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Özet. Bu makalede, sonlu atomlu bir alt-σ-cebirine göre bulanık ölçüm koruyan dönüşü-
mün entropisinin afin olduğunu ispatlıyor, daha sonra bir sonlu alt-σ-cebirinin entropisini
hesaplama yöntemini sayılabilir çoklukta atomlu alt-σ-cebirine uygulanacak şekille genel-
leştiriyor, ve bulanık olasılık dinamik sistemlerin ergodik özelliklerini araştırıyoruz. Son
olarak, bu kavram kullanılarak Kolmogorov-Sinai önermesinin [6, 9, 10] bir çeşidi veriliyor.†

Anahtar Kelimeler. Bulanık olasılık uzayı, entropi, bulanık dinamik sistemler, m-
denklik, m-saflaştırma, bulanık m-üreteç.

Abstract. In this paper we prove that the entropy of a fuzzy measure preserving trans-
formation with respect to a sub-σ-algebra having finite atoms is affine and then we extend
the method of computing the entropy of a finite sub-σ-algebra to a sub-σ-algebra having
countable atoms, and we investigate the ergodic properties of fuzzy probability dynamical
systems. At the end by using this notion, a version of Kolmogorov-Sinai proposition [6, 9,
10] is given.

Keywords. Fuzzy probability space, entropy, fuzzy dynamical systems, m-equivalence,
m-refinement, fuzzy m-generator.

1. Introduction and Preliminaries

The main idea of fuzzy entropy is the substitution of partitions by fuzzy partitions.

In some previous papers [1, 2, 3] entropy of a fuzzy dynamical system has been

defined. Also the notions of m-refinements and m-equivalence have been defined

in [8]. In this paper we give a definition for the entropy of a sub-σ-algebra with

countable atoms.
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2. Fuzzy Dynamical Systems

We recall that a fuzzy set in a nonempty set X is an element of the family IX of all

functions from X to closed unit interval I = [0, 1]. A sequence {λi} of fuzzy sets in

X increase to λ ∈ IX (written as λi ↑ λ) if {λi(x)}∞i=1 is monotonic increasing and

converges to λ(x) for each x in X. A fuzzy σ-algebra M on a non-empty set X is a

subset of IX which satisfies the following conditions:

(i) 1 ∈M ,

(ii) λ ∈M ⇒ 1− λ ∈M ,

(iii) if {λi}∞i=1 is a sequence in M then
∞∨
i=1

λi = supi λi ∈M .

If N1 and N2 are fuzzy σ-algebras on X then N1∨N2 is the smallest fuzzy σ-algebra

that contains N1 ∪ N2, denoted by [N1 ∪ N2]. A fuzzy probability measure m over

M is a function m : M → I which fulfills the conditions:

(i) m(1) = 1,

(ii) m(1− λ) = 1−m(λ),

(iii) m(λ ∨ µ) +m(λ ∧ µ) = m(λ) +m(µ) for each λ, µ ∈M ,

(iv) for each sequence {λi}∞i=1 in M such that λi ↑ λ, m(λ) = supim(λi).

The triple (X,M,m) is called a fuzzy probability measure space and the elements

of M are called fuzzy measurable sets [8].

Definition 2.1. Let (X,M,m) be a fuzzy probability measure space, the elements

µ, λ of M are called m-disjoint if m(λ ∧ µ) = 0.

A relation ‘= (modm)’ on M is defined as follows;

λ = µ (mod m) iff m(λ) = m(µ) = m(λ ∧ µ), λ, µ ∈M.

Relation ‘= (modm)’ is an equivalence relation. M̃ denotes the set of all equivalence

classes induced by this relation, and µ̃ is the equivalence class determined by µ. For

λ, µ ∈M , λ∧ µ = 0 (modm) iff λ, µ are m-disjoint. We shall identify µ̃ with µ [8].

Definition 2.2. Let (X,M,m) be a fuzzy probability measure space, and N be a

fuzzy sub-σ-algebra of M . Then an element µ̃ ∈ Ñ is an atom of N if

(i) m(µ) > 0,

(ii) for each λ̃ ∈ Ñ such that m(λ ∧ µ) = m(λ) 6= m(µ) then m(λ) = 0, [8].
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Proposition 2.3. Let (X,M,m) be a fuzzy probability measure space, and N be a

fuzzy sub-σ-algebra of M . If µ̃1, µ̃2 are disjoint atoms of N then they are m-disjoint.

Proof. See [8]. 2

The set of all atoms of N is denoted by N . We define F (M) as below

F (M) = {N : N is a sub-σ-algebra of M with finite atoms}.

Definition 2.4. Suppose (X,M,m) and (Y,N, n) are fuzzy probability measure

spaces. A transformation ϕ : (X,M,m) → (Y,N, n) is said to be a fuzzy measure

preserving if

(i) ϕ−1(µ) ∈M for every µ ∈ N ,

(ii) m(ϕ−1(µ)) = n(µ) for all µ ∈ N .

Definition 2.5. A fuzzy dynamical system is denoted by (X,M,m,ϕ) where

(X,M,m) is a fuzzy probability measure space and ϕ is a fuzzy measure preserving

transformation.

Definition 2.6. The entropy of N ∈ F (M) is given by

H(N,m) = −
∑
µ∈N

m(µ)logm(µ),

and the mean entropy of ϕ on N of the fuzzy dynamical system (X,M,m,ϕ) is

defined by

h(N,M,ϕ) = lim
n→∞

1

n
H(

n−1∨
i=1

ϕ−i(N),m).

Note that ϕ−i(N) = {ϕ−i(µ) : µ ∈ N} is an element of F (M) and
∨n−1
i=1 ϕ

−i(N) is

the smallest fuzzy σ-algebra containing
⋃n−1
i=0 ϕ

−i(N), and the above limit exists [8].

Proposition 2.7. The mean entropy of ϕ on N of the fuzzy dynamical system

(X,M,m,ϕ) is affine, i.e,

h(N, λm1 + (1− λ)m2, ϕ) = λh(N,m1, ϕ) + (1− λ)h(N,m2, ϕ),

for each pair m1 and m2 of fuzzy probability measures, N ∈ F (M) and λ ∈ [0, 1].

Proof. If m1 and m2 are two fuzzy probability measures and λ ∈ [0, 1] then

H(N, λm1 + (1− λ)m2) ≥ λH(N,m1) + (1− λ)H(N,m2). (1)
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The ‘concavity’ inequality (1) is a direct consequence of the definition of H(N,m)

and the ‘concavity’ of the function x→ −xlog x. Conversely, one has inequalities

− log(λm1(µi) + (1− λ)m2(µi)) ≤ − log λ− log(m1(µi)),

and

− log(λm1(µi) + (1− λ)m2(µi)) ≤ − log(1− λ)− log(m2(µi)),

since x→ − log x is decreasing. Therefore one obtains the ‘convexity’ bound

H(N, λm1 + (1− λ)m2) ≤ λH(N,m1)

+ (1− λ)H(N,m2)− λ log λ− (1− λ) log (1− λ). (2)

Now replacing N by
∨n−1
i=0 ϕ

−i(N) in (1), dividing by n and taking the limn→∞ gives

h(N, λm1 + (1− λ)m2, ϕ) ≥ λh(N,m1, ϕ) + (1− λ)h(N,m2, ϕ).

Similarly from (2), since

−(λ log λ+ (1− λ) log (1− λ))

n
→ 0 as n→∞,

one deduces the converse inequality

h(N, λm1 + (1− λ)m2, ϕ) ≤ λh(N,m1, ϕ) + (1− λ)h(N,m2, ϕ).

Hence one concludes the map m→ h(N,m,ϕ) is affine. This is a somewhat surpris-

ing and is of great significance in the application of fuzzy mean entropy. 2

3. Ergodic Measures and Weak-Mixing

Definition 3.1. Given a fuzzy probability space (X,M,m), a fuzzy measure pre-

serving transformation ϕ : X → X is called ergodic if for every atom γ ∈ M with

ϕ−1(γ) = γ we have that either m(γ) = 0 or m(γ) = 1. Alternatively we say that

m is ϕ-ergodic.

Proposition 3.2. Let Σ denote the set of fuzzy invariant probability measures on

X. m ∈ Σ is ergodic if whenever there exists m1, m2 ∈ Σ and 0 < λ < 1 with

m = λm1 + (1− λ)m2 then m1 = m2.

Proof. Ifm is not ergodic then we can find γ ∈M with ϕ−1(γ) = γ and 0 < m(γ) < 1

but for every atom µ ∈M we can write

µ = (µ ∧ γ) ∨ (µ ∧ (1− γ)).
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Therefore

m(µ) = m((µ ∧ γ) ∨ (µ ∧ (1− γ)))

= m(γ)

(
m(µ ∧ γ)

m(γ)

)
+m(1− γ)

(
m(µ ∧ (1− γ))

m(1− γ)

)
= λm1(µ) + (1− λ)m2,

where λ = m(γ) and m1(µ) = m(µ ∧ γ)/m(γ), m2(µ) = m(µ ∧ (1 − γ))/m(1 − γ)

this shows that m = λm1 + (1− λ)m2(µ). 2

Definition 3.3. Let (X,M,m,ϕ) be a fuzzy dynamical system, we say that ϕ is

weak-mixing if for any µ, λ ∈M we have that,

1

k

k−1∑
n=0

|m(ϕ−n(µ) ∧ λ)−m(µ)m(λ)| → 0 as k →∞.

Proposition 3.4. If a transformation ϕ : X → X on a fuzzy probability measure

space (X,M,m) is weak-mixing then it is necessarily ergodic.

Proof. If ϕ is weak-mixing then by definition we have that for any µ, λ ∈M ,

1

k

k−1∑
n=0

|m(ϕ−n(µ) ∧ λ)−m(µ)m(λ)| → 0 as k →∞.

By the triangle inequality we have that,∣∣∣∣∣1k
k−1∑
n=0

m(ϕ−n(µ) ∧ λ)−m(µ)m(λ)

∣∣∣∣∣ ≤ 1

k

k−1∑
n=0

|m(ϕ−n(µ) ∧ λ)−m(µ)m(λ)| → 0.

If we assume (for a contradiction) that ϕ was not ergodic then there would exist a

ϕ-invariant atom γ ∈M with ϕ−1(γ) = γ with 0 < m(γ) < 1. If we take µ = γ and

λ = 1− γ then since m(ϕ−n(γ)∧ (1− γ)) = m(γ ∧ (1− γ)), for all n ≥ 0, we deduce

that m(γ)m(1− γ) = 0 giving the required contradiction. Thus ϕ is ergodic. 2

4. Entropy of a Sub-σ-Algebra with Countable Atoms

In this section we introduce the notion of entropy of a sub-σ-algebra with countable

atoms. We introduce F ∗(M) as below,

F ∗(M) = {N : N is a sub-σ-algebra of M with countable atoms}.

Assume that M is a σ-algebra and N1, N2 ∈ F ∗(M), and {λi : i ∈ N} and

{µj : j ∈ N} denote the atoms of N1 and N2 respectively, then the atoms of N1∨N2
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are λi ∧ µj which m(λi ∧ µj) > 0 for each i, j ∈ N. If γ ∈M we set

N1 ∨ γ = {λi ∧ γ : m(λi ∧ γ) > 0, i ∈ N}.

Proposition 4.1. Let {λi : i ∈ N} be an m-disjoint collection of fuzzy measurable

sets of fuzzy probability measure space (X,M,m), then,

m

(
∞∨
i=1

(λi)

)
=
∞∑
i=1

m(λi).

Proof. See [8]. 2

Definition 4.2. Let (X,M,m) be a fuzzy probability measure space and N1, N2 ∈
F ∗(M). We say that N2 is an m-refinement of N1, denoted by N1 ≤m N2, if for each

µ ∈ N2 there exists λ ∈ N1 such that m(λ ∧ µ) = m(µ).

Proposition 4.3. Let (X,M,m) be a fuzzy probability measure space and N1, N2,

N3 ∈ F ∗(M). If N1 ≤m N2 then,

N1 ∨N3 ≤m N2 ∨N3.

Proof. See [8]. 2

Definition 4.4. Let (X,M,m) be a fuzzy probability space, and N be a sub-σ-

algebra of M for which N ∈ F ∗(M). The entropy of N is defined as

H(N) = − log sup
i∈N

m(µi),

where {µi : i ∈ N} are atoms of N .

Definition 4.5. Let (X,M,m) be a fuzzy probability measure space and N ∈
F ∗(M). The conditional entropy of N given γ ∈M is defined by

H(N |γ) = − log sup
i∈N

m(µi|γ),

where,

m(µi|γ) =
m(µi ∧ γ)

m(γ)
(m(γ) 6= 0).

Proposition 4.6. Let (X,M,m) be a fuzzy probability measure space, and N1, N2 ∈
F ∗(M) for which N1 = {λi : i ∈ N} and N2 = {µj : j ∈ N}. Then,

(i) N1 ≤m N2 ⇒ H(N1) ≤ H(N2),

(ii) N1 ≤m N2 ⇒ H(N1|γ) ≤ H(N2|γ).
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Proof. (i) Suppose N1 ≤m N2, and then for each µj ∈ N2 there exists λij ∈ N1 such

that, m(µj ∧ λij) = m(µj) but λij ∧ µj ≤ λij . Then,

m(λij ∧ µj) ≤ m(λij)⇒ m(µj) ≤ m(λij)⇒ m(µj) ≤ sup
λij∈N1

m(λij).

Since µj is arbitrary we have: supj∈Nm(µj) ≤ supi∈Nm(λi) and then we have

H(N1) ≤ H(N2) since f(x) = − log x is a decreasing function.

(ii) Supppose N1 ≤m N2, by Proposition 4.3 we have, N1 ∨ γ ≤m N2 ∨ γ, and by (i)

we conclude that

H(N1 ∨ γ) ≤ H(N2 ∨ γ)⇒ − log sup
i∈N

m(λi ∧ γ) ≤ − log sup
j∈N

m(µj ∧ γ)

⇒ sup
j∈N

m(µj ∧ γ) ≤ sup
i∈N

m(λi ∧ γ)

⇒ sup
j∈N

m(µj ∧ γ)

m(γ)
≤ sup

i∈N

m(λi ∧ γ)

m(γ)

⇒ − log sup
i∈N

m(λi ∧ γ)

m(γ)
≤ − log sup

j∈N

m(µj ∧ γ)

m(γ)

⇒ H(N1|γ) ≤ H(N2|γ).

2

Definition 4.7. Let (X,M,m) be a fuzzy probability measure space and N1, N2 ∈
F ∗(M). We say that N1 and N2 are m-equivalent, denoted by N1 ≈m N2, if

(i) for each µ ∈ N2, m(µ ∧ (
∨
{λ : λ ∈ N1})) = m(µ),

(ii) for each λ ∈ N1, m(λ ∧ (
∨
{µ : µ ∈ N2})) = m(λ).

Proposition 4.8. Let (X,M,m) be a fuzzy probability measure space, and N1, N2 ∈
F ∗(M). Then,

N1 ≈m N2 ⇒ N1 ≈m N1 ∨N2.

Proof. Assume that, N1 = {λi : i ∈ N}, N2 = {µj : j ∈ N}. We know that

N1 ∨N2 = {λi ∧ µj : λi ∈ N1, µj ∈ N2,m(λi ∧ µj) > 0}.

If α = {(i, j) : Vij = λi ∧ µj ∈ N1 ∨N2} then α =
⋃
i∈N {(i, j) : j ∈ βi} where βi =

{j : m(Vij) > 0} and i ∈ N. Note that if j /∈ βi then m(Vij) = 0 we have∨
i,j∈N

Vij =
∨
i∈N

(
∨
j∈βi

Vij) =
∨
i∈N

(λi ∧ (
∨
j∈βi

µj)).
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Since the collections of {λi : i ∈ N} and {µj : j ∈ N} are m-disjoint, we have,

m(λk ∧ (
∨
i,j∈N

Vij)) = m(λk ∧ (
∨
i∈N

λi ∧ (
∨
j∈βi

µj)))

= m(λk ∧ (
∨
j∈βi

µj))

= m(λk ∧ (
∨
j∈βk

µj))

= m(
∨
j∈βk

(λk ∧ µj))

=
∑
j∈βk

m(∨Vkj)

=
∑
j∈N

m(∨Vkj)

= m(λk ∧ (
∨
j∈N

µj))

= m(λk).

2

Proposition 4.9. Let (X,M,m) be a fuzzy probability measure space, and N1, N2 ∈
F ∗(M). If N1 ≈m N2 then,

H(N1) ≤ H(N1 ∨N2).

Proof. Suppose N1 ≈m N2, by Proposition 4.8 we have N1 ≈m N1∨N2. Now suppose

that θ ∈ N1 ∨N2 then θ = λi ∧ µj where λi ∈ N1 and µj ∈ N2. So for λi ∈ N1,

m(θ) = M(θ ∧ λi) and therefore we have N1 ≤m N1 ∨N2. Now use Proposition 4.6,

(i). 2

Definition 4.10. Let (X,M,m) be a fuzzy probability measure space and N ∈
F ∗(M). The diameter of N is defined as follows

diamN = sup
λi∈N

m(λi).

Definition 4.11. Let (X,M,m) be a fuzzy probability measure space and N, C ∈
F ∗(M), where N = {λi : i ∈ N}, C = {γk : k ∈ N}. The conditional entropy of
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N given C is defined as

H(N |C) = − log sup
i∈N

diam(λi ∨ C)

diamC

= − log sup
j∈N

diam(N ∨ µj)
diamC

.

Proposition 4.12. Let (X,M,m) be a fuzzy probability measure space, and N , C,

D ∈ F ∗(M). Then,

(i) C ≤m D ⇒ H(N |C) ≤ H(N ∨D),

(ii) H(N |C) ≤ H(N ∨ C),

(iii) N ≤m C ⇒ H(N |D) ≤ H(C|D).

Proof. Suppose that N = {λi : i ∈ N}, C = {µj : j ∈ N} and D = {γk : k ∈ N}.

(i) Suppose that C ≤m D, then we have,

H(C ∨N) ≤ H(D ∨N)⇒ − log sup
i∈N

m(λi ∧ µj) ≤ − log sup
i,k∈N

m(λi ∧ γk)

⇒ sup
i,j∈N

m(λi ∧ µj) ≥ sup
i,k∈N

m(λi ∧ γk)

⇒ sup
i,j∈N

m(λi ∧ µj) ≥ sup
i,k∈N

m(λi ∧ γk) diamC

⇒ H(N |C) ≤ H(N ∨D).

Note that 0 < diamC ≤ 1.

(ii) Obvious.

(iii) Suppose N ≤m C, then we have,

H(N ∨D) ≤ H(C ∨D)⇒ − log sup
i,k∈N

m(λi ∧ γk) ≤ − log sup
k,j∈N

m(γk ∧ µj)

⇒ sup
k,j∈N

m(γk ∧ µj) ≤ sup
i,k∈N

m(λi ∧ γk)

⇒ sup
k,j∈N

m(γk ∧ µj)
diamD

≤ sup
i,k∈N

m(λi ∧ γk)
diamD

⇒ − log sup
i,k∈N

m(λi ∧ γk)
diamD

≤ − log sup
k,j∈N

m(γk ∧ µj)
diamD

⇒ H(N |D) ≤ H(C|D).

2
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Proposition 4.13. Suppose (X,M,m) is a fuzzy probability measure space, and

N1, N2, N3 ∈ F ∗(M). Then,

H(N1 ∨N2|N3) = H(N1|N2) +H(N2|N1 ∨N3).

Proof. Suppose that N1 = {λi : i ∈ N}, N2 = {µj : j ∈ N} and N3 = {γk : k ∈ N}.
We know that,

H(N1 ∨N2|N3) = − log sup
i,j,k∈N

m(λi ∧ µj ∧ γk)
diamN3

.

But we can write,

m(λi ∧ µj ∧ γk)
supk∈Nm(γk)

=
m(λi ∧ µj ∧ γk)

supi,k∈Nm(λi ∧ γk)
supi,k∈Nm(λi ∧ γk)

supk∈Nm(γk)
,

and therefore the proof is obvious. 2

5. Entropy of a Measure Preserving Transformation

Definition 5.1. Suppose ϕ : X → X is a fuzzy measure preserving transformation

of the fuzzy probability measure space (X,M,m). If N ∈ F ∗(M), we define the

entropy of ϕ with respect to N as

h(ϕ,N) = lim
n→∞

1

n
H(

n−1∨
i=0

ϕ−i(N)).

We say (X,M,m,ϕ) is a fuzzy dynamical system. It is of course necessary to

establish that the limit above exists, but this is a consequence of subadditivity [1].

Proposition 5.2. Suppose ϕ : (X,M,m)→ (Y,N, n) is a fuzzy measure preserving

transformation. Then for each L ∈ F ∗(N) we have

H(L) = H(ϕ−1(L)).

Proof. Since ϕ is measure preserving, for all µ ∈ L, we have

m(ϕ−1(µ)) = n(µ)⇒ H(ϕ−1(L)) = − log sup
µ∈L

m(ϕ−1(µ))

= − log sup
µ∈L

n(µ)

= H(L).

2
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Proposition 5.3. Let (X,M,m,ϕ) be a fuzzy dynamical system and N, C ∈
F ∗(M). Then,

(i) N ≤m C ⇒ h(ϕ,N) ≤ h(ϕ,C),

(ii) h(ϕ, ϕ−1(N)) = h(ϕ,N),

(iii) h(ϕ,
∨r−1
i=0 ϕ

−i(N)) = h(ϕ,N) for every r ≥ 1,

(iv) if N1, N2 ∈ F ∗(M) such that N1 ≈m N2 then,

ϕ−1(N1) ≈m ϕ−1(N2).

Proof. (i) Follows from Proposition 4.3 and Proposition 4.6, (i).

(ii) Obvious.

(iii)

h(ϕ,
∞∨
i=1

ϕ−i(N)) = lim
n→∞

1

n
H(

n−1∨
j=0

ϕ−j(
r−1∨
i=0

ϕ−i(N)))

= lim
n→∞

1

n
H(

r+n−2∨
i=0

ϕ−i(N))

= lim
n→∞

(
r + n− 2

n
)(

1

r + n− 2
)H(

r+n−2∨
i=0

ϕ−i(N))

= h(ϕ, ϕ(N)).

(iv) Let ϕ−1(µ) ∈ ϕ−1(N2) such that µ ∈ N2. Then,

m(ϕ−1(µ) ∧ (
∨
{ϕ−1(λ) : λ ∈ N1})) = m(ϕ−1(µ ∧ (

∨
{λ : λ ∈ N1})

= n(µ ∧ (
∨
{λ : λ ∈ N1}))

= n(µ)

= m(ϕ−1(µ)).

The proof of

m(ϕ−1(λ) ∧ (
∨
{ϕ−1(µ) : µ ∈ N2})) = m(ϕ−1(λ)),

where ϕ−1(λ) ∈ ϕ−1(N1) is similar. 2

6. Entropy and m-Isomorphic Dynamical Systems

Definition 6.1. Let (X,M,m,ϕ) be a fuzzy dynamical system and L ∈ F ∗(M).

Suppose [L] denotes the m-equivalence class induced by L. Then the entropy
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h(ϕ, [L]) of ϕ on L is defined as

h(ϕ, [L]) = sup
N∈[L]

h(ϕ,N).

Definition 6.2. A fuzzy dynamical system φ1 = (X1,M1,m1, ϕ1) is a factor of

fuzzy dynamical system φ2 = (X2,M2,m2, ϕ2) if there exists an onto fuzzy measure

preserving transformation (called homomorphism) ψ : φ2 → φ1 such that,

ψ ◦ ϕ2 = ϕ1 ◦ ψ,

and for each µ ∈M1,

m1(µ) = m2(ψ
−1(µ)).

Proposition 6.3. Let φ1 = (X1,M1,m1, ϕ1) be a factor of fuzzy dynamical system

φ2 = (X2,M2,m2, ϕ2), then for each L ∈ F ∗(M1),

h(φ1, [L]) ≤ h(φ2, [ψ
−1(L)]),

where ψ : φ2 → φ1 is the corresponding homomorphism.

Proof. Suppose that N ∈ [L]. Then by Proposition 5.4, H(N) = H(ψ−1(N)). Now,

h(φ1, N) = lim
n→∞

1

n
H(

n−1∨
i=0

φ−i1 (N))

= lim
n→∞

1

n
H(ψ−1(

n−1∨
i=0

φ−i1 (N)))

= lim
n→∞

1

n
H(

n−1∨
i=0

ψ−1φ−i1 (N))

= lim
n→∞

1

n
H(

n−1∨
i=0

φ−i2 ψ
−1(N))

= h(φ2, ψ
−1(N)).

As N ranges over an m-equivalence class [L] in F ∗(M1), ψ
−1(N) ranges over a subset

of the m-equivalence class [ψ−1(L)] in F ∗(M2). 2

Definition 6.4. Two dynamical systems φ1 = (X1,M1,m1, ϕ1) and

φ2 = (X2,M2,m2, ϕ2) are said to be m-isomorphic if there exists an invertible fuzzy

measure preserving transformation ψ : φ1 → φ2 (i.e both ψ and ψ−1 are fuzzy

measure preserving transformations) such that,

ψ ◦ ϕ1 = ϕ2 ◦ ψ.
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The mapping ψ is called m-isomorphism.

Proposition 6.5. Suppose φ1 = (X1,M1,m1, ϕ1) and φ2 = (X2,M2,m2, ϕ2) are

m-isomorphic dynamical systems and ϕ1 is an ergodic fuzzy transformation. Then

ϕ2 is also ergodic.

Proof. Let µ ∈ M2; ϕ2
−1(µ) = µ. By definition there exists an invertible fuzzy

measure preserving transformation ψ of φ1 onto φ2 such that,

ψ ◦ ϕ1 = ϕ2 ◦ ψ.

But ψ−1(µ) = γ ∈M1, and,

ϕ2
−1(µ) = ϕ2

−1(ψ(γ))

= ψ ◦ ϕ1
−1(µ)

= ψ(γ).

So we have

ϕ1
−1(γ) = γ ⇒ m1(γ) = 0 or 1

⇒ m1(ψ
−1(µ)) = 0 or 1

⇒ m2(µ) = 0 or 1.

. 2

Proposition 6.6. Let φ1 = (X1,M1,m1, ϕ1) and φ2 = (X2,M2,m2, ϕ2) be m-

isomorphic dynamical systems and ϕ1 be weak mixing. Then ϕ2 is also a weak

mixing.

Proof. Since ϕ1 is weak mixing then we have that for any µ, λ ∈M1,

lim
k→∞

1

k

k−1∑
n=0

|m1(ϕ1
−n(µ) ∧ λ)−m1(µ)m2(λ)| = 0.

We prove that for any η, ν ∈M2 we have

lim
k→∞

1

k

k−1∑
n=0

|m1(ϕ1
−n(η) ∧ ν)−m1(η)m2(ν)| = 0.

Since φ1 and φ2 are m-isomorphic, there is an invertible fuzzy measure preserving

transformation ψ such that ψ ◦ ϕ1 = ϕ2 ◦ ψ we have

ψ−1 ◦ ϕ−n2 = ϕ−n1 ◦ ψ−1.
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Since ψ is surjective and measure preserving, ψ−1(η) ∈ M1, ψ
−1(ν) ∈ M1. Suppose

that ψ−1(η) = µ, ψ−1(ν) = λ, then,

lim
k→∞

1

k

k−1∑
n=0

|m1(ϕ1
−n(µ) ∧ λ)−m1(µ)m1(λ)|

= lim
k→∞

1

k

k−1∑
n=0

|m1(ψ
−1((ϕ−n2 (η) ∧ ν)−m1(ψ

−1(η))m1(ψ
−1(ν))|

= lim
k→∞

1

k

k−1∑
n=0

|m2(ϕ2
−n(η) ∧ ν)−m2(η)m2(ν)|

= 0.

2

Proposition 6.7. Let φ1 and φ2 be m-isomorphic dynamical systems. Then for

each L ∈ F ∗(M),

h(ϕ1, [L]) = h(ϕ2, [ψ
−1(L)]),

where ψ : φ1 → φ2 is the corresponding m-isomorphism. In the other words h(ϕ, [L])

is m-isomorphism invariant.

Proof. Follows from Proposition 6.4. 2

7. Entropy and m-Generators of Fuzzy Dynamical Systems

Definition 7.1. The entropy of the fuzzy dynamical system (X,M,m,ϕ) is the

number h(ϕ) defined by:

h(ϕ) = sup
ξ
h(ϕ, ξ),

where the supremum is taken over all sub-σ-algebras of M where ξ ∈ F ∗(M).

Definition 7.2. ξ ∈ F ∗(M) is said to be a fuzzy m-generator of the fuzzy dynamical

system (X,M,m,ϕ) if there exists an integer r > 0 such that,

η ≤m
r∨
i=0

ϕ−iξ,

for each η ∈ F ∗(M).

Proposition 7.3. If ξ is a m-generator of the fuzzy dynamical system (X,M,m,ϕ)

then,

h(ϕ, η) ≤ h(ϕ, ξ),
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for each η ∈ F ∗(M).

Proof. Let η ∈ F ∗(M) be any arbitrary sub-σ-algebra of M . Since ξ, is an m-

generator, η ≤m
∨r
i=0 ϕ

−iξ from Proposition 5.3, (iii),

h(ϕ, η) ≤ h(ϕ,
r∨
i=0

ϕ−iξ) = h(ϕ, ξ).

2

Now we can deduce the following version of Kolmogorov-Sinai proposition.

Proposition 7.4. If ξ is an m-generator of fuzzy dynamical system (X,M,m,ϕ)

then,

h(ϕ) = h(ϕ, ξ).

Proof. Obvious. 2

8. Concluding Remarks and Open Problems

In this paper we investigate the ergodic properties of fuzzy dynamical systems using

the concept of atoms in a fuzzy σ-algebra. In this respect we introduce the m-

generators of fuzzy dynamical systems. We have to consider a slight modification of

some previously defined notions. A fuzzy version of Kolmogorov-Sinai proposition

concerning the entropy of fuzzy dynamical system is given. This proposition enables

us to compute the entropy for a class of fuzzy systems.

An interesting open problem is to establish a proposition on existence ofm-generators

having finite entropy.
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