( ) (5, 21, (3.5)

G =X+ DA - (G2 - M+ 1A

T —

T3m+1 =T -2 H

"1((A2+)M”<25M+1M?2 Q

o\ 2 =+ AT = (2 a0
. ( )\2 + 1)>\’L+1 (xwol )\1 + ))\é+1 L
(ﬂ—)\2+) —(FE M DXN
. (3L =D+ AT = (522 — M+ DA . 36)
(T =X+ DA = (5 = A+ 1)A ’ '
. . ﬁ (7—)\24- ))\i+2—(%—)\1+1))\?—2 .
T I\ e DA - (A T

(52 = XA+ 1)ATH -
. (222 — Ay + A —

T_3

i R L
(22 - M+ DA
Zoo )\ +1)\Z+1 S I N )\H-l
( 2+1) ( UM ) e
= DA;

xr_1 r—1
G = A2+ DA = (G = A+



504 S. Stevié

for m € N_y, where

3 5 3—+vV5H
U R A C R e
2 2
Note that
M=t Ay =1t (3.8)
and
1-M=—t, 1—)do=—to (3.9)
Employing (3.8), (3.9) and the fact
titg = —1,
we have
@) . =5 e i
0| ._(3C_j_1 Ao+ 1)L <:r_j_1 A+ 1)
(e (= A)ajo)A] — (2 + (1= A)zj1)A)
T—j—-1
_ 2 (M = A) a1 (1= M)A — (1= A)A)
T—j—1
_o (1 ) ta (8 -5
T—j—1
:(Jf—jfm + 1’—]‘—1]621'—1)\/57 (3.10)
a:_j_l
fori € Ny and 7 =0, 2.
Using (3.10), and then (3.1), we get
L) _ ) (@i feiva + t_j1for)VD  (z_jfai+x_j1foa1)V5
Viy1 — Y = , - .
T_j-1 T—j—1
:(xfijiJrl + :LLJ;l,}PZz‘)\/g7 (3.11)
T—j—1

for i € Ng and j =0, 2.
By using (3.10) and (3.11) in (3.5

20 foi+1 + -1 fo
T3 =T _3
" g 0f2i +2-1f2i-1

)-

€ )

T3m 41 =T 2 ﬁ ($0f2z+1 T 1f2z)
( )

(3.7), we get
r_1foit1 + 96—2f2i> <$—2f2i+1 + 1’—3f2i> (3.12)

z_1foi +x_2foi—1) \w_ofa +x_3f2_1

(
(x 1f2i11 + 96—2f2z‘> <33—2f2z'+3 + $—3f2i+2> ’
(

o \Tof2i + T foic1/) \w1fa +x2foic1/) \T_2fait2 + T3 241

.

(3.13)

T_1foi43 + 2 2f21+2> (x—2f2i+3 + 33—3f2i+2)
T_1foiy2 +T_2f2i41

xo f2it1 + 1 f2
x0 foi + 1 f2i—1

m
L3m+2 =T—-1 H
1=0

T_2fait2 + T 3 f2t1

(3.14)

for m € N_1.
In this way, we explained how the formulas in Theorem 5.1 in [9] can be obtained in a
natural way. Note also that we proved that the formulas also hold for m = —1, which was

not noticed in [9].

Example 3.2. Consider Eq.(2.18). Note that in this case we have
a=b=c=1 and d= -1,
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which implies that
a=2, pf=6é=-1 and ~y=1.

Hence, by using Theorem 2.2, we have that the general solution to Eq.(2.18) is

A _ 1))\14-1 (mzfl . )\ _ )Ai-‘y-l )
+1

T3m =T — 3H ( )\2_1>Az ( - )\1_1>Al

— i+l (x— i+1
(%—Az—l)k’ (w S DA
(g—Ag—mgﬂ (52 — A — DAGH
X 3 — —+1], (3.15)
(32 =X = DA = (32 — M — )X

m _ +2  (x—2 . i+2
(( A2 ))‘1 (g;,i A1 1>>‘2 +1>

womin =r-2 ]| (222 =g — DA — (222 -3 - AT

=0 T_

(2% = A2 — 1A] —
((“_)\2 ))\li+l
X

(Z2 — A — A, —

%
2

((fol — g — DA -
X

i+1
xa:ol )\1_1))\124- .
o)y —1
T-1

)A
=L -t
™ +1], (3.16)

L DA

(
(5
(
(

xTr—

m - - +1
Fom42 == 1H( T g - )Ai“—(i%;—xl—l)xz“
. (% _ )\2 _ 1))\3+2 (:Jc i ))\i+2 o
(32 =R = DA = (52 = M = DA™
. (% _ )\2 _ 1)A1i+1 (xx_ol _ )\1 _ 1))\z+1 o
(2% =X = 1A — (7% R

Tl g — DA = (B - A - AT )

(3.17)

for m € N_y, where

1
AL = +\/5=751
2
and
]__
Ay = 2\/5—152

Employing the facts

tito =—1 and 1+t =1,
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we have

wi = = = A - (= - 1)

T_j—1 T—j—1
(o = (U4 Mo)r—j )N — (2j — (L + A)z—j-1) )
T—j—1
:a:_j(ti —t4) — 21 (L + to)th — (14 t1)th)
T—j—-1
_a(t —th) a7 17
T—j-1
_(eifi— $—j—1fi—2)\/5’ (3.18)
T—j—1
for i € Ng and 7 =0, 2.
Using (3.18), and then (3.1), we get
W, 4 _(eojfiy1 —a—j 1 fii)Vh n (z—jfi —x—j1fi-a)V5
T_j—1 T—j—1
:(x*jfiJrZ - 3U7j71fi)\/5’ (3.19)
T—j—1
for i € Ng and j =0, 2.
By using (3.18) and (3.19) in (3.15)-(3.17), we get
Tofiy2 — w—lfi) ($—1f¢+2 — 56—2fz) ($—2fi+2 - 1'—3fi>
T3m =T— , 3.20
’ 3Z.:0 (Cﬂofi —x1fice) \@-1fi —x-2fi2) \@_ofi —x_3fi—2 (3.20)

To fito — w—lfz‘) (w—lfz‘+2 - x—in) (x_ngg _ x_?’le) . (3.21)

zofi —x_1fi—a) \w_1fi —x_afio) \w_ofit1 —r_3fi—1

zofite — $_1fi) <.’L'_1fi+3 - 90—2fz‘+1) (90—2fz'+3 ~ x—3fi+1> . (3.22)

zofi —x_1fi—a) \z_1fix1 —x—afic1) \x_ofit1 —x_3fi_1

T3m+1 =T -2 (
=0

T3m+2 =T—-1 <
=0

for m € N_;.
In this way, we explained how the formulas in Theorem 5.2 in [9] can be obtained in a
natural way. Note also that we proved that the formulas also hold for m = —1, which was

not noticed in [9].

Example 3.3. Consider Eq.(2.19). Note that in this case we have « = ¢ = d = 1 and
b = —1, which implies that « = 0, 5 =~ = d = 1. Hence, by using Theorem 2.2, we have
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that the general solution to Eq.(2.19) is

)\2+1))\z+1 (CEO _)\1+1))\i+1
L3m =T — 31_[ )\2_1_1))\1 _( = )\1_1_1))\1 -

y (ﬁ—&ﬂ)xf— %;—)\ﬁrl))\;“_l
(%—/\24-1))\11— %;—/\14-1))\’2
)

(2 =X+ A = (32 -+ )
TEne &=y ) (3:23)
2 P 1 2
m (22 da DA - (32 - a4 N
IT3m+1 =T — QH] (7 g+ 1))\z+1 (I:i —\ + 1))\é+1 o
(5 e+ DN - (8 M+ DN
X . S
e N E N WEAF
(22— ha+ DA — (22— A+ ) .
x T 3 T_ 3 - ) .
(f; — A+ 1))‘1 - (f; — AL+ 1))‘2
N ﬁ (G =2+ DA - (3 - M+ )N
3m+2 1Z . (%_)\2+1))\i+1_(%_A1+1))\é+1
(B2 =X+ DA = (52— M+ 1A
X X — 1 T — (3 -
(ﬁ—)\Q‘i‘ ))\1+1 (x i —)\1+1))\+1
(2 = dat DN (2 = h ) )
X -11, .
(3% = A2+ DA = (2% — M+ 1A
for m € N_y, where
1 5 1—+5
A= +2f —t and Ag= 2{ — . (3.26)
Employing (3.26), the facts t1to = —1 and t; + to = 1, we have
) L—j i x— i
o= ——— — A+ 1A — —AM+1)A
v; (CU—j—l 2+ ) 1 (Hf—j—1 1+ ) 9
(@ (1= M)rj )N — (2 + (1= A)z—j_1) )
T—j—1
_a( —th) (L —ta)t) — (1 — t)th)
T—j-1
_a(t —th) eyt - 5
T—j—1
:(x_jfi +;U—'j—1fi+1)\/g7 (3.27)
—j—1

for i € Ng and j = 0,2
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Using first the relation in (3.27), and after that the recursive relation in (3.1), it follows
that

G) _ ) _(@=ifir1 ta_j1fip2)V5 (e jfi Haj1fin) VB

Vi1 — Y =

T—j-1 T—j—1

_(zjfin +337j—1fi)\/5’ (3.28)
T—j—1

for : € Ng and j =0, 2.
Further, if we use the relations (3.27) and (3.28) in formulas (3.23)-(3.25), it follows
that

o fi-1+ 93—1f¢) r_1fi-1+ 95—2fi) (96—2fz'—1 + x—sfz'> ’

I3m =L -3 (
" o \vofitxafipi/) \zafitz_afiyn) \w_ofi+x_3fita

(
zofi—1 +x1fz') <361fz1 +962fi) ( T_ofi+x_3fit1 >’
(

xofi +x_1fivx1/) \xafi+r_afivi/) \x_ofiy1 +x_3fit2

9Eof}'1+$1f}') To1fi+ T 2fit1 )( T_ofi+x_3fit1 >’

zofi + v-1fiv1/) \x-1fix1 + 22 fit2

L3m+1 =TL-2 (
=0

L3m+2 —=T—1 (
5 T2 fiv1 + x-3fit2

for m € N_q.
From these relations, after canceling the same factors we get

zof-1+x-1fo ) ( r1f1+x2fo ) ( T of 1+x_3f0 )

Tofm + T 1fmi1/) \T 1 fm+ T 2fmi1/) \ T ofm + 2 _3fmi1/’
zof-1+x_1fo > ( T f1+z_2fo ) ( T ofo+x_3f1 >

Tofm + T-1fm+1/) \T1fm + T2 fme1/) \ T2 fmi1 + T3 fmi2/’
rof-1+x-1fo ) ( T_1fot+x2f1 ) ( T_ofo+x_3f1 ) 7

2ofm + T-1fmi1/) \T-1fmr1 + T2fmr2/) \T2fmi1 +T_3fmi2

L3m =T-3 (

T3m+1 =L -2 (

T3m+2 =T -1 (

for m € N_;.
Finally, by using the facts

f_1 = 1, fo =0 and f1 = 1,

we get
X _3X_92Tx_1X
T3m = , 3.29
T @ofm + Tt ) (@1 fon + T2 fm) (@2 fm + T3 Fmt1) (3:29)
T3 -9 10 (3 30)
x = , )
T @o f + 21 ) (@1 fon + T2 fmtt) @2 fmgt + T3 fms2)
T_3X_92X_12¢ (3 31)
x = , )
T @0 fn + 21 ) @1 fin1 + T2 fmt2) (@2 fmi1 + T3 fmi2)
for m € N_q.
In this way, we explained how the formulas in Theorem 5.3 in [9] can be obtained in a
natural way. Note also that we proved that the formulas also hold for m = —1, which was

not noticed in [9].

Example 3.4. Consider Eq.(2.20). Note that in this case we have a = ¢ = 1 and
b =d = —1, which implies that « =0, § =6 = —1 and v = 1. Hence, by using Theorem
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2.2, we have that the general solution to Eq.(2.20) is

— Do —1 )\erl :CO S W | )\i+1
T3m =T—3 H 2~ 1) - 1= 1) 1
—>\2—1))\Z EEy Y

_ i+l (z— i+1
(i—:;—)\g—l)w (x—;—)\l—l))\g
z_ i+1 z i+1

y G =M -DANT = (T2 - M- 1) O
EZd DA - (22 a1 )

m 7_A )\i+2_ Toz oy —1AZ+2
T3mi+1 =T 2H(( )1 (L3 ' >2 —|—1>

P (7_)\2 ))\zlJrl_(z;i_)\l_l))\Hl

i+l (= i+1
y (E—)\Q—l)/\l xol /\—1))\ 1
(g — M — (2 — A — DA

A
oL Ny — )N — PV
% ((LIJQ 2 ) 1 ;)\’L + 1) :

(1N -
m 1_)\_1)\i+2_ 1';1_)\_1)\1“!‘2
T3mi2 =71 || ((if 2= : %2_ Jak Tl

Il_ _1
—2

i=0 — A2 - 1))‘z+1 -G M- 1)>\12+1
(3 = A= DA = (2 - M = X
((i R PN P R 1)
§ (( L e DA - (6 - A - DA +1)
(79 = o = AT = (32 — A = 1)AS ’

for m € N_y, where

1 1
/\1:+22\/§:€ and /\2:2“/325.

We also have
T4+ X =-X and 14X =-)3
Employing (3.35) and the facts AjAg = 1 and A\$ = A3 = 1, we have

() L—j i T—j i
w = ——— — Ay — 1)A] — —A1—1)A
i (l’—j—1 2 JAT (fl?—j—l 1 ) 2
(o = (U4 Mo)r—j )N — (2j — (L + A)z—j-1) )
T—j—1
::J:_j()\li —A5) — 21 (L4 A2)A] — (14 Ap)Ab)
T—j—-1
_ e =N e AT - AT
T—j-1
—i/3 %39 + x—j—lgi-&-l’
T—j—1
for i € Ng and j = 0,2, where
AT =A%
=2 2 n € Np.

gn—)\l_)\27
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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Using (3.35), (3.36) and (3.38), we get

W)+ ) T = i O - )
Wiy T_jq
L e A F zoj (AT = A5
T—j-1
_ e e (TP - A
T—j—1
_ Z_\/gx_jgiﬂ;— ?;j—lgi-&-S’ (3.39)
—j—
for i € Ng and j =0, 2.

By using (3.37) and (3.39) in (3.32)-(3.34), we get

m+1 Cr [ Z0gi+2 + T_1i+3 T-19i+2 + T_20i+3 T-20i+2 + T-39i+3
T3m =T— 3 H
o\ Togi tT-1Gi+1 T-19i + T—29i+1 T-29i + T-39i+1
(3.40)

Mg T_10; T 1Gino + T_oq; T 9Gins + X_37;
a1 =2 —a(—1)"F! H( 0gi+2 + 1gz+3> ( 19i42 ng+3> ( 29i+3 39i+4
i—o \ Togi t T-19i+1 T-19i + T—29i+1 T—29i+1 + T-39i+2
(3.41)

Tamys =11 (—1)mH1 H <$ng‘+2 + $19i+3> <$1Qi+3 + $29¢+4> <$2Qi+3 + T_3Git4
mt T0gi + T-109i+1 T_1Gi+1 + T-28i+2 T_2Gi+1 + XT_30i+2

(3.42)

for m € N_1.
In this way, we explained how the formulas in Theorem 5.4 in [9] can be obtained in a
natural way. Note also that we proved that the formulas also hold for m = —1, which was

not noticed in [9].

3.1. On the statements on the behaviour of solutions to Eq.(1.2) in [9]

Now we conduct some analyses of the statements in [9] on the behavior of solutions to
Eq.(1.2).

On page 482 in [9] it says that Eq.(1.2) has a unique equilibrium point & which satisfies
the relation

b2
T = ai 3.43
T =ar+ it dT ( )
or
221 — a)(c +d) = bz?, (3.44)

and if it is further assumed
(I —a)(c+d)#b,
that the unique equilibrium point is * = 0.

However, note that the relations in (3.43) and (3.44) are not equivalent. Namely, the
right-hand side of the relation in (3.43) is not defined for £ = 0, whereas both sides in
(3.44) are. Hence, = 0 cannot be an equilibrium of Eq.(1.2). For the same reason
the linearized equation in [9] is not correct. Moreover, the following statement, that is,
Theorem 2.1 in [9] makes no sense:

Statement 1. Assume that

b(c+3d) < (1 —a)(c+d)>.
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Then the equilibrium point of Eq.(1.2) is locally asymptotically stable.
On page 483 in [9] it says that the following statement holds.
Statement 2. The equilibrium point & of Eq.(1.2) is global attractor if ¢(1 — a) # b.

However, since the equilibrium is not correctly determined, the statement also makes
no sense. Besides, the 'proof’ given therein incorrectly applies Theorem B quoted therein.

The example which follows, demonstrates the extent of the error in the previous state-
ment.

Example 3.5. Consider the Eq.(1.2), with the parameters a, b, ¢, d satisfying the condi-
tions

min{ac+b+d,c} >0, (3.45)
(ac+ b+ d)? > 4bd, (3.46)
ac—i—b—d—i—\/(ac+b+d)2—4bd>20, (3.47)
c(l—a)#0d. (3.48)

The associated characteristic polynomial to the corresponding linear difference equation
n (2.16) is
p2(\) = 2N\ = clac+ b+ d)A + bd,

and its roots are

ac+b+d++/(ac+b+d)? — 4bd

A =
1 2 )

and

ac+b+d—+/(ac+b+d)? —4bd
2¢ '
Employing the formulas in (2.6)-(2.11), we have

Ay =

T3m =T-3 H Y3iY3i—1Y3i—2 (3.49)
i=0
m

L3m+1 =T—2 H Y3i+1Y3iY3i—1; (3.50)
i=0
m

w3my2 =r-1 | [ ysitaysir1vsi, (3.51)
i=0

for m € Ny, where

Y3mY3m—1Y3m—2
_(ul Do+ DT — (£ — n + apH! d)

(f—)\2+*)>\m—(7l_)\1+*)Am _C
. (2L )\2+ DA — (=2 -+ ))\m“_g
= YR VIR

¢

oA

=L _ X+ ))\m -
)\m—i—l d
- (3.52)

(( — Do 4 DAL

( — Ao + ))\m_

T2+

X
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Y3m+1Y3mY3m—1
(7 _ )\ + ))\erQ (H _ )\ + g))\m+2
SN AT (=

y (2 — Do+ DAPH — (Zo — X + 9
(xl Ao+ AP — (72— A+ D)AF
) ((H—)\ 2+ HAPTL - (2L ) 44 ))\m“_d)
(G2 =X+ DA = (G2 - M+ 9 c
Y3m+2Y3m+1Y3m
m-+2 T m-+2
_((—)\+))\ — (2= -+ 9N -
- m+1 T m+1
(=L — X+ A (x; /\+)/\

PV DY i

-2
Mt

?)
. ¢)
?)
DN

(522 = X+ AP -
(w_z _/\ + )Am—l—l

T_3
Lo A\ +
2o N\ +

T m+1
((x_ol — X+ ))\

for m € Ny.
Now note that conditions (3.45) and (3.46) imply

A1 > ‘)\2|
By using (3.47) and (3.55), we have
(a: )\2 + ))\erl

8
=]

~ A1+

8
|
-

d

)\m+1 d
C

Cc

d
&

|

/\m—l—l -

d
&

)\erl

8
=)

m—+o0 (m - — Ao+ ))\m_
(=2 — X+ AP —

T—2

— A+

8 8

m—+1

T*?

m——+00 (x . — Ao + ))\m _

(52 =X+ AP — — A+

— A1+

T*T*
NN

~—~~ |~ |
|
[ PO [

(&

|
v W

m

<)
oA
- A +9)
oA
0
<)

motee (G — M DA - (5 - Mt

d ac+b—d++/(ac+b+d)?—4bd
2c

when

T e\ ~d_ac+b—d—/(ac+b+d)? —4bd
T_(i41) T 2¢ ’

Let

minx_; >0
i=0,3

Ay
)\m+1
A

7

> 1,

and (3.57) holds. Then the relations in (3.49)-(3.54) and (3.56) yield

lim =z, = +oo.
n—-4o00

)\m+1 - g
c |

d

C

_d
C

_d
C

0,2.

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

Thus, this is a counterexample to Statement 2, even if we neglect the wrong equilibrium

obtained in [9].
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Remark 3.6. If min{a,b,c,d} > 0, as it was the case in [9], then the condition (3.45) is
automatically satisfied. Since

(ac+ b+ d)? — 4bd = (ac)® + 2ac(b + d) + (b — d)?

we see that the condition (3.46) is also satisfied. Hence, in this case we can only assume
that the conditions (3.47) and (3.48) hold.

If bd < 0, then (ac + b+ d)? — 4bd > 0, so the condition (3.46) is satisfied. The same
holds if bd = 0 and ac + b+ d # 0.

Remark 3.7. If max{b,d} < 0, then the situation is more complex. Let ¢t := ac and
po(t) := (t + b+ d)? — 4bd = t2 + 2(b+ d)t + (b — d)%.
Then the zeros of the polynomial py(t) are

—(b+d)+2Vbd and ty=—(b+d)— 2Vbd.

Note that

ty = 18]+ ld] + 2,/1blld] = /16l + /ldl)?
and

ta = o] + |d] — 2,/18l1d] = (/Iel — \/]d])™.
Hence, if

(16l = la)? < ae < (/o] + /1d])?

condition (3.46) does not hold.

Further, note that if
(16l = \/1d)? < ac < [b] +|d], (3.58)

the condition (3 45) does not hold, since |b| + |d| = —b— d. Since the inequality |b| + |d| <
(/1] + /]d])? always holds, we see that if (3.58) holds, then the conditions (3.45) and
(3.46) do not hold.

Remark 3.8. Paper [9] is, unfortunately, one of many recent papers with wrong results
or results which trivially or very easily follow from known ones. From time to time, we
have analyzed some of such papers in detail and give number of comments and theoretical
explanations for wrong or problematic results of various types (see, e.g., [29,31,35]).

Remark 3.9. The only correct result in [9] on the behavior of solutions to Eq.(1.2), is
the following results on the boundedness (see Theorem 4.1 in [9]):

Every (positive) solution of Eq.(1.2) is bounded if
b
a+- <1 (3.59)
c

However, not only that it is a trivial consequence of the obvious inequality

<onfat =) =wafa )

by xn—2
CTp—2 + drp_3

Tptl = ATy +

but it was even not noticed that the claim holds under the condition a + g <1, and that
from (3.59) each positive solution to Eq.(1.2) geometrically/exponentially converges to
Zero, since
b\ n+1
0< Tpil < xo(a—i- *)
c

I

for every n € Nj.

For a related result on the boundedness character of a concrete difference equation see,
e.g., [27].
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