Çankaya University Journal of Science and Engineering Volume 9 (2012), No. 2, 167–182

CUJ

m-Generators of Fuzzy Dynamical Systems

Mohammad Ebrahimi^{1,*} and Uosef Mohamadi¹

¹Department of Mathematics, Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran * Corresponding author: mohamad_ebrahimi@mail.uk.ac.ir

Özet. Bu makalede, sonlu atomlu bir alt- σ -cebirine göre bulanık ölçüm koruyan dönüşümün entropisinin afin olduğunu ispatlıyor, daha sonra bir sonlu alt- σ -cebirinin entropisini hesaplama yöntemini sayılabilir çoklukta atomlu alt- σ -cebirine uygulanacak şekille genelleştiriyor, ve bulanık olasılık dinamik sistemlerin ergodik özelliklerini araştırıyoruz. Son olarak, bu kavram kullanılarak Kolmogorov-Sinai önermesinin [6, 9, 10] bir çeşidi veriliyor.[†]

Anahtar Kelimeler. Bulanık olasılık uzayı, entropi, bulanık dinamik sistemler, *m*-denklik, *m*-saflaştırma, bulanık *m*-üreteç.

Abstract. In this paper we prove that the entropy of a fuzzy measure preserving transformation with respect to a sub- σ -algebra having finite atoms is affine and then we extend the method of computing the entropy of a finite sub- σ -algebra to a sub- σ -algebra having countable atoms, and we investigate the ergodic properties of fuzzy probability dynamical systems. At the end by using this notion, a version of Kolmogorov-Sinai proposition [6, 9, 10] is given.

Keywords. Fuzzy probability space, entropy, fuzzy dynamical systems, *m*-equivalence, *m*-refinement, fuzzy *m*-generator.

1. Introduction and Preliminaries

The main idea of fuzzy entropy is the substitution of partitions by fuzzy partitions. In some previous papers [1, 2, 3] entropy of a fuzzy dynamical system has been defined. Also the notions of *m*-refinements and *m*-equivalence have been defined in [8]. In this paper we give a definition for the entropy of a sub- σ -algebra with countable atoms.

Received April 7, 2012; accepted February 20, 2013.

[†]Türkçe özet ve anahtar kelimeler, orijinal İngilizce metindeki ilgili kısmın doğrudan tercümesi olup *Çankaya University Journal of Science and Engineering* editörlüğü tarafından yazılmıştır. | Turkish abstract and the keywords are written by the editorial staff of *Çankaya University Journal of Science and Engineering* which are the direct translations of the related original English text.

2. Fuzzy Dynamical Systems

We recall that a fuzzy set in a nonempty set X is an element of the family I^X of all functions from X to closed unit interval I = [0, 1]. A sequence $\{\lambda_i\}$ of fuzzy sets in X increase to $\lambda \in I^X$ (written as $\lambda_i \uparrow \lambda$) if $\{\lambda_i(x)\}_{i=1}^{\infty}$ is monotonic increasing and converges to $\lambda(x)$ for each x in X. A fuzzy σ -algebra M on a non-empty set X is a subset of I^X which satisfies the following conditions:

(i) 1 ∈ M,
(ii) λ ∈ M ⇒ 1 − λ ∈ M,
(iii) if {λ_i}_{i=1}[∞] is a sequence in M then [∞]_{i=1} λ_i = sup_i λ_i ∈ M.

If N_1 and N_2 are fuzzy σ -algebras on X then $N_1 \vee N_2$ is the smallest fuzzy σ -algebra that contains $N_1 \cup N_2$, denoted by $[N_1 \cup N_2]$. A fuzzy probability measure m over M is a function $m: M \to I$ which fulfills the conditions:

- (i) m(1) = 1,
- (ii) $m(1-\lambda) = 1 m(\lambda)$,
- (iii) $m(\lambda \lor \mu) + m(\lambda \land \mu) = m(\lambda) + m(\mu)$ for each $\lambda, \mu \in M$,
- (iv) for each sequence $\{\lambda_i\}_{i=1}^{\infty}$ in M such that $\lambda_i \uparrow \lambda$, $m(\lambda) = \sup_i m(\lambda_i)$.

The triple (X, M, m) is called a fuzzy probability measure space and the elements of M are called fuzzy measurable sets [8].

Definition 2.1. Let (X, M, m) be a fuzzy probability measure space, the elements μ , λ of M are called *m*-disjoint if $m(\lambda \wedge \mu) = 0$.

A relation '= $(\mod m)$ ' on M is defined as follows;

 $\lambda = \mu \pmod{m}$ iff $m(\lambda) = m(\mu) = m(\lambda \wedge \mu), \quad \lambda, \mu \in M.$

Relation '= (mod m)' is an equivalence relation. M denotes the set of all equivalence classes induced by this relation, and $\tilde{\mu}$ is the equivalence class determined by μ . For $\lambda, \mu \in M, \lambda \wedge \mu = 0 \pmod{m}$ iff λ, μ are m-disjoint. We shall identify $\tilde{\mu}$ with μ [8].

Definition 2.2. Let (X, M, m) be a fuzzy probability measure space, and N be a fuzzy sub- σ -algebra of M. Then an element $\tilde{\mu} \in \tilde{N}$ is an atom of N if

- (i) $m(\mu) > 0$,
- (ii) for each $\tilde{\lambda} \in \tilde{N}$ such that $m(\lambda \wedge \mu) = m(\lambda) \neq m(\mu)$ then $m(\lambda) = 0$, [8].

Proposition 2.3. Let (X, M, m) be a fuzzy probability measure space, and N be a fuzzy sub- σ -algebra of M. If $\tilde{\mu_1}$, $\tilde{\mu_2}$ are disjoint atoms of N then they are m-disjoint.

Proof. See [8].

The set of all atoms of N is denoted by \overline{N} . We define F(M) as below

 $F(M) = \{N : N \text{ is a sub-}\sigma\text{-algebra of } M \text{ with finite atoms}\}.$

Definition 2.4. Suppose (X, M, m) and (Y, N, n) are fuzzy probability measure spaces. A transformation $\varphi : (X, M, m) \to (Y, N, n)$ is said to be a fuzzy measure preserving if

(i) $\varphi^{-1}(\mu) \in M$ for every $\mu \in N$, (ii) $m(\varphi^{-1}(\mu)) = n(\mu)$ for all $\mu \in \overline{N}$.

Definition 2.5. A fuzzy dynamical system is denoted by (X, M, m, φ) where (X, M, m) is a fuzzy probability measure space and φ is a fuzzy measure preserving transformation.

Definition 2.6. The entropy of $N \in F(M)$ is given by

$$H(N,m) = -\sum_{\mu \in \overline{N}} m(\mu) \log m(\mu),$$

and the mean entropy of φ on N of the fuzzy dynamical system (X, M, m, φ) is defined by

$$h(N, M, \varphi) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=1}^{n-1} \varphi^{-i}(N), m).$$

Note that $\varphi^{-i}(N) = \{\varphi^{-i}(\mu) : \mu \in N\}$ is an element of F(M) and $\bigvee_{i=1}^{n-1} \varphi^{-i}(N)$ is the smallest fuzzy σ -algebra containing $\bigcup_{i=0}^{n-1} \varphi^{-i}(N)$, and the above limit exists [8].

Proposition 2.7. The mean entropy of φ on N of the fuzzy dynamical system (X, M, m, φ) is affine, *i.e.*,

$$h(N, \lambda m_1 + (1 - \lambda)m_2, \varphi) = \lambda h(N, m_1, \varphi) + (1 - \lambda)h(N, m_2, \varphi),$$

for each pair m_1 and m_2 of fuzzy probability measures, $N \in F(M)$ and $\lambda \in [0, 1]$.

Proof. If m_1 and m_2 are two fuzzy probability measures and $\lambda \in [0, 1]$ then

$$H(N, \lambda m_1 + (1 - \lambda)m_2) \ge \lambda H(N, m_1) + (1 - \lambda)H(N, m_2).$$
(1)

The 'concavity' inequality (1) is a direct consequence of the definition of H(N,m)and the 'concavity' of the function $x \to -x \log x$. Conversely, one has inequalities

$$-\log(\lambda m_1(\mu_i) + (1-\lambda)m_2(\mu_i)) \le -\log\lambda - \log(m_1(\mu_i)),$$

and

$$-\log(\lambda m_1(\mu_i) + (1-\lambda)m_2(\mu_i)) \le -\log(1-\lambda) - \log(m_2(\mu_i)),$$

since $x \to -\log x$ is decreasing. Therefore one obtains the 'convexity' bound

$$H(N, \lambda m_1 + (1 - \lambda)m_2) \le \lambda H(N, m_1) + (1 - \lambda)H(N, m_2) - \lambda \log \lambda - (1 - \lambda)\log (1 - \lambda).$$
(2)

Now replacing N by $\bigvee_{i=0}^{n-1} \varphi^{-i}(N)$ in (1), dividing by n and taking the $\lim_{n\to\infty}$ gives

$$h(N, \lambda m_1 + (1 - \lambda)m_2, \varphi) \ge \lambda h(N, m_1, \varphi) + (1 - \lambda)h(N, m_2, \varphi).$$

Similarly from (2), since

$$\frac{-(\lambda \log \lambda + (1 - \lambda) \log (1 - \lambda))}{n} \to 0 \text{ as } n \to \infty,$$

one deduces the converse inequality

$$h(N, \lambda m_1 + (1 - \lambda)m_2, \varphi) \le \lambda h(N, m_1, \varphi) + (1 - \lambda)h(N, m_2, \varphi).$$

Hence one concludes the map $m \to h(N, m, \varphi)$ is affine. This is a somewhat surprising and is of great significance in the application of fuzzy mean entropy. \Box

3. Ergodic Measures and Weak-Mixing

Definition 3.1. Given a fuzzy probability space (X, M, m), a fuzzy measure preserving transformation $\varphi : X \to X$ is called ergodic if for every atom $\gamma \in \overline{M}$ with $\varphi^{-1}(\gamma) = \gamma$ we have that either $m(\gamma) = 0$ or $m(\gamma) = 1$. Alternatively we say that m is φ -ergodic.

Proposition 3.2. Let Σ denote the set of fuzzy invariant probability measures on X. $m \in \Sigma$ is ergodic if whenever there exists m_1 , $m_2 \in \Sigma$ and $0 < \lambda < 1$ with $m = \lambda m_1 + (1 - \lambda)m_2$ then $m_1 = m_2$.

Proof. If m is not ergodic then we can find $\gamma \in \overline{M}$ with $\varphi^{-1}(\gamma) = \gamma$ and $0 < m(\gamma) < 1$ but for every atom $\mu \in \overline{M}$ we can write

$$\mu = (\mu \land \gamma) \lor (\mu \land (1 - \gamma)).$$

Therefore

$$m(\mu) = m((\mu \land \gamma) \lor (\mu \land (1 - \gamma)))$$

= $m(\gamma) \left(\frac{m(\mu \land \gamma)}{m(\gamma)}\right) + m(1 - \gamma) \left(\frac{m(\mu \land (1 - \gamma))}{m(1 - \gamma)}\right)$
= $\lambda m_1(\mu) + (1 - \lambda)m_2,$

where $\lambda = m(\gamma)$ and $m_1(\mu) = m(\mu \wedge \gamma)/m(\gamma)$, $m_2(\mu) = m(\mu \wedge (1-\gamma))/m(1-\gamma)$ this shows that $m = \lambda m_1 + (1-\lambda)m_2(\mu)$.

Definition 3.3. Let (X, M, m, φ) be a fuzzy dynamical system, we say that φ is weak-mixing if for any μ , $\lambda \in \overline{M}$ we have that,

$$\frac{1}{k}\sum_{n=0}^{k-1}|m(\varphi^{-n}(\mu)\wedge\lambda)-m(\mu)m(\lambda)|\to 0 \quad \text{as} \quad k\to\infty.$$

Proposition 3.4. If a transformation $\varphi : X \to X$ on a fuzzy probability measure space (X, M, m) is weak-mixing then it is necessarily ergodic.

Proof. If φ is weak-mixing then by definition we have that for any μ , $\lambda \in \overline{M}$,

$$\frac{1}{k}\sum_{n=0}^{k-1}|m(\varphi^{-n}(\mu)\wedge\lambda)-m(\mu)m(\lambda)|\to 0 \qquad as \quad k\to\infty$$

By the triangle inequality we have that,

$$\left|\frac{1}{k}\sum_{n=0}^{k-1}m(\varphi^{-n}(\mu)\wedge\lambda)-m(\mu)m(\lambda)\right|\leq \frac{1}{k}\sum_{n=0}^{k-1}|m(\varphi^{-n}(\mu)\wedge\lambda)-m(\mu)m(\lambda)|\to 0.$$

If we assume (for a contradiction) that φ was not ergodic then there would exist a φ -invariant atom $\gamma \in \overline{M}$ with $\varphi^{-1}(\gamma) = \gamma$ with $0 < m(\gamma) < 1$. If we take $\mu = \gamma$ and $\lambda = 1 - \gamma$ then since $m(\varphi^{-n}(\gamma) \land (1 - \gamma)) = m(\gamma \land (1 - \gamma))$, for all $n \ge 0$, we deduce that $m(\gamma) m(1 - \gamma) = 0$ giving the required contradiction. Thus φ is ergodic. \Box

4. Entropy of a Sub- σ -Algebra with Countable Atoms

In this section we introduce the notion of entropy of a sub- σ -algebra with countable atoms. We introduce $F^*(M)$ as below,

 $F^*(M) = \{N : N \text{ is a sub-}\sigma\text{-algebra of } M \text{ with countable atoms}\}.$

Assume that M is a σ -algebra and N_1 , $N_2 \in F^*(M)$, and $\{\lambda_i : i \in \mathbb{N}\}$ and $\{\mu_j : j \in \mathbb{N}\}$ denote the atoms of N_1 and N_2 respectively, then the atoms of $N_1 \vee N_2$

are $\lambda_i \wedge \mu_j$ which $m(\lambda_i \wedge \mu_j) > 0$ for each $i, j \in \mathbb{N}$. If $\gamma \in \overline{M}$ we set

$$N_1 \lor \gamma = \{\lambda_i \land \gamma : m(\lambda_i \land \gamma) > 0, i \in \mathbb{N}\}.$$

Proposition 4.1. Let $\{\lambda_i : i \in \mathbb{N}\}$ be an *m*-disjoint collection of fuzzy measurable sets of fuzzy probability measure space (X, M, m), then,

$$m\left(\bigvee_{i=1}^{\infty}(\lambda_i)\right) = \sum_{i=1}^{\infty}m(\lambda_i)$$

Proof. See [8].

Definition 4.2. Let (X, M, m) be a fuzzy probability measure space and $N_1, N_2 \in F^*(M)$. We say that N_2 is an *m*-refinement of N_1 , denoted by $N_1 \leq_m N_2$, if for each $\mu \in \overline{N_2}$ there exists $\lambda \in \overline{N_1}$ such that $m(\lambda \wedge \mu) = m(\mu)$.

Proposition 4.3. Let (X, M, m) be a fuzzy probability measure space and N_1 , N_2 , $N_3 \in F^*(M)$. If $N_1 \leq_m N_2$ then,

$$N_1 \lor N_3 \leq_m N_2 \lor N_3.$$

Proof. See [8].

Definition 4.4. Let (X, M, m) be a fuzzy probability space, and N be a sub- σ -algebra of M for which $N \in F^*(M)$. The entropy of N is defined as

$$H(N) = -\log \sup_{i \in \mathbb{N}} m(\mu_i)$$

where $\{\mu_i : i \in \mathbb{N}\}\$ are atoms of N.

Definition 4.5. Let (X, M, m) be a fuzzy probability measure space and $N \in F^*(M)$. The conditional entropy of N given $\gamma \in \overline{M}$ is defined by

$$H(N|\gamma) = -\log \sup_{i \in \mathbb{N}} m(\mu_i|\gamma),$$

where,

$$m(\mu_i|\gamma) = \frac{m(\mu_i \wedge \gamma)}{m(\gamma)}$$
 $(m(\gamma) \neq 0).$

Proposition 4.6. Let (X, M, m) be a fuzzy probability measure space, and $N_1, N_2 \in F^*(M)$ for which $\overline{N_1} = \{\lambda_i : i \in \mathbb{N}\}$ and $\overline{N_2} = \{\mu_j : j \in \mathbb{N}\}$. Then,

- (i) $N_1 \leq_m N_2 \Rightarrow H(N_1) \leq H(N_2),$
- (ii) $N_1 \leq_m N_2 \Rightarrow H(N_1|\gamma) \leq H(N_2|\gamma).$

Proof. (i) Suppose $N_1 \leq_m N_2$, and then for each $\mu_j \in \overline{N_2}$ there exists $\lambda_{i_j} \in \overline{N_1}$ such that, $m(\mu_j \wedge \lambda_{i_j}) = m(\mu_j)$ but $\lambda_{i_j} \wedge \mu_j \leq \lambda_{i_j}$. Then,

$$m(\lambda_{i_j} \wedge \mu_j) \le m(\lambda_{i_j}) \Rightarrow m(\mu_j) \le m(\lambda_{i_j}) \Rightarrow m(\mu_j) \le \sup_{\lambda_{i_j} \in \overline{N_1}} m(\lambda_{i_j}).$$

Since μ_j is arbitrary we have: $\sup_{j\in\mathbb{N}} m(\mu_j) \leq \sup_{i\in\mathbb{N}} m(\lambda_i)$ and then we have $H(N_1) \leq H(N_2)$ since $f(x) = -\log x$ is a decreasing function.

(ii) Suppose $N_1 \leq_m N_2$, by Proposition 4.3 we have, $N_1 \vee \gamma \leq_m N_2 \vee \gamma$, and by (i) we conclude that

$$H(N_{1} \vee \gamma) \leq H(N_{2} \vee \gamma) \Rightarrow -\log \sup_{i \in \mathbb{N}} m(\lambda_{i} \wedge \gamma) \leq -\log \sup_{j \in \mathbb{N}} m(\mu_{j} \wedge \gamma)$$

$$\Rightarrow \sup_{j \in \mathbb{N}} m(\mu_{j} \wedge \gamma) \leq \sup_{i \in \mathbb{N}} m(\lambda_{i} \wedge \gamma)$$

$$\Rightarrow \sup_{j \in \mathbb{N}} \frac{m(\mu_{j} \wedge \gamma)}{m(\gamma)} \leq \sup_{i \in \mathbb{N}} \frac{m(\lambda_{i} \wedge \gamma)}{m(\gamma)}$$

$$\Rightarrow -\log \sup_{i \in \mathbb{N}} \frac{m(\lambda_{i} \wedge \gamma)}{m(\gamma)} \leq -\log \sup_{j \in \mathbb{N}} \frac{m(\mu_{j} \wedge \gamma)}{m(\gamma)}$$

$$\Rightarrow H(N_{1}|\gamma) \leq H(N_{2}|\gamma).$$

Definition 4.7. Let (X, M, m) be a fuzzy probability measure space and $N_1, N_2 \in F^*(M)$. We say that N_1 and N_2 are *m*-equivalent, denoted by $N_1 \approx_m N_2$, if

- (i) for each $\mu \in \overline{N_2}$, $m(\mu \land (\bigvee \{\lambda : \lambda \in \overline{N_1}\})) = m(\mu)$,
- (ii) for each $\lambda \in \overline{N_1}$, $m(\lambda \land (\bigvee \{\mu : \mu \in \overline{N_2}\})) = m(\lambda)$.

Proposition 4.8. Let (X, M, m) be a fuzzy probability measure space, and $N_1, N_2 \in F^*(M)$. Then,

$$N_1 \approx_m N_2 \Rightarrow N_1 \approx_m N_1 \lor N_2.$$

Proof. Assume that, $\overline{N_1} = \{\lambda_i : i \in \mathbb{N}\}, \overline{N_2} = \{\mu_j : j \in \mathbb{N}\}$. We know that

$$\overline{N_1 \vee N_2} = \{\lambda_i \wedge \mu_j : \lambda_i \in \overline{N_1}, \ \mu_j \in \overline{N_2}, \ m(\lambda_i \wedge \mu_j) > 0\}.$$

If $\alpha = \{(i, j) : V_{ij} = \lambda_i \land \mu_j \in \overline{N_1 \lor N_2}\}$ then $\alpha = \bigcup_{i \in \mathbb{N}} \{(i, j) : j \in \beta_i\}$ where $\beta_i = \{j : m(V_{ij}) > 0\}$ and $i \in \mathbb{N}$. Note that if $j \notin \beta_i$ then $m(V_{ij}) = 0$ we have

$$\bigvee_{i,j\in\mathbb{N}} V_{ij} = \bigvee_{i\in\mathbb{N}} (\bigvee_{j\in\beta_i} V_{ij}) = \bigvee_{i\in\mathbb{N}} (\lambda_i \wedge (\bigvee_{j\in\beta_i} \mu_j)).$$

Since the collections of $\{\lambda_i : i \in \mathbb{N}\}\$ and $\{\mu_j : j \in \mathbb{N}\}\$ are *m*-disjoint, we have,

$$m(\lambda_{k} \land (\bigvee_{i,j \in \mathbb{N}} V_{ij})) = m(\lambda_{k} \land (\bigvee_{i \in \mathbb{N}} \lambda_{i} \land (\bigvee_{j \in \beta_{i}} \mu_{j})))$$

$$= m(\lambda_{k} \land (\bigvee_{j \in \beta_{i}} \mu_{j}))$$

$$= m(\lambda_{k} \land (\bigvee_{j \in \beta_{k}} \mu_{j}))$$

$$= m(\bigvee_{j \in \beta_{k}} (\lambda_{k} \land \mu_{j}))$$

$$= \sum_{j \in \mathbb{N}} m(\lor V_{kj})$$

$$= m(\lambda_{k} \land (\bigvee_{j \in \mathbb{N}} \mu_{j}))$$

$$= m(\lambda_{k} \land (\bigvee_{j \in \mathbb{N}} \mu_{j}))$$

Proposition 4.9. Let (X, M, m) be a fuzzy probability measure space, and $N_1, N_2 \in F^*(M)$. If $N_1 \approx_m N_2$ then,

$$H(N_1) \le H(N_1 \lor N_2).$$

Proof. Suppose $N_1 \approx_m N_2$, by Proposition 4.8 we have $N_1 \approx_m N_1 \vee N_2$. Now suppose that $\theta \in \overline{N_1 \vee N_2}$ then $\theta = \lambda_i \wedge \mu_j$ where $\lambda_i \in \overline{N_1}$ and $\mu_j \in \overline{N_2}$. So for $\lambda_i \in \overline{N_1}$, $m(\theta) = M(\theta \wedge \lambda_i)$ and therefore we have $N_1 \leq_m N_1 \vee N_2$. Now use Proposition 4.6, (i).

Definition 4.10. Let (X, M, m) be a fuzzy probability measure space and $N \in F^*(M)$. The diameter of N is defined as follows

diam
$$N = \sup_{\lambda_i \in \overline{N}} m(\lambda_i).$$

Definition 4.11. Let (X, M, m) be a fuzzy probability measure space and $N, C \in F^*(M)$, where $\overline{N} = \{\lambda_i : i \in \mathbb{N}\}, \overline{C} = \{\gamma_k : k \in \mathbb{N}\}$. The conditional entropy of

N given C is defined as

$$H(N|C) = -\log \sup_{i \in \mathbb{N}} \frac{\operatorname{diam}(\lambda_i \vee C)}{\operatorname{diam} C}$$
$$= -\log \sup_{j \in \mathbb{N}} \frac{\operatorname{diam}(N \vee \mu_j)}{\operatorname{diam} C}.$$

Proposition 4.12. Let (X, M, m) be a fuzzy probability measure space, and N, C, $D \in F^*(M)$. Then,

(i) $C \leq_m D \Rightarrow H(N|C) \leq H(N \lor D),$ (ii) $H(N|C) \leq H(N \lor C),$ (iii) $N \leq_m C \Rightarrow H(N|D) \leq H(C|D).$

Proof. Suppose that $\overline{N} = \{\lambda_i : i \in \mathbb{N}\}, \overline{C} = \{\mu_j : j \in \mathbb{N}\}\$ and $\overline{D} = \{\gamma_k : k \in \mathbb{N}\}.$ (i) Suppose that $C \leq_m D$, then we have,

$$H(C \lor N) \leq H(D \lor N) \Rightarrow -\log \sup_{i \in \mathbb{N}} m(\lambda_i \land \mu_j) \leq -\log \sup_{i,k \in \mathbb{N}} m(\lambda_i \land \gamma_k)$$

$$\Rightarrow \sup_{i,j \in \mathbb{N}} m(\lambda_i \land \mu_j) \geq \sup_{i,k \in \mathbb{N}} m(\lambda_i \land \gamma_k)$$

$$\Rightarrow \sup_{i,j \in \mathbb{N}} m(\lambda_i \land \mu_j) \geq \sup_{i,k \in \mathbb{N}} m(\lambda_i \land \gamma_k) \text{ diam } C$$

$$\Rightarrow H(N|C) \leq H(N \lor D).$$

Note that $0 < \operatorname{diam} C \leq 1$.

(ii) Obvious.

(iii) Suppose $N \leq_m C$, then we have,

$$H(N \lor D) \leq H(C \lor D) \Rightarrow -\log \sup_{i,k \in \mathbb{N}} m(\lambda_i \land \gamma_k) \leq -\log \sup_{k,j \in \mathbb{N}} m(\gamma_k \land \mu_j)$$

$$\Rightarrow \sup_{k,j \in \mathbb{N}} m(\gamma_k \land \mu_j) \leq \sup_{i,k \in \mathbb{N}} m(\lambda_i \land \gamma_k)$$

$$\Rightarrow \sup_{k,j \in \mathbb{N}} \frac{m(\gamma_k \land \mu_j)}{\operatorname{diam} D} \leq \sup_{i,k \in \mathbb{N}} \frac{m(\lambda_i \land \gamma_k)}{\operatorname{diam} D}$$

$$\Rightarrow -\log \sup_{i,k \in \mathbb{N}} \frac{m(\lambda_i \land \gamma_k)}{\operatorname{diam} D} \leq -\log \sup_{k,j \in \mathbb{N}} \frac{m(\gamma_k \land \mu_j)}{\operatorname{diam} D}$$

$$\Rightarrow H(N|D) \leq H(C|D).$$

Proposition 4.13. Suppose (X, M, m) is a fuzzy probability measure space, and $N_1, N_2, N_3 \in F^*(M)$. Then,

$$H(N_1 \lor N_2 | N_3) = H(N_1 | N_2) + H(N_2 | N_1 \lor N_3).$$

Proof. Suppose that $\overline{N_1} = \{\lambda_i : i \in \mathbb{N}\}, \ \overline{N_2} = \{\mu_j : j \in \mathbb{N}\} \text{ and } \overline{N_3} = \{\gamma_k : k \in \mathbb{N}\}.$ We know that,

$$H(N_1 \vee N_2 | N_3) = -\log \sup_{i,j,k \in \mathbb{N}} \frac{m(\lambda_i \wedge \mu_j \wedge \gamma_k)}{\operatorname{diam} N_3}.$$

But we can write,

$$\frac{m(\lambda_i \wedge \mu_j \wedge \gamma_k)}{\sup_{k \in \mathbb{N}} m(\gamma_k)} = \frac{m(\lambda_i \wedge \mu_j \wedge \gamma_k)}{\sup_{i,k \in \mathbb{N}} m(\lambda_i \wedge \gamma_k)} \frac{\sup_{i,k \in \mathbb{N}} m(\lambda_i \wedge \gamma_k)}{\sup_{k \in \mathbb{N}} m(\gamma_k)},$$

and therefore the proof is obvious.

5. Entropy of a Measure Preserving Transformation

Definition 5.1. Suppose $\varphi : X \to X$ is a fuzzy measure preserving transformation of the fuzzy probability measure space (X, M, m). If $N \in F^*(M)$, we define the entropy of φ with respect to N as

$$h(\varphi, N) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} \varphi^{-i}(N)).$$

We say (X, M, m, φ) is a fuzzy dynamical system. It is of course necessary to establish that the limit above exists, but this is a consequence of subadditivity [1].

Proposition 5.2. Suppose $\varphi : (X, M, m) \to (Y, N, n)$ is a fuzzy measure preserving transformation. Then for each $L \in F^*(N)$ we have

$$H(L) = H(\varphi^{-1}(L)).$$

Proof. Since φ is measure preserving, for all $\mu \in \overline{L}$, we have

$$m(\varphi^{-1}(\mu)) = n(\mu) \Rightarrow H(\varphi^{-1}(L)) = -\log \sup_{\mu \in \overline{L}} m(\varphi^{-1}(\mu))$$
$$= -\log \sup_{\mu \in \overline{L}} n(\mu)$$
$$= H(L).$$

Proposition 5.3. Let (X, M, m, φ) be a fuzzy dynamical system and $N, C \in F^*(M)$. Then,

(i) $N \leq_m C \Rightarrow h(\varphi, N) \leq h(\varphi, C),$ (ii) $h(\varphi, \varphi^{-1}(N)) = h(\varphi, N),$ (iii) $h(\varphi, \bigvee_{i=0}^{r-1} \varphi^{-i}(N)) = h(\varphi, N)$ for every $r \geq 1,$ (iv) if $N_1, N_2 \in F^*(M)$ such that $N_1 \approx_m N_2$ then, $\varphi^{-1}(N_1) \approx_m \varphi^{-1}(N_2).$

Proof. (i) Follows from Proposition 4.3 and Proposition 4.6, (i).(ii) Obvious.

(iii)

$$\begin{split} h(\varphi,\bigvee_{i=1}^{\infty}\varphi^{-i}(N)) &= \lim_{n\to\infty}\frac{1}{n}H(\bigvee_{j=0}^{n-1}\varphi^{-j}(\bigvee_{i=0}^{r-1}\varphi^{-i}(N)))\\ &= \lim_{n\to\infty}\frac{1}{n}H(\bigvee_{i=0}^{r+n-2}\varphi^{-i}(N))\\ &= \lim_{n\to\infty}(\frac{r+n-2}{n})(\frac{1}{r+n-2})H(\bigvee_{i=0}^{r+n-2}\varphi^{-i}(N))\\ &= h(\varphi,\varphi(N)). \end{split}$$

(iv) Let $\varphi^{-1}(\mu) \in \overline{\varphi^{-1}(N_2)}$ such that $\mu \in \overline{N_2}$. Then,

$$m(\varphi^{-1}(\mu) \land (\bigvee \{\varphi^{-1}(\lambda) : \lambda \in \overline{N_1}\})) = m(\varphi^{-1}(\mu \land (\bigvee \{\lambda : \lambda \in \overline{N_1}\}))$$
$$= n(\mu \land (\bigvee \{\lambda : \lambda \in \overline{N_1}\}))$$
$$= n(\mu)$$
$$= m(\varphi^{-1}(\mu)).$$

The proof of

$$m(\varphi^{-1}(\lambda) \wedge (\bigvee \{\varphi^{-1}(\mu) : \mu \in \overline{N_2}\})) = m(\varphi^{-1}(\lambda)),$$

where $\varphi^{-1}(\lambda) \in \overline{\varphi^{-1}(N_1)}$ is similar.

6. Entropy and *m*-Isomorphic Dynamical Systems

Definition 6.1. Let (X, M, m, φ) be a fuzzy dynamical system and $L \in F^*(M)$. Suppose [L] denotes the *m*-equivalence class induced by *L*. Then the entropy

Ebrahimi and Mohamadi

 $h(\varphi, [L])$ of φ on L is defined as

$$h(\varphi, [L]) = \sup_{N \in [L]} h(\varphi, N).$$

Definition 6.2. A fuzzy dynamical system $\phi_1 = (X_1, M_1, m_1, \varphi_1)$ is a factor of fuzzy dynamical system $\phi_2 = (X_2, M_2, m_2, \varphi_2)$ if there exists an onto fuzzy measure preserving transformation (called homomorphism) $\psi : \phi_2 \to \phi_1$ such that,

$$\psi \circ \varphi_2 = \varphi_1 \circ \psi_2$$

and for each $\mu \in \overline{M_1}$,

$$m_1(\mu) = m_2(\psi^{-1}(\mu))$$

Proposition 6.3. Let $\phi_1 = (X_1, M_1, m_1, \varphi_1)$ be a factor of fuzzy dynamical system $\phi_2 = (X_2, M_2, m_2, \varphi_2)$, then for each $L \in F^*(M_1)$,

$$h(\phi_1, [L]) \le h(\phi_2, [\psi^{-1}(L)]),$$

where $\psi: \phi_2 \to \phi_1$ is the corresponding homomorphism.

Proof. Suppose that $N \in [L]$. Then by Proposition 5.4, $H(N) = H(\psi^{-1}(N))$. Now,

$$h(\phi_{1}, N) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} \phi_{1}^{-i}(N))$$

$$= \lim_{n \to \infty} \frac{1}{n} H(\psi^{-1}(\bigvee_{i=0}^{n-1} \phi_{1}^{-i}(N)))$$

$$= \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} \psi^{-1} \phi_{1}^{-i}(N))$$

$$= \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{i=0}^{n-1} \phi_{2}^{-i} \psi^{-1}(N))$$

$$= h(\phi_{2}, \psi^{-1}(N)).$$

As N ranges over an *m*-equivalence class [L] in $F^*(M_1)$, $\psi^{-1}(N)$ ranges over a subset of the *m*-equivalence class $[\psi^{-1}(L)]$ in $F^*(M_2)$. \Box

Definition 6.4. Two dynamical systems $\phi_1 = (X_1, M_1, m_1, \varphi_1)$ and $\phi_2 = (X_2, M_2, m_2, \varphi_2)$ are said to be *m*-isomorphic if there exists an invertible fuzzy measure preserving transformation $\psi : \phi_1 \to \phi_2$ (i.e both ψ and ψ^{-1} are fuzzy measure preserving transformations) such that,

The mapping ψ is called *m*-isomorphism.

Proposition 6.5. Suppose $\phi_1 = (X_1, M_1, m_1, \varphi_1)$ and $\phi_2 = (X_2, M_2, m_2, \varphi_2)$ are *m*-isomorphic dynamical systems and φ_1 is an ergodic fuzzy transformation. Then φ_2 is also ergodic.

Proof. Let $\mu \in \overline{M_2}$; $\varphi_2^{-1}(\mu) = \mu$. By definition there exists an invertible fuzzy measure preserving transformation ψ of ϕ_1 onto ϕ_2 such that,

$$\psi \circ \varphi_1 = \varphi_2 \circ \psi.$$

But $\psi^{-1}(\mu) = \gamma \in \overline{M_1}$, and,

$$\varphi_2^{-1}(\mu) = \varphi_2^{-1}(\psi(\gamma))$$
$$= \psi \circ \varphi_1^{-1}(\mu)$$
$$= \psi(\gamma).$$

So we have

.

$$\varphi_1^{-1}(\gamma) = \gamma \Rightarrow m_1(\gamma) = 0 \text{ or } 1$$

 $\Rightarrow m_1(\psi^{-1}(\mu)) = 0 \text{ or } 1$
 $\Rightarrow m_2(\mu) = 0 \text{ or } 1.$

Proposition 6.6. Let $\phi_1 = (X_1, M_1, m_1, \varphi_1)$ and $\phi_2 = (X_2, M_2, m_2, \varphi_2)$ be misomorphic dynamical systems and φ_1 be weak mixing. Then φ_2 is also a weak mixing.

Proof. Since φ_1 is weak mixing then we have that for any $\mu, \lambda \in \overline{M_1}$,

$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} |m_1(\varphi_1^{-n}(\mu) \wedge \lambda) - m_1(\mu)m_2(\lambda)| = 0.$$

We prove that for any $\eta, \nu \in \overline{M_2}$ we have

$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} |m_1(\varphi_1^{-n}(\eta) \wedge \nu) - m_1(\eta)m_2(\nu)| = 0.$$

Since ϕ_1 and ϕ_2 are *m*-isomorphic, there is an invertible fuzzy measure preserving transformation ψ such that $\psi \circ \varphi_1 = \varphi_2 \circ \psi$ we have

$$\psi^{-1} \circ \varphi_2^{-n} = \varphi_1^{-n} \circ \psi^{-1}.$$

Since ψ is surjective and measure preserving, $\psi^{-1}(\eta) \in \overline{M_1}$, $\psi^{-1}(\nu) \in \overline{M_1}$. Suppose that $\psi^{-1}(\eta) = \mu$, $\psi^{-1}(\nu) = \lambda$, then,

$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} |m_1(\varphi_1^{-n}(\mu) \wedge \lambda) - m_1(\mu)m_1(\lambda)|$$

=
$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} |m_1(\psi^{-1}((\varphi_2^{-n}(\eta) \wedge \nu) - m_1(\psi^{-1}(\eta))m_1(\psi^{-1}(\nu)))|$$

=
$$\lim_{k \to \infty} \frac{1}{k} \sum_{n=0}^{k-1} |m_2(\varphi_2^{-n}(\eta) \wedge \nu) - m_2(\eta)m_2(\nu)|$$

= 0.

Proposition 6.7. Let ϕ_1 and ϕ_2 be m-isomorphic dynamical systems. Then for each $L \in F^*(M)$,

$$h(\varphi_1, [L]) = h(\varphi_2, [\psi^{-1}(L)]),$$

where $\psi: \phi_1 \to \phi_2$ is the corresponding m-isomorphism. In the other words $h(\varphi, [L])$ is m-isomorphism invariant.

Proof. Follows from Proposition 6.4.

7. Entropy and *m*-Generators of Fuzzy Dynamical Systems

Definition 7.1. The entropy of the fuzzy dynamical system (X, M, m, φ) is the number $h(\varphi)$ defined by:

$$h(\varphi) = \sup_{\xi} h(\varphi, \xi),$$

where the supremum is taken over all sub- σ -algebras of M where $\xi \in F^*(M)$.

Definition 7.2. $\xi \in F^*(M)$ is said to be a fuzzy *m*-generator of the fuzzy dynamical system (X, M, m, φ) if there exists an integer r > 0 such that,

$$\eta \leq_m \bigvee_{i=0}^r \varphi^{-i} \xi,$$

for each $\eta \in F^*(M)$.

Proposition 7.3. If ξ is a m-generator of the fuzzy dynamical system (X, M, m, φ) then,

$$h(\varphi,\eta) \le h(\varphi,\xi),$$

for each $\eta \in F^*(M)$.

Proof. Let $\eta \in F^*(M)$ be any arbitrary sub- σ -algebra of M. Since ξ , is an *m*-generator, $\eta \leq_m \bigvee_{i=0}^r \varphi^{-i}\xi$ from Proposition 5.3, (iii),

$$h(\varphi,\eta) \le h(\varphi,\bigvee_{i=0}^r \varphi^{-i}\xi) = h(\varphi,\xi).$$

Now we can deduce the following version of Kolmogorov-Sinai proposition.

Proposition 7.4. If ξ is an m-generator of fuzzy dynamical system (X, M, m, φ) then,

$$h(\varphi) = h(\varphi, \xi)$$

Proof. Obvious.

8. Concluding Remarks and Open Problems

In this paper we investigate the ergodic properties of fuzzy dynamical systems using the concept of atoms in a fuzzy σ -algebra. In this respect we introduce the *m*generators of fuzzy dynamical systems. We have to consider a slight modification of some previously defined notions. A fuzzy version of Kolmogorov-Sinai proposition concerning the entropy of fuzzy dynamical system is given. This proposition enables us to compute the entropy for a class of fuzzy systems.

An interesting open problem is to establish a proposition on existence of m-generators having finite entropy.

References

- D. Dumitrescu, C. Hăloiu and A. Dumitrescu, Generators of fuzzy dynamical systems, *Fuzzy Sets and Systems* 113 (2000), 447–452.
- [2] D. Dumitrescu, Entropy of a fuzzy dynamical system, Fuzzy Sets and Systems 70 (1995), 45–57.
- [3] D. Dumitrescu, Entropy of a fuzzy process, Fuzzy Sets and Systems 55 (1993), 169–177.
- [4] M. Ebrahimi, Generators of probability dynamical systems, Differential Geometry-Dynamical Systems 8 (2006), 90–97.
- [5] M. Ebrahimi and N. Mohamadi, The entropy function on an algebraic structure with infinite partition and *m*-preserving transformation generators, *Applied Sciences* 12 (2010), 48–63.
- [6] A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphism, Doklady of Russian Academy of Sciences 124 (1959), 754–755.

- [7] P. Serivastava, M. Khare and Y. K. Srivastava, A fuzzy measure algebra on a metric space, Fuzzy Sets and Systems 79 (1996), 395–400.
- [8] P. Serivastava, M. Khare and Y. K. Srivastava, m-Equivalence, entropy and F-dynamical systems, Fuzzy Sets and Systems 121 (2001), 275–283.
- [9] Ya. Sinai, On the notion of entropy of a dynamical system, Doklady of Russian Academy of Sciences 124 (1959), 768–771.
- [10] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.