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Özet. Makale, ikinci tip, k(x, y) zayıf tekil çekirdekli, özel olarak k(x, y) = ln |x − y| ve
k(x, y) = |x − y|−α, −1 ≤ x, y ≤ 1, 0 < α < 1, durumlu, Fredholm integral denklemi
için nümerik bir metodu incelemektedir. Bu tür denklemlerin çözümleri uç noktaların,
x = ±1, komşuluklarında tekil davranışlar gösterebilir. İkinci tip zayıf tekillikte Fredholm
integral denklemlerini çözmek için Kress dönüşümünü temel alan ve daha sonra stan-
dart olarak Hermite düzleştirme dönüşümünü kullanan yeni bir düzleştirme dönüşümü su-
nuyoruz. Bu dönüşümle hala zayıf tekillikte fakat çözümü daha düzgün bir denklem
elde edilir. Dönüştürülmüş denklem daha sonra interpole eden polinomlarla çarpım in-
tegralleme metodu kullanılarak nümerik olarak çözülür. İki tip interpole eden polinom,
yani Gauss-Legendre ve Chebyshev polinomları, kullanılır. İlkinin performansını incelemek
için nümerik örnekler sunulmuştur.†

Anahtar Kelimeler. İntegral denklemi, zayıf tekillikte integral denklemi, düzgünleştirme
dönüşümü.

Abstract. The paper investigates a numerical method for the second kind Fredholm
integral equation with weakly singular kernel k(x, y), in particular, when k(x, y) = ln |x−y|,
and k(x, y) = |x− y|−α, −1 ≤ x, y ≤ 1, 0 < α < 1. The solutions of such equations may
exhibit a singular behaviour in the neighbourhood of the endpoints x = ±1. We introduce
a new smoothing transformation based on the Kress transformation for solving weakly
singular Fredholm integral equations of the second kind, and then using the Hermite
smoothing transformation as a standard. With the transformation an equation which
is still weakly singular is obtained, but whose solution is smoother. The transformed
equation is then solved numerically by product integration methods with interpolating
polynomials. Two types of interpolating polynomials, namely the Gauss-Legendre and
Chebyshev polynomials, have been used. Numerical examples are presented to investigate
the performance of the former.
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1. Introduction

Consider weakly singular Fredholm integral equation of second kind of the form

f(x)− λ
ˆ 1

−1
k(x, y)f(y)dy = g(x), −1 ≤ x ≤ 1, (1.1)

with weakly singular kernels of one of the following forms:

Abel kernel

k(x, y) = |x− y|−α, 0 < α < 1, (1.2)

logarithmic kernel

k(x, y) = ln |x− y|, (1.3)

where −1 ≤ x ≤ 1.

The numerical solution of (1.1) is closely related to the solution of a linear algebraic

system. Indeed, the main goal of the numerical methods to solve (1.1) is to reduce it

approximately to a linear algebraic system, then the linear algebraic system is solved

to obtain an approximate solution of (1.1). The numerical treatment of weakly

singular integral equations should take into account the nature of the singularities

at the endpoints x = ±1, and the singularities of the input function. Some of the

methods that can be used to solve these integral equations are as follows.

1. Canceling the singularity (of the kernel).

2. Modified quadrature method.

3. Smoothing the kernel.

4. Approximating the kernel by a degenerate kernel.

5. Expansion methods (Galerkin and collocation methods).

6. Product integration.

We will use product integration method for solving (1.1).

2. The Smoothing Transformations

Since the rate of convergence of a numerical method depends on the regularity of

the solution of equation (1.1), the knowledge of the behaviour of the solution is very

important in the choice of the method; for this reason we shall discuss the analysis

of the properties of the solution of (1.1).

When g(x) is sufficiently smooth, the solutions of (1.1) with kernels (1.2), or (1.3)

have first derivatives which behave, respectively, like (x+ 1)−α and ln |x+ 1| near
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x = −1, and have equivalent singularties near x = 1. When 0 < α < 1, the function

(x+1)−α certainly belongs to the space Lp[−1, 1] for any p in the range 1 ≤ p < 1/α,

and ln |x+1| is in the space Lp[−1, 1] for any p in the range 1 ≤ p <∞; see Graham

[16].

When the input function g(x) is smooth, say g ∈ Cp+1[−1, 1], the solution f(x)

has only endpoints mild singularities, that is, f ∈ Cp(−1, 1), in the case of

the equation (1.1) with the kernel (1.3), the solution f(x) admits an expansion

containing a finite number of terms of the form

(1± x)i
[

ln |1± x|
]j
, i, j = 1, 2, . . . , p, i ≥ j, (2.1)

plus a function of class Cp(−1, 1). If the input function or one of its first derivatives

has, for example, simple jumps at a finite number of points in (−1, 1) and smooth

elsewhere, the solution f(x) may be expressed as a linear combination of g(x) and

a finite number of terms which are mildly singular, as those in (2.1), either at ±1

or at the jump points of g(x), plus an unknown smooth function; see Monegato and

Scuderi [11].

We need to use smoothing transformation to reduce (1.1) to an equivalent equation

which has smoother solution.

2.1. Hermite smoothing transformation. Consider equation (1.1) with its ker-

nels (1.2), and (1.3); furthermore consider that the input function g(x) has finite

singularities −1 < x1 < x2 < . . . < x
M
< 1. Then the Hermite transformation

w(t) = HM(t) associated with the partition −1 = x0 < x1 < x2 < . . . < x
M
<

x
M+1

= 1 of [−1, 1], and defined in each subinterval [x
k
, x

k+1
], k = 0, . . . ,M by the

conditions  HM(xj) = x
j
, j = k, k + 1,

H(i)
M(x

j
) = 0, j = k, k + 1, i = 1, . . . , α

j
− 1, α

j
≥ 2,

(2.2)

and the integers α
k
, k = 0, . . . ,M+1 are chosen accordingly to the smoothing effect

that w(t) ought to produce at the points x
k
, k = 0, . . . ,M + 1.

The construction and evaluation of HM(t) and H ′M(t) is not as trivial as it might

appear at first, particularly if we want to have an automatic program where the

α
k

may be arbitrarily chosen. A numerically stable and efficient procedure is the

following one.
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Since we know a priori that in [x
k
, x

k+1
]

H ′M(t) = c
k
(t− x

k
)αk
−1(x

k+1
− t)αk+1

−1 (2.3)

where c
k

is a suitable constant, we can use this expression to derive the following

representation for HM(t):

HM(t) = c
k

ˆ t

x
k

(y − x
k
)αk
−1(x

k+1
− y)αk+1

−1dy + x
k
, t ∈ [x

k
, x

k+1
]. (2.4)

By imposing the conditions HM(x
k+1

) = x
k+1
, k = 0, . . . ,M we determine the coef-

ficients c
k

as

c
k

= (x
k+1
− x

k
)2−αk

−α
k+1

(α
k

+ α
k+1
− 1)!

(α
k
− 1)!(α

k+1
− 1)!

, k = 0, . . . ,M. (2.5)

Hence, the Hermite smoothing transformation over [−1, 1] is

w(t) = HM(t), t ∈ [x
k
, x

k+1
], k = 0, 1, . . . ,M, (2.6)

where HM(t) is as in (2.4). For more details see Monegato and Scuderi [11].

2.2. Kress smoothing transformation. Consider equation (1.1) with its kernels

(1.2), and (1.3). Then Kress transformation is

w(t) =
[v(t)]p − [v(−t)]p

[v(t)]p + [v(−t)]p
, −1 ≤ t ≤ 1, (2.7)

where

v(t) =

(
1

2
− 1

p

)
t3 +

t

p
+

1

2
.

This transformation is bijective, strictly monotonically increasing and infinitely dif-

ferentiable, in addition to that the derivatives of w vanish up to a certain order at

the endpoints of integration. It can be shown that

w′(t) = 2p
[v(t)]p[v(−t)]p−1v′(−t) + [v(−t)]p[v(t)]p−1v′(t))[

[v(t)]p + [v(−t)]p
]2 , −1 ≤ t ≤ 1. (2.8)

We note that
w(−1) = −1, w(1) = 1,

w′(−1) = w′(1) = 0.
(2.9)

For more details see Kress [24].

2.3. Modified Kress smoothing transformation. Consider equation (1.1) with

its kernels (1.2), and (1.3); furthermore consider that the input function g(x) has
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finite singularities −1 < x1 < x2 < . . . < x
M
< 1; let x0 = −1, x

M+1
= 1. We

need to define a new 1-1 transformation w
k

= w
k
(t) on the interval [x

k
, x

k+1
] for

k = 0, 1, . . . ,M such that the following conditions are satisfied:

1. w
k
(x

k
) = x

k
, w

k
(x

k+1
) = x

k+1
.

2. w′
k
(x

k
) = w′

k
(x

k+1
) = 0, w′

k

(x
k+1

+x
k

2

)
= 2.

We will use the Kress transformation (2.7) to define a new transformation. Let

w
k
(t) = a+ bw(s(t)), t ∈ [w

k
, x

k+1
], (2.10)

with

s(t) = c+ dt,

such that: w = −1 implies w
k

= x
k
; w = 1 implies w

k
= x

k+1
; t = x

k
implies

s = −1; and t = x
k+1

implies s = 1.

These give:

a =
x

k+1
+ x

k

2
, b =

x
k+1
− x

k

2
,

c =
x

k+1
+ x

k

x
k+1
− x

k

, d =
2

x
k+1
− x

k

.

Then the transformation (2.10) becomes

w
k
(t) =

1

2

[
(x

k+1
+ x

k
) + (x

k+1
− x

k
)w

(
2t− (x

k+1
+ x

k
)

x
k+1
− x

k

)]
,

t ∈ [x
k
, x

k+1
], for k = 0, 1, . . . ,M.

(2.11)

and

w′
k
(t) =w′

(
2t− (x

k+1
+ x

k
)

x
k+1
− x

k

)
,

t ∈ [x
k
, x

k+1
], for k = 0, 1, . . . ,M.

(2.12)

Using (2.9), (2.11), and (2.12) we obtain the following:

1. w
k
(x

k
) = x

k
, w

k
(x

k+1
) = x

k+1
.

2. w′
k
(x

k
) = w′(−1) = 0, w′

k
(x

k+1
) = w′(1) = 0.

The new transformation can be defined on [−1, 1] as the following

w(t) = w
k
(t), t ∈ [x

k
, x

k+1
], k = 0, 1, . . . ,M, (2.13)

where M is the number of the singularities of the input function g(x). This trans-

formation will be called the modified Kress transformation. It is clear that Kress
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transformation is a special case of the modified Kress transformation, that is the

equation (2.7) could be obtained from (2.13) by setting M = 0.

3. Product Integration Method

Product integration method is a powerful tool for numerical calculation of integrals

whose integrands have singularities. We write the integral as

I(f) =

ˆ 1

−1
k(x)f(x)dx, (3.1)

where f(x) is assumed to be continuous, and whatever singularities or poor be-

haviour in the integrand are included in k(x). The function k(x) is assumed to be

a real-valued absolutely integrable function, but needs not be continuous or of one

sign. We then approximate f(x) by an interpolating function fn(x), where

f(xi) = fn(xi), i = 0, 1, . . . , n,

and then compute the integral

In(f) =

ˆ 1

−1
k(x)fn(x)dx. (3.2)

The type of approximation must be chosen so that the integral in (3.2) can be

evaluated (either explicitly or by an efficient numerical technique).

Let Pn be the space of all polynomials of degree less than or equal to n, and let

φ0(x), φ1(x), . . . , φn(x) be a basis for Pn. The functions φ0(x), φ1(x), . . . , φn(x) will

be called interpolating elements. In this paper, the interpolating function fn(x) will

be assumed to be the interpolating polynomial

fn(x) = Lfn(x) =
n∑
j=0

φj(x)fn(xj). (3.3)

Substituting (3.3) into (3.2), we obtain

In(f) =
n∑
j=0

(ˆ 1

−1
k(x)φj(x)dx

)
f(xj).

Hence the product integration rule for I(f) is given by

In(f) =
n∑
j=0

ω
(k)
j f(xj), (3.4)
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where

ω
(k)
j =

ˆ 1

−1
k(x)φj(x)dx, j = 0, 1, . . . , n, (3.5)

and where ω
(k)
j are the weights.

It is assumed that the integrals in (3.5) are assumed that they can be evaluated

either explicitly or by an efficient numerical technique. Davis and Rabinowitz [23]

prove that the replacement of the function f(x) by interpolating polynomials is

equivalent to the choice of the weights ω
(k)
j , j = 0, 1, . . . , n in (3.4) such that the

rule (3.4) is exact when f is any polynomial of degree less than or equal to n.

3.1. Product integration with Gaussian abscissae and weights. Interpolat-

ing elements φj(x), j = 0, 1, . . . , n for production integration with Gaussian abscissae

and weights can be obtained as

φj(x) = ωj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x), (3.6)

where ωj, 0 ≤ j ≤ n, are the (n+1)-point Gauss-Legendre weights, and xj, 0 ≤ j ≤
n, are the zeros of the Legendre polynomial of degree n+ 1, Pn+1.

Substituting f(y) in the integral in (1.1) from (3.3) and collocating at the points xi,

we obtain

f(xi)−
n∑
j=0

f(xj)λ

ˆ 1

−1
k(xi, y)φj(y)dy = g(xi), i = 0, 1, . . . , n. (3.7)

If we define

Aij =

ˆ 1

−1
k(xi, y)φj(y)dy, (3.8)

then the equation (3.7) can be written as the (n+ 1)× (n+ 1) linear system

(I − λA)fn = gn, (3.9)

where fn = (f(x0), f(x1), . . . , f(xn))T , gn = (g(x0), g(x1), . . . , g(xn))T and A is the

matrix whose (i, j)th element is given by (3.8).

Substituting (3.6) into (3.8), gives

Aij = ωj

n∑
m=0

2m+ 1

2
Pm(xj)am(xi), (3.10)
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where am(xi), 0 ≤ m, i ≤ n are defined by

am(xi) =

ˆ 1

−1
k(xi, y)Pm(y)dy, (3.11)

which are given by the recurrence relation described in Baker [6].

3.2. Product integration with Curtis-Clenshaw points. Interpolating ele-

ments φj(x), j = 0, 1, . . . , n for production integration with Curtis-Clenshaw points

can be obtained as

φj(x) =
2γj
n

n∑
j=0

γiTi(xj)Ti(x), (3.12)

where Ti(x) is the Chebyshev polynomial of the first kind defined by

Ti(cos(θ)) = cos(iθ), (3.13)

and

γi =

 1/2, i = 0 or i = n,

1, i = 1, 2, . . . , n− 1,
(3.14)

and

xi = cos

(
iπ

n

)
, i = 0, 1, . . . , n. (3.15)

As in Section 3.1 the solution of (1.1) can be reduced to the system (3.9), with

Aij =
2γj
n

n∑
m=0

γmTm(xj)am(xi), (3.16)

where am(xi), 0 ≤ m, i ≤ n are defined by

am(xi) =

ˆ 1

−1
k(xi, y)Tm(y)dy, (3.17)

which are given by recurrence relation described in Baker [6].

4. Smoothing the Equation

Introducing the change x = w(t) into (1.1), where w(t) is the Hermite, Kress or

modified Kress transformation as in equations (2.6), (2.7), and (2.13) respectively,

we get

f(w(t))− λ
ˆ 1

−1
k(w(t), y)f(y)dy = g(w(t)), −1 ≤ w(t) ≤ 1. (4.1)
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Setting y = w(s) in (4.1), we obtain

f(w(t))− λ
ˆ 1

−1
k(w(t), w(s))f(w(s))w′(s)ds = g(w(t)), −1 ≤ w(t) ≤ 1, (4.2)

where −1 = w−1(−1) ≤ t ≤ w−1(1) = 1.

Multiplying both sides of (4.2) by w′(t) and setting

θ(t) = w′(t)f(w(t)), ξ(t) = g(w(t))w′(t), (4.3)

we obtain

θ(t)− λ
ˆ 1

−1
k(w(t), w(s))θ(s)w′(t)ds = ξ(t), −1 ≤ w(t) ≤ 1. (4.4)

For the case of Abel kernel, we set

δα(t, s) =


∣∣∣∣w(t)− w(s)

t− s

∣∣∣∣−αw′(t), t 6= s,

|w′(t)|−αw′(t), t = s,

(4.5)

and rewrite (4.4) as

θ(t)− λ
ˆ 1

−1
δα(t, s)|t− s|−αθ(s)ds = ξ(t). (4.6)

Using product integration method described in previous section, the solution of (4.6)

can be converted to the solution of the following system

(I − λA)θn = ξn, (4.7)

where θn = (θ(x0), θ(x1), . . . , θ(xn))T , ξn = (ξ(x0), ξ(x1), . . . , ξ(xn))T and

A = (aij)(n+1)×(n+1) is the matrix whose (i, j)th element is given by

aij = δα(xi, xj)

ˆ 1

−1
|xi − s|−αφj(s)ds. (4.8)

The integral in (4.8) will be calculated as described in previous section.

For the case of logarithmic kernel, we set

δ(t, s) =


ln

∣∣∣∣w(t)− w(s)

t− s

∣∣∣∣w′(t), t 6= s,

ln |w′(t)|w′(t), t = s.

(4.9)
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Now, we know that

ln

∣∣∣∣w(t)− w(s)

∣∣∣∣= ln

∣∣∣∣w(t)− w(s)

t− s
(t− s)

∣∣∣∣
= ln

∣∣∣∣w(t)− w(s)

t− s

∣∣∣∣+ ln |t− s|.
(4.10)

From (4.10) and (4.9) we can rewrite (4.4) as

θ(t)− λ
(ˆ 1

−1
δ(t, s)θ(s)ds+

ˆ 1

−1
w′(t) ln |t− s|θ(s)ds

)
= ξ(t). (4.11)

Using product integration method described in previous section, the solution of

(4.11) can be converted to the solution of the following system

(I − λA)θn = ξn, (4.12)

where θn = (θ(x0), θ(x1), . . . , θ(xn))T , ξn = (ξ(x0), ξ(x1), . . . , ξ(xn))T and

A = (aij)(n+1)×(n+1) is the matrix whose (i, j)th element is given by

aij = δ(xi, xj)

ˆ 1

−1
φj(s)ds+ w′(xi)

ˆ 1

−1
ln |xi − s|φj(s)ds. (4.13)

The integrals in (4.13) will be calculated as described in previous section.

5. Numerical Examples

We solve the equations (4.6) and (4.11) with λ = 1
π
, and α = 1

2
.

We will use the following abbreviations: GM for Gauss method, CM for Clenshaw

method, HT for the Hermite transformation, KT for the Kress transformation, and

MKT for the modified Kress transformation.

Example 5.1. In this example we explain how the previous methods work. Solve

(4.6) using GM with KT (p = 2), recall that KT is a special case of MKT, that is

when the input function g = g(x) has no singularties, i.e. when M = 0. In this

example we make a comparison between the exact solution and the approximate

solution of the original equation (1.1) and the transformed equation (4.6). Consider

the kernel (1.2) with λ = 1
π

and α = 1
2
. Suppose that the exact solution is f(x) = x3.

Firstly, we determine the input function g(x) as shown below.

Substituting f(x) = x3 into (1.1) provides

g(x) = x3 − 1

π
I(x),
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where

I(x) =

ˆ 1

−1
|x− y|

− 1
2 y3dy.

Now

I(x) = I1(x) + I2(x),

where 
I1(x) =

ˆ x

−1
(x− y)

− 1
2 y3dy,

I2(x) =

ˆ 1

x

(y − x)
− 1

2 y3dy.

For calculating I1(x) let x− y = u2, we obtain

I1(x) =

ˆ (1+x)
1
2

0

(x− u2)3du

=2
[
− 1

7
x71 +

3

5
xx51 − x2x31 + x3x1

]
,

where x1 = (1 + x)
1
2 . Using the same way we obtain

I2(x) = 2
[1
7
x72 +

3

5
xx52x

2x32 + x3x2
]
,

where x2 = (1− x)
1
2 .

Then

g(x) = x3 − 2

π

[[
− 1

7
x71 +

3

5
xx51 − x2x31 + x3x1

]
+
[1
7
x72 +

3

5
xx52x

2x32 + x3x2
]]
,

where x1 = (1 + x)
1
2 and x2 = (1− x)

1
2 .

The solution of (4.6) refers to the solution of the linear algebraic system (4.7). For

n = 4, the system is (
I − 1

π
A

)
θ4 = ξ4,

where I is identity matrix of degree 5,

θ4 =


θ(x0)

θ(x1)

θ(x1)

θ(x3)

θ(x4)

 =


w′(x0)f(w(x0))

w′(x1)f(w(x1))

w′(x2)f(w(x2))

w′(x3)f(w(x3))

w′(x4)f(w(x4))
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is the approximate solution vector,

ξ4 =


ξ(x0)

ξ(x1)

ξ(x1)

ξ(x3)

ξ(x4)

 =


w′(x0)g(w(x0))

w′(x1)g(w(x1))

w′(x2)g(w(x2))

w′(x3)g(w(x3))

w′(x4)g(w(x4))


is the input vector which is calculated from (4.3) and A = (aij) is the matrix of degree

5 which can be calculated from (4.8). The vector x =
(
x0, x1, x2, x3, x4

)
includes

the zeros of Legendre polynomial of degree 5, P5(x), w is the Kress transformation

(2.7), and w′ is its first derivative (2.8).

Now, for n = 4, and p = 2, we obtain

x = (−9.0618(−01),−5.3847(−01), 0,+5.3847(−01),+9.0618(−01)) ,

w = (−9.9517(−01),−8.3487(−01), 0,+8.3487(−01),+9.9517(−01)) ,

w′ = (1.0784(−01), 8.5344(−01), 2.0000(+00), 8.5344(−01), 1.0784(−01)) ,

and

A =


4.516(−01) 1.370(−01) 5.968(−02) 3.884(−02) 1.791(−02)

5.333(−01) 1.807(+00) 5.623(−01) 3.086(−01) 1.512(−01)

4.648(−01) 1.107(+00) 3.017(+00) 1.107(+00) 4.648(−01)

1.512(−01) 3.086(−01) 5.623(−01) 1.807(+00) 5.333(−01)

1.791(−02) 3.884(−02) 5.968(−02) 1.370(−01) 4.516(−01)

 .

The approximate solution is

θ4 = (−1.0849(−01),−5.2413(−01),−2.4748(−16), 5.2413(−01), 1.0849(−01))T

while the exact solution is

θ = (−1.0629(−01),−4.9663(−01), 0, 4.9663(−01), 1.0629(−01))T .

Finally, we found that ‖θ − θ4‖∞ = 2.7503(−02). In the next examples as long as

the dimension of the solution vector is greater or equal to n = 64 the focus will be

on the infinity error norm as a measure of the efficiency of our method.

Example 5.2. Solve (4.6) using GM with KT (p = 2, 3), exact solution is f(x) = x3

(g(x) as in Example 5.1), as shown in Table 1.
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Table 1. Error norm of Example 5.2.

‖θ − θn‖∞n
p = 2 p = 3

64 6.6385(−09) 6.8719(−12)
128 4.3428(−10) 5.8155(−14)
256 2.7777(−11) 6.3421(−15)

Example 5.3. Solve (4.6) using CM with HT ((α0 = α1 = 2), (α0 = α1 = 3 )),

exact solution f(x) = x3 (g(x) as in Example 5.1), as shown in Table 2.

Table 2. Error norm of Example 5.3.

‖θ − θn‖∞n
α0 = α1 = 2 α0 = α1 = 3

64 3.1397(−08) 2.5603(−11)
128 1.9595(−09) 2.0065(−13)
256 1.2243(−10) 2.4280(−14)

Example 5.4. Solve (4.11) using CM with KT (p = 2, 3), MKT (p = 3, M = 1),

g(x) = |x|, consider the solution as n = 256 as a reference, as shown in Table 3.

Table 3. The values |θ256(t)− θn(t)| of Example 5.4.

t KT(p = 2) KT(p = 3) MKT(p = 3)
θ256(t) n = 128 θ256(t) n = 128 θ256(t) n = 128

0.1 0.175900 2.8483(−04) 0.178485 2.8337(−04) −0.012670 1.2624(−07)
0.2 0.427608 5.6714(−04) 0.447955 5.6523(−04) −0.027860 1.6175(−07)
0.3 0.576496 9.5689(−04) 0.627090 9.5584(−04) 0.061948 1.8510(−07)
0.4 0.622291 7.7464(−04) 0.693030 7.7502(−04) 0.326010 1.0380(−07)
0.5 0.581377 7.1775(−04) 0.638539 7.1624(−04) 0.669071 1.0653(−07)
0.6 0.482421 1.9204(−04) 0.490363 1.9311(−04) 0.921528 4.8837(−08)
0.7 0.354348 3.1647(−04) 0.303164 3.1578(−04) 0.890582 6.1989(−08)
0.8 0.221197 1.0949(−04) 0.137306 1.0940(−04) 0.531261 2.8196(−08)
0.9 0.099896 1.3693(−04) 0.032957 1.3700(−04) 0.138940 2.7981(−08)

Example 5.5. Solve (4.11) using CM with HT ((α0 = α1 = 3), (α0 = α2 = 4, α1 =

9)), g(x) = |x|, consider the solution as n = 256 as a reference, as shown in Table 4.

Example 5.6. Solve (4.6) using GM with HT ((α0 = α2 = 4, α1 = 9), (α0 = α1 =

3)), g(x) = x√
2−x , consider the solution as n = 256 as a reference, as shown in Table

5.
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Table 4. The values |θ256(t)− θn(t)| of Example 5.5.

t α0 = α1 = 3 α0 = α2 = 4, α1 = 9
θ256(t) n = 64 n = 128 θ256(t) n = 64 n = 128

0.1 0.148755 3.6131(−04) 2.5165(−04) −0.000001 8.3933(−11) 3.0582(−13)
0.2 0.389319 1.1967(−03) 4.9594(−04) −0.000217 1.9900(−10) 4.7585(−13)
0.3 0.557379 2.1609(−03) 8.3815(−04) −0.003656 3.1068(−10) 5.6272(−13)
0.4 0.640252 2.8805(−03) 6.7877(−04) −0.019282 3.8254(−10) 2.9490(−13)
0.5 0.631078 1.7923(−03) 6.3234(−04) −0.015020 2.8303(−10) 2.8337(−13)
0.6 0.537067 7.1180(−04) 1.6870(−04) 0.240863 8.8108(−11) 1.5016(−13)
0.7 0.381112 7.5315(−04) 2.7819(−04) 1.012056 1.2179(−10) 2.0184(−13)
0.8 0.203849 3.9378(−04) 9.6241(−05) 1.594829 5.1527(−11) 7.3719(−14)
0.9 0.058788 3.8316(−04) 1.2049(−04) 0.702266 5.7386(−11) 8.5820(−14)

Table 5. The values |θ256(t)− θn(t)| of Example 5.6.

t α0 = α2 = 4, α1 = 9 α0 = α1 = 3
θ256(t) n = 64 n = 128 θ256(t) n = 64 n = 128

0.1 −0.000006 7.7574(−10) 2.5102(−12) −0.138073 1.7839(−13) 1.5821(−14)
0.2 −0.001109 2.1302(−09) 2.2588(−12) 0.487376 3.6326(−13) 2.4980(−15)
0.3 −0.018904 1.0975(−09) 2.8227(−12) 0.955954 5.9974(−13) 7.7716(−16)
0.4 −0.111977 1.9168(−09) 2.9243(−13) 1.190959 7.2098(−13) 1.1102(−15)
0.5 −0.282775 6.4345(−10) 1.5307(−12) 1.177626 1.4744(−13) 7.5495(−15)
0.6 0.003712 8.8822(−10) 2.4633(−12) 0.963847 1.2749(−12) 4.5519(−15)
0.7 1.666101 1.5513(−09) 1.1520(−12) 0.642312 7.0266(−13) 5.6621(−15)
0.8 2.974454 4.5732(−10) 1.9993(−12) 0.319919 2.1594(−12) 6.2728(−15)
0.9 1.126803 1.0282(−09) 1.0045(−12) 0.086585 4.5817(−12) 6.5226(−16)

Example 5.7. Solve (4.6) using GM with KT (p = 2, 3), g(x) = x√
2−x , consider the

solution as n = 256 as a reference, as shown in Table 6.

Table 6. The values |θ256(t)− θn(t)| of Example 5.7.

t p = 2 p = 3
θ256(t) n = 64 n = 128 θ256(t) n = 64 n = 128

0.1 −0.101082 2.6118(−12) 2.2884(−14) −0.099675 1.8499(−14) 3.0420(−14)
0.2 0.570833 5.9392(−12) 9.5812(−14) 0.605571 8.6042(−14) 1.5987(−14)
0.3 1.007205 7.7636(−12) 1.3411(−13) 1.105950 1.7031(−13) 5.3291(−15)
0.4 1.161463 8.5625(−12) 1.8363(−13) 1.297594 2.1028(−13) 3.7748(−15)
0.5 1.083235 1.0510(−11) 2.2671(−13) 1.179647 4.3077(−14) 4.4409(−15)
0.6 0.866899 1.4481(−11) 1.2468(−13) 0.860702 3.9790(−13) 6.2172(−15)
0.7 0.603024 6.6781(−12) 1.6043(−13) 0.497348 2.1794(−13) 3.7192(−15)
0.8 0.353775 1.5243(−11) 6.0285(−14) 0.210773 6.5448(−13) 4.3854(−15)
0.9 0.150129 2.3390(−11) 8.6597(−15) 0.048046 1.4015(−12) 2.9976(−15)
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Example 5.8. Solve (4.11) using GM with KT (p = 2, 3), HT ((α0 = α1 = 2),

exact solution f(x) = 1, input function g(x) = 1− 2
π
[(1− x)

1
2 + (1 + x)

1
2 ], as shown

in Table 7.

Table 7. Error norm of Example 5.8.

‖θ − θn‖∞n
KT(p = 2) KT(p = 3) H(α0 = α1 = 2)

64 3.6821(−12) 1.1102(−15) 3.3217(−11)
128 6.1696(−14) 1.9984(−15) 5.5560(−13)
256 5.1070(−15) 8.4377(−15) 8.9868(−15)

Example 5.9. Solve (4.11) using CM with KT (p = 2, 3), HT(α0 = α1 = 3),

g(x) = x, consider the solution as n = 256 as a reference, as shown in Table 8.

Table 8. The values |θ256(t)− θn(t)| of Example 5.9.

t KT(p = 2) KT(p = 3) H(α0 = α1 = 3)
θ256(t) n = 128 θ256(t) n = 128 θ256(t) n = 128

0.1 0.229693 4.5991(−14) 0.232509 8.0214(−15) 0.204387 8.2989(−15)
0.2 0.416001 1.0081(−13) 0.434700 8.3267(−16) 0.383401 1.2212(−15)
0.3 0.529295 1.6098(−13) 0.574463 1.6653(−15) 0.513913 2.1094(−15)
0.4 0.560770 1.1535(−13) 0.623500 1.9984(−15) 0.577782 0
0.5 0.520730 1.6065(−13) 0.571301 5.4401(−15) 0.565390 6.1062(−15)
0.6 0.430972 1.2618(−13) 0.437798 4.2744(−15) 0.479744 2.7756(−15)
0.7 0.316094 2.0528(−13) 0.270348 1.8874(−15) 0.339945 6.9389(−15)
0.8 0.197201 1.6201(−13) 0.122372 1.3878(−16) 0.181726 5.6899(−15)
0.9 0.089044 3.2971(−13) 0.029357 6.5260(−15) 0.052393 2.4425(−15)

In these examples which involve solving equation (1.1), we used three transforma-

tions; Hermite (2.6), Kress (2.7), and modified Kress (2.13), to reduce (1.1) to

an equivalent equation (4.4) which has smoother solution; then we solved the new

equation using two methods; Gauss, Clenshaw methods.

We considered two cases for comparison efficiency of the transformations; firstly,

for the case in which the input function is smooth on whole domain of integration;

secondly, for the case when it has finite jumps of singular points.

We investigated the Kress and Hermit transformations with known exact solution

(exact solution is f(x) = x3 or f(x) = 1 ) as shown in Tables 1, 2, and 7. In

the Kress transformation we get various grades of accuracy by various values of the
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parameter as well as in the Hermite transformation, so one can obtain same accuracy

by suitable choice of the parameters.

For input function g(x) which is smooth on whole domain of integration, and suitably

chose parameters, there is no difference between the Hermite and kress transforma-

tions; refer to Tables 5, 6, and 8.

Using input function g(x) which has finite singularities in the domain of integration

(for example g(x) = |x|), the Hermite and Kress transformations give poor accuracy

in spite of taking various values of the parameters; refer to Table 3 columns KT(p =

2) and KT(p = 3) for Kress, and Table 4 column α0 = α1 = 3 for Hermite. The

reason is the input function g(x) = |x| has singular point x1 = 0. To overcome the

problem we divide the domain of integration, [−1, 1], into two subintervals [−1, 0]

and [0, 1], i.e., choosing M = 1. For this case the accuracy can be obtained clearly

in Table 4 column α0 = α2 = 4, α1 = 9 for Hermite, and some accuracy appear in

Table 3 column MKT(p = 3) for the modified Kress transformation.

In the case of g(x) = |x|, we find that the Hermite transformation gives the best

accuracy compared to the modified Kress transformations; refer to Table 4 for the

Hermite transformation and Table 3 for the modified Kress transformations. This is

because the Hermite transformation gives more smoothing of the solution since the

transformation vanishes up to eight derivatives at the singular point x1 = 0 which is

related to the choice α1 = 9, while the modified Kress transformation vanishes up to

only two derivatives at the same singular point which is related to p = 3. Choosing

p > 3 gives unsolvable system since the concentration of the nodes near the singular

points is so high, increasing as n becomes large. Another reason is that the modified

Kress transformation is rational compared to the polynomial nature of the Hermite

transformation so that the calculations become more complicated.

6. Conclusion

It could be shown from the results of this study that for the case in which the

input function of the weakly singular Fredholm integral equation of the second kind

is smooth on whole the domain of integration, the product integration methods

together with the Kress transformation showed comparable results as the product

integration methods together with the Hermite transformation. For the case in which

the input function has finite number of singularities on the domain of integration,

the product integration methods together with the modified Kress transformation
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showed higher accuracy than the product integration methods together with the

Kress transformation. Nevertheless the most accurate results were showed by the

product integration methods together with the Hermite transformation.
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