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Abstract
A normalized analytic function f defined on the open unit disc D is called Ma-Minda
convex if 1+zf ′′(z)/f ′(z) is subordinate to the function φ. For 0 ⩽ α ⩽ β, the Kaplan class
K(α, β) of type α and β consists of normalized analytic functions of the form pαg defined on
D where p with p(0) = 1 is an analytic function taking values in the right half-plane and g
is an analytic function with g(0) = 1 satisfying Re(zg′(z)/g(z)) > (α−β)/2. For functions
f with f ′ ∈ K(α, β), we obtain the radius of Ma-Minda convexity for various choices of
φ. The radius of lemniscate convexity, lune convexity, nephroid convexity, exponential
convexity and several other radius estimates are examined. The results obtained are
sharp.
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1. Introduction
Let A denote the class of all analytic functions f defined on the open unit disc D and

normalized by the conditions f(0) = 0, f ′(0) = 1. Let A0 be the class of functions g such
that zg ∈ A, this class consists of analytic functions with g(0) = 1. The set of univalent
(one-to-one) functions in the class A is symbolized as S. For 0 ⩽ α < 1, let ST(α) and
CV(α) denote the subclasses of the class A consisting of starlike and convex functions
respectively such that Re(zf ′(z)/f(z)) > α and Re(1 + (zf ′′(z)/f(z))) > α. For α = 0,
these classes reduces to the class of Starlike and convex functions denoted by ST and CV,
respectively. Many classes in geometric function theory can be unified using the so called
Kaplan classes. Define

H := {f ∈ A0 : for some δ ∈ R, Re eiδf(z) > 0, z ∈ D}.
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For α > 0, we define Hα to be the class of functions fα ∈ A0 such that f ∈ H. Let

K(0, γ) =
{

g ∈ A0 : Re
(

zg′(z)
g(z)

)
> −γ

2
, γ ⩾ 0

}
.

Let the Kaplan class K(α, β) of type α and β be defined by

K(α, β) = Hα · K(0, β − α) if 0 ⩽ α ⩽ β.

For 0 ⩽ β ⩽ α, the Kaplan class is defined by

K(α, β) =
{

g : g(z) = 1
f(z)

, f ∈ K(β, α)
}

.

However, we restrict our results to the case where 0 ⩽ α ⩽ β.
Kaplan classes were first introduced by Sheil-Small [25] and were later discussed by

Ruscheweyh [21]. In 1952, Kaplan [9] introduced the class CC of close to convex functions
consisting of functions f ∈ A satisfying

Re
(

zf ′(z)
g(z)

)
> 0 (z ∈ D)

for some (not necessarily normalized) starlike function g or equivalently,

Re
(

f ′(z)
h′(z)

)
> 0 (z ∈ D)

for some (not necessarily normalized) convex function h. The sets K(α, β) are called
Kaplan classes because of their close relation with close to convex functions: f ∈ CC ⇔
f ′ ∈ K(1, 3). In addition to above, we have some more interesting relations between Kaplan
classes and various subclasses of S. The class of strongly close to convex functions of order
α, denoted by SCC(α), contains functions f ∈ A such that | arg eiϕzf ′(z)/g(z)| ⩽ απ/2 for
some g ∈ ST and ϕ ∈ R. It is easy to see that

f ∈ SCC(α) ⇔ f ′ ∈ K(α, α + 2).

Another generalisation of class of close to convex functions, denoted by CC(σ, λ), SCC(1) =
CC and contains f ∈ A such that Re(eiϕzf ′(z)/g(z)) > λ for some ϕ ∈ R and g ∈ ST(σ),
0 ⩽ σ ⩽ 1, z ∈ D. For λ = 0, we have f ∈ CC(σ, 0) ⇔ f ′ ∈ K(1, 3 − 2σ). Another class
which can be related with Kaplan classes is the class of functions with bounded boundary
rotation, Vk. Paatero [17,18] introduced the class Vk consisting of f ∈ A satisfying∫ 2π

0

∣∣∣∣∣Re
{

1 + reiθf ′′(reiθ)
f ′(reiθ)

}∣∣∣∣∣ dθ ⩽ kπ, k ⩾ 2.

From [20, Equation(3.4)], we have

f ∈ Vk ⇒ f ′ ∈ K(k/2 − 1, k/2 + 1), k > 2

and V2 = CV(0).
For two subclasses F and G of A, the G-radius for the class F, denoted by RG(F),

is the maximum value R ∈ (0, 1] such that r−1f(rz) ∈ G holds for all f ∈ F and for
0 < r < R. Various radius problems were recently investigated in [3, 5, 8, 11–13, 22].
The class K(α, β) was investigated by Ravichandran et al. [20], where they determined
the radius of convexity and radius of uniform convexity for functions f ∈ A satisfying
f ′ ∈ K(α, β). Motivated by their work, our present study seeks to determine the radius of
Ma-Minda convexity of functions f with f ′ ∈ K(α, β). Ma-Minda classes are defined by
using subordination. For two analytic functions f and g, we say that f is subordinate to g,
written as f ≺ g, if there exists a self-map w on D such that w(0) = 0 and f(z) = g(w(z)).
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If the function g is univalent in D, then f ≺ g if and only if f(0) = g(0) and f(D) ⊂ g(D).
For an analytic function φ with φ(0) = 1, the classes

ST(φ) :=
{

f ∈ A : zf ′(z)
f(z)

≺ φ(z), z ∈ D
}

(1.1)

and
CV(φ) :=

{
f ∈ A : 1 + zf ′′(z)

f ′(z)
≺ φ(z), z ∈ D

}
, (1.2)

are called Ma and Minda starlike/convex functions respectively as they [14] obtained
growth and distortion theorems where φ is a function with positive real part whose range
is symmetric about the real axis and starlike with respect to the origin. These classes
unifies various classes of starlike functions and convex functions. For example, when φ is
a mapping of D onto the right-half plane, the classes ST(φ) and CV(φ) reduce to the usual
class ST of starlike functions and the class CV of convex functions respectively. When φ
is the mapping of D onto the half-plane {w : Re w > α, 0 ⩽ α < 1}, then the classes
ST(φ) and CV(φ) reduce to the usual class ST(α) of starlike functions of order α and
the class CV(α) of convex functions of order α respectively. We determine Ma-Minda
convexity when φ is given by φ(z) = 1 + z − (z3/3), 1 + sinh−1(z), φ(z) = 2/(1 + e−z),
φ(z) = 1 + sin z, φ(z) =

√
1 + z, φ(z) = ez, and other functions having nice geometry.

Our results generalizes the results of Sebastian and Ravichandran [22] who studied analytic
functions f defined on D for which f/g and (1 + z)g/z are both functions with positive
real part for some analytic function g. For α = 2 and β = 3, our findings yield radius
constants for the functions belonging to class F1. This class consists of functions f ∈ A

satisfying f/g ∈ P for some g ∈ A with (1 + z)g(z)/z ∈ P. Similarly, for α = 1 and β = 2,
our results deduce to the radius constants for the functions in class F3 which includes
functions f ∈ A satisfying the inequality Re (((1 + z)/z)f(z)) > 0 for z ∈ D. Moreover,
for α = 1 and β = 3, the radius constants we have obtained reduces to the results for
functions in the class F4 which consists of functions f ∈ A that satisfies the inequality
Re
(
((1 + z)2/z)f(z)

)
> 0 for z ∈ D.

2. The image of |z| ⩽ r under 1 + zf ′′(z)/f ′(z) for f ′ ∈ K(α, β)
The radius of convexity of a function f ∈ A is determined by finding the largest r < 1

that satisfy the inequality Re(1 + zf ′′(z)/f ′(z)) > 0 for all z with |z| ⩽ r. Similarly, other
radius of convexity are determined by finding largest r < 1 such that 1 + zf ′′(z)/f ′(z)
lies in certain region for all z with |z| < r. Thus, we need to know the region to which
1 + zf ′′(z)/f ′(z) maps the disc |z| ⩽ r. We now describe the region in the case of
f ′ ∈ K(α, β) for 0 ⩽ α ⩽ β.

We first note that for 0 ⩽ α < 1, the class P(α) consists of functions p with p(0) = 1
such that Re(p(z)) > α. The class P := P(0) is the class of Carathéodory functions or the
class of functions with positive real part. If q ∈ P(α), then we have (see [20])∣∣∣∣∣q(z) − 1 + (1 − α)r2

1 − r2

∣∣∣∣∣ ⩽ 2(1 − α)r
1 − r2 , |z| ⩽ r < 1. (2.1)

Lemma 2.1. [20] For 0 ⩽ α ⩽ β, we have f ′ ∈ K(α, β) if and only if there exists
g ∈ ST((2 − β + α)/2) and ϕ ∈ R such that∣∣∣∣arg eiϕ zf ′(z)

g(z)

∣∣∣∣ ⩽ απ

2
, z ∈ D. (2.2)

Define the function p by p(z) = eiϕzf ′(z)/g(z) where f ′ ∈ K(α, β) and g ∈ ST((2 − β +
α)/2). We note that

zp′(z)
p(z)

= 1 + zf ′′(z)
f ′(z)

− zg′(z)
g(z)

. (2.3)
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Since g ∈ ST((2 − β + α)/2), we have zg′/g ∈ P((2 − β + α)/2), and by (2.1)∣∣∣∣∣zg′(z)
g(z)

− 1 + (β − α − 1)r2

1 − r2

∣∣∣∣∣ ⩽ (β − α)r
1 − r2 , |z| = r < 1. (2.4)

Note that for any q ∈ P, we have (see [15])∣∣∣∣zq′(z)
q(z)

∣∣∣∣ ⩽ 2r

1 − r2 , |z| ⩽ r < 1. (2.5)

Using (2.2), we have p1/α ∈ P. Hence, by (2.5) we have∣∣∣∣zp′(z)
p(z)

∣∣∣∣ ⩽ 2αr

1 − r2 , |z| ⩽ r < 1. (2.6)

From (2.3), (2.4) and (2.6), we get∣∣∣∣∣1 + zf ′′(z)
f ′(z)

− 1 + (β − α − 1)r2

1 − r2

∣∣∣∣∣ ⩽ (α + β)r
1 − r2 , |z| ⩽ r < 1. (2.7)

From (2.7), it is evident that w = 1+(zf ′′(z)/f ′(z)) resides within the disc |w−a(r)| ⩽ ra,
where a(r) and ra(r) denote the center and the radius respectively:

a(r) := 1 + (β − α − 1)r2

1 − r2 and ra(r) := (α + β)r
1 − r2 . (2.8)

We note that the center a(r) is an increasing function of r and a(r) ⩾ 1 as β ⩾ α ⩾ 0.

3. Radius of Convexity
In this section we obtain various radius constants for the functions whose derivatives be-

long to the class K(α, β). Wani and Swaminathan [28] studied the class CVNe = CV(φNe)
which consists of convex functions associated with a nephroid domain, where φNe(z) =
1 + z − (z3/3) that maps the unit circle onto a 2-cusped curve,

(
(u − 1)2 + v2 − (4/9)

)3 −
(4v2/3) = 0.

Theorem 3.1. Let 0 ⩽ α ⩽ β. The sharp CVNe radius for functions whose derivative
belongs to K(α, β) is given by

RCVNe
:= 4

3(α + β) +
√

9(α + β)2 + 8(3(β − α) + 2)
.

Proof. We first note that R = RCVNe
is the smallest positive root of the equation (3(β −

α) + 2)r2 + 3(α + β)r − 2 = 0 in the interval (0, 1). It then follows that (3(β − α) + 2)r2 +
3(α + β)r − 2 ⩽ 0 for 0 ⩽ r ⩽ R and by rewriting it, we have

(α + β)r
1 − r2 ⩽ 5

3
− 1 + (β − α − 1)r2

1 − r2 , r ⩽ R.

Consequently, for 0 ⩽ r ⩽ R = RCVNe
, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)

f ′(z)
− a(r)

∣∣∣∣ ⩽ 5
3

− a(r) (3.1)

where a(r) is given by (2.8). By [27, Lemma 2.1], we have {w : |w − a| < 5/3 − a} ⊆
φNe(D) = ΩNe, for 1 < a < 5/3. The condition a < 5/3 ensures that the center lies inside
the nephroid. Since the center a(r) given by (2.8) is always greater than or equal to 1,
the disc in (3.1) lies inside the region ΩNe for r ⩽ R proving that the CVNe radius for
functions whose derivative belongs to K(α, β) is at least R.

To show that sharpness, consider the function f0 defined by

f ′
0(z) = (1 + z)α

(1 − z)β
. (3.2)
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This function f0 has derivative f ′
0 ∈ K(α, β). Indeed, with g0(z) = z/(1 − z)β−α, we have

Re(zg′
0(z)/g0(z)) = (1 + (β − α − 1)z)/(1 − z) and hence g0 ∈ ST((2 − β + α)/2). Also we

have | arg(zf ′
0(z)/g0(z))| = | arg(((1 + z)/(1 − z))α)| < (απ)/2. Since f0 satisfies (2.2), it

follows that f ′
0 ∈ K(α, β). From (3.2), we find

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)z2 + (α + β)z
1 − z2 . (3.3)

For z = R, the equation (3.3) gives

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2 + (α + β)R
1 − R2 = 5

3
= φNe(1).

Thus, the radius R is sharp for the function f0 defined by (3.2) (See Fig.1) (This figure as
well as other later figures show the image of the extremal function f0, and the disc given
by (2.7) as well as the boundary of φ(D)). □

Figure 1. Sharpness of RCVNe
radius when α = 0.1 and β = 1

Corollary 3.2. Radius of convexity associated with the class CVNe for some special cases:
(1) The CVNe radius for the class CC(σ, 0) is

RCVNe
= 4

3(2 − σ) +
√

9σ2 − 38σ + 54
.

(2) The CVNe radius for the class Vk is

RCVNe
= 4

3k +
√

9k2 + 64
.

(3) The CVNe radius for the class SCC(α) is

RCVNe
= 2

3(α + 1) +
√

9(α + 1)2 + 16
.

Kumar and Arora [2] introduced the class which consists of convex functions associated
with the petal shaped domain, given by CVh = CV(φh), where φh(z) = 1 + sinh−1(z).

Theorem 3.3. Let 0 ⩽ α ⩽ β. The CVh radius for functions whose derivative belongs to
K(α, β) is given by

RCVh
= 2 sinh−1(1)

(α + β) +
√

(α + β)2 + 4(β − α + sinh−1(1))(sinh−1(1))
.

The radius obtained is sharp.
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Proof. We first note that R = RCVh
is the smallest positive root of the equation (β −

α + sinh−1(1))r2 + (α + β)r − sinh−1(1) = 0 in the interval (0, 1). Then it follows that
(β − α + sinh−1(1))r2 + (α + β)r − sinh−1(1) ⩽ 0 for 0 ⩽ r ⩽ R and hence

(α + β)r
1 − r2 ⩽ 1 + sinh−1(1) − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R.

Consequently, for 0 ⩽ r ⩽ R = RCVh
, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)

f ′(z)
− a(r)

∣∣∣∣ ⩽ 1 + sinh−1(1) − a(r) (3.4)

where a(r) is given by (2.8). For 1 < a ⩽ 1 + sinh−1(1), by [2, Lemma 2.1] we have
{w : |w − a| < 1 + sinh−1(1) − a} ⊆ φh(D) = Ωh. The condition a < 1 + sinh−1(1) tells us
that the center lies inside the region Ωh. Since the center a(r) is always greater than 1,
the disc in (3.4) lies inside the region Ωh for r ⩽ R proving that CVh radius for functions
whose derivatives belongs to K(α, β) is at least R.

To prove the sharpness of the radius R = RCVh
, we consider the function f0 defined by

(3.2). For z = R in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2 + (α + β)R
1 − R2 = 1 + sinh−1(1) = φh(1).

Therefore, the radius R is sharp for the function f0 defined by (3.2) (See Fig.2). □

Figure 2. Sharpness of RCVh
radius when α = 0.3 and β = 1.5

Corollary 3.4. Radius of convexity associated with the class CVh for some special cases:
(1) The CVh radius for the class CC(σ, 0) is

RCVh
= sinh−1(1)

(2 − σ) +
√

(2 − σ)2 + (2(1 − σ) + sinh−1(1))(sinh−1(1))
.

(2) The CVh radius for the class Vk is

RCVh
= 2 sinh−1(1)

k +
√

k2 + 4(sinh−1(1))(2 + sinh−1(1))
.

(3) The CVh radius for the class SCC(α) is

RCVh
= sinh−1(1)

(α + 1) +
√

(α + 1)2 + (2 + sinh−1(1))(sinh−1(1))
.

Goel and Kumar [6] introduced the class which consists of convex functions associated
with the modified sigmoid, given by CVSG = CV(φSG), where φSG(z) = 2/(1 + e−z).
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Theorem 3.5. Let 0 ⩽ α ⩽ β. The sharp CVSG radius for functions f such that f ′ ∈
K(α, β) is given by

RCVSG
= 2(e − 1)

(α + β)(e + 1) +
√

(e + 1)2(α + β)2 + 4(e − 1)((e + 1)(β − α) + e − 1)
.

Proof. We first note that R = RCVSG
is the smallest positive root of the equation ((e +

1)(β − α) + e − 1)r2 + (e + 1)(α + β)r − e + 1 = 0 in (0, 1). Then it follows that ((e +
1)(β − α) + e − 1)r2 + (e + 1)(α + β)r − e + 1 ⩽ 0 for 0 ⩽ r ⩽ R and so

(α + β)r
1 − r2 ⩽ e − 1

e + 1
+ 1 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R.

Consequently, for 0 ⩽ r ⩽ R = RCVSG
, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)

f ′(z)
− a(r)

∣∣∣∣ ⩽ e − 1
e + 1

+ 1 − a(r) (3.5)

where a(r) is given by (2.8). By [6, Lemma 2.2], we have {w : |w − a| < ((e − 1)/(e +1)) +
1 − a} ⊆ φSG(D) = ΩSG, for 2/(1 + e) < a < 2e/(1 + e). The condition a < 2e/(1 + e)
assures that the center lies inside the region ΩSG. As the center a(r) is always greater
than 1, the disc in (3.5) lies inside the region ΩSG for r ⩽ R proving that CVSG radius for
functions whose derivatives belongs to K(α, β) is at least R.

To prove the sharpness of the radius R = RCVSG
, consider the function f0 defined by

(3.2). For z = R in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2 + (α + β)R
1 − R2 = 2e

e + 1
= φSG(1),

which proves that the radius R is sharp for the function f0 defined by (3.2) (See Fig.3). □

Figure 3. Sharpness of RCVSG
radius when α = 0.2 and β = 0.9

Corollary 3.6. Radius of convexity associated with the class CVSG for some special cases:
(1) The CVSG radius for the class CC(σ, 0) is

RCVSG
= (e − 1)

(2 − σ)(e + 1) +
√

(e + 1)2(2 − σ)2 + ((3e + 1) − 2σ(e + 1))(e − 1)
.

(2) The CVSG radius for the class Vk

RCVSG
= 2(e − 1)

k(e + 1) +
√

(e + 1)2k2 + 4(3e + 1)(e − 1)
.

(3) The CVSG radius for the class SCC(α) is

RCVSG
= (e − 1)

(α + 1)(e + 1) +
√

(e + 1)2(α + 1)2 + (3e + 1)(e − 1)
.
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Cho et al. [3] introduced the class that consists of convex functions associated with the
sine function denoted by CVsin = CV(φsin), where φsin(z) = 1 + sin z.

Theorem 3.7. Let 0 ⩽ α ⩽ β. The sharp CVsin radius for functions f such that f ′ ∈
K(α, β) is given by

RCVsin = 2(sin 1)
(α + β) +

√
(α + β)2 + 4(β − α + sin 1)(sin 1)

.

Proof. We first note that R = RCVsin is the smallest positive root of the equation (β −
α + (sin 1))r2 + (α + β)r − (sin 1) = 0 in the interval (0, 1). Then it follows that (β − α +
(sin 1))r2 + (α + β)r − (sin 1) ⩽ 0 for 0 ⩽ r ⩽ R and so

(α + β)r
1 − r2 ⩽ (sin 1) + 1 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R.

Consequently, for 0 ⩽ r ⩽ R = RCVsin , the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ (sin 1) + 1 − a(r) (3.6)

where a(r) is given by (2.8). By [3, Lemma 3.3], we have {w : |w − a| < (sin 1) + 1 − a} ⊆
φsin(D) = Ωsin, for 1 − sin 1 < a < 1 + sin 1. The condition a < 1 + sin 1 assures that the
center lies inside the region Ωsin. As the center a(r) is always greater than 1, the disc in
(3.6) lies inside the region Ωsin for r ⩽ R proving that CVsin radius for functions whose
derivatives belongs to K(α, β) is at least R.

In order to prove the sharpness of the radius R = RCVsin , we consider the function f0
defined by (3.2). For z = R in (3.3),we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2 + (α + β)R
1 − R2 = 1 + (sin 1) = φsin(1),

which proves that the radius R is sharp for the function f0 defined by (3.2) (See Fig.4). □

Figure 4. Sharpness of RCVsin radius when α = 0.1 and β = 0.9

Corollary 3.8. Radius of convexity associated with the class CVsin for some special cases:
(1) The CVsin radius for the class CC(σ, 0) is

RCVsin = sin 1
(2 − σ) +

√
(2 − σ)2 + (2 − 2σ + sin 1)(sin 1)

.

(2) The CVsin radius for the class Vk is

RCVsin = 2 sin 1
k +

√
k2 + 4(2 + sin 1)(sin 1)

.
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(3) The CVsin radius for the class SCC(α) is

RCVsin = sin 1
(α + 1) +

√
(α + 1)2 + (2 + sin 1)(sin 1)

.

Sokól and Stankiewicz [26] introduced the class of convex functions associated with a
lemniscate domain, given by CVL = CV(φL), where φL(z) =

√
1 + z consisting of functions

f ∈ A such that for each z ∈ D, w = 1 + (zf ′′(z)/f ′(z)) lies in the region bounded by
right half of the lemniscate of Bernoulli given by |w2 − 1| < 1.

Theorem 3.9. The radius of lemniscate convexity for the functions whose derivative
belongs to K(α, β), 0 ⩽ α ⩽ β is given by

RCVL
= 2(

√
2 − 1)

(α + β) +
√

(α + β)2 + 4(
√

2 − 1)(
√

2 + (β − α − 1))
.

Proof. Firstly, we note that R = RCVL
is the smallest positive root of the equation

(β − α +
√

2 − 1)r2 + (α + β)r − (
√

2 − 1) = 0 in the interval (0, 1). Then it follows that
(β − α +

√
2 − 1)r2 + (α + β)r − (

√
2 − 1) ⩽ 0 for 0 ⩽ r ⩽ R and so

(α + β)r
1 − r2 ⩽

√
2 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R.

Consequently, for 0 ⩽ r ⩽ R = RCVL
, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)

f ′(z)
− a(r)

∣∣∣∣ ⩽ √
2 − a(r) (3.7)

where a(r) is given by (2.8). By [1, Lemma 2.2], we have {w : |w − a| <
√

2 − a} ⊆
φL(D) = ΩL for (2

√
2)/3 < a <

√
2. The condition a <

√
2 ensures that the center lies

inside the region ΩL. As the center a(r) is always greater than 1, the disc in (3.7) lies
inside the region ΩL for r ⩽ R proving that CVL radius for functions whose derivatives
belongs to K(α, β) is at least R3.

To show the sharpness of the radius R = RCVL
, we consider the function f0 defined by

(3.2). For z = R in (3.3),we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2 + (α + β)R
1 − R2 =

√
2 = φL(1),

which proves that the radius R is sharp for the function f0 defined by (3.2) (See Fig.5). □

Figure 5. Sharpness of RCVL
radius when α = 2 and β = 3

Corollary 3.10. Radius of convexity associated with the class CVL for some special cases:
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(1) The CVL radius for the class CC(σ, 0) is

RCVL
= (

√
2 − 1)

(2 − σ) +
√

(2 − σ)2 − 2(
√

2 − 1)σ + 1
.

(2) The CVL radius for the class Vk is

RCVL
= 2(

√
2 − 1)

k +
√

k2 + 4
.

(3) The CVL radius for the class SCC(α) is

RCVL
= (

√
2 − 1)

(α + 1) +
√

(α + 1)2 + 1
.

The class CVR = CV(φR) consisting of convex functions associated with the rational
function φR(z) = 1 + ((z2 + kz)/k2 − kz) for k =

√
2 + 1, was introduced by Kumar and

Ravichandran [10].

Theorem 3.11. Let 0 ⩽ α ⩽ β. The sharp CVR radius for functions f such that f ′ ∈
K(α, β) is given by

RCVR
=
{

R2, R2 ⩽ R1

R3, R2 ⩾ R1

where

R1 =
( √

2 − 1
β − α +

√
2 − 1

)1/2

,

R2 = 2(3 − 2
√

2)

(α + β) +
√

(α + β)2 + 4(β − α + 2
√

2 − 3)(2
√

2 − 3)
and

R3 = 2
(α + β) +

√
(α + β)2 + 4(β − α + 1)

.

Proof. We first consider the case where R2 ⩽ R1. Note that R1 is the positive root of the
equation (β − α +

√
2 − 1)r2 + 1 −

√
2 = 0 or equivalently a(r) =

√
2 where a(r) given by

(2.8). For r ⩽ R2 ⩽ R1, we see that the increasing function a(r) given by (2.8) satisfies

2(
√

2 − 1) < 1 ⩽ a(r) ⩽ a(R2) = 1 + (β − α − 1)R2
2

1 − R2
2

⩽ a(R1) =
√

2.

Since R2 is the smallest positive root of the equation (β−α+2
√

2−3)r2 −(α+β)r−2
√

2+
3 = 0 in the interval (0, 1), it follows that (β − α + 2

√
2 − 3)r2 − (α + β)r − 2

√
2 + 3 ⩽ 0

for 0 ⩽ r ⩽ R2, and hence, upon rewriting, we have
(α + β)r
1 − r2 ⩽ 1 + (β − α − 1)r2

1 − r2 − 2(
√

2 − 1), r ⩽ R2.

Therefore, for r ⩽ R2, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ a(r) − 2(

√
2 − 1) (3.8)

where a(r) is given by (2.8). For 2(
√

2 − 1) < a <
√

2, [10, Lemma 2.2] establishes that

{w ∈ C : |w − a| < a − 2(
√

2 − 1)} ⊆ φR(D) = ΩR. (3.9)
Using the inclusion in (3.9), it follows that the disc in (3.8) is contained in ΩR, proving
that the CVR radius for functions whose derivatives belongs to K(α, β) is at least R2.
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To prove the sharpness of R2, we consider the function f0 defined by (3.2). For z = −R2
in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
2 − (α + β)R2

1 − R2
2

= 2
√

2 − 2 = φR(−1).

which proves that the radius R2 is sharp for the function f0 defined by (3.2) (See Fig.6(a)).
We now consider the case where R1 ⩽ R2. Clearly, R3 is the smallest positive root of

the equation (β − α + 1)r2 − (α + β)r − 1 = 0 in the interval (0, 1) and hence (β − α +
1)r2 − (α + β)r − 1 ⩽ 0 for 0 ⩽ r ⩽ R3. Rewriting this, we get

(α + β)r
1 − r2 ⩽ 2 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R3.

Therefore, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ 2 − a(r) (3.10)

where a(r) is given by (2.8). For
√

2 < a < 2, [10, Lemma 2.2] establishes the containment:

{w ∈ C : |w − a| < 2 − a} ⊆ φR(D) = ΩR. (3.11)

It is easy to see that R2 ⩽ R3. Since R1 ⩽ R2, it follows that R1 ⩽ R3. For a(r) given by
(2.8), we have

√
2 = a(R1) ⩽ a(r) ⩽ a(R3) = 1 + (β − α − 1)R2

3
1 − R2

3
< 2.

Using the inclusion in (3.11), it follows that the disc in (3.10) lies inside ΩR proving that
the CVR radius for functions whose derivatives belongs to K(α, β) is at least R3.

Consider the function f0 defined by (3.2). For z = R3 in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
3 + (α + β)R3

1 − R2
3

= 2 = φR(1),

which proves the sharpness of the radius R3 for the function f0 defined by (3.2) (See
Fig.6(b)). □

(a). Sharpness of RCVR = R2
radius when α = 0.015 and β =
0.35

(b). Sharpness of RCVR = R3
radius when α = 0.002 and β =
0.05

Figure 6. Sharpness RCVR
radius

Corollary 3.12. Radius of convexity associated with the class CVR for some special cases:
(1) The CVR radius for the class CC(σ, 0) is

RCVR
= 3 − 2

√
2

2(2 − σ) +
√

4((2 − σ)2 + (6 − 4
√

2)σ − 8
√

2 + 11)
.
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(2) The CVR radius for the class Vk is

RCVR
= 3 − 2

√
2

k +
√

k2 + 44 − 32
√

2
.

(3) The CVR radius for the class SCC(α) is

RCVR
= 3 − 2

√
2

2(α + 1) +
√

4((α + 1)2 + 44 − 32
√

2)
.

Raina and Sokól [19] studied the class CV$ = CV(φ$), where φ$(z) = z +
√

1 + z2

and proved that f ∈ CV$ if and only if 1 + (zf ′′(z)/f ′(z)) ∈ Ω$, where Ω$ is the interior
of a lune given by Ω$ := {w ∈ C : |w2 − 1| < 2|w|}.

Theorem 3.13. Let 0 ⩽ α ⩽ β. The sharp CV$ radius for functions f such that f ′ ∈
K(α, β) is given by

RCV$ =
{

R2, R2 ⩽ R1

R3, R2 ⩾ R1

where

R1 =
( √

2 − 1
β − α +

√
2 − 1

)1/2

, R2 = 4 − 2
√

2

(α + β) +
√

(α + β)2 + 4(
√

2 − 2)(β − α +
√

2 − 2)
and

R3 = 2
√

2

(α + β) +
√

(α + β)2 + 4
√

2(β − α +
√

2)
.

Proof. Firstly, we consider the case where R2 ⩽ R1. Note that R1 is the positive root of
the equation (β − α +

√
2 − 1)r2 + 1 −

√
2 = 0 or equivalently a(r) =

√
2 where a(r) is

given by (2.8). For r ⩽ R2 ⩽ R1, we note that the increasing function a(r) given by (2.8)
satisfies

(
√

2 − 1) < 1 ⩽ a(r) ⩽ a(R2) = 1 + (β − α − 1)R2
2

1 − R2
2

⩽ a(R1) =
√

2.

Since R2 is the smallest positive root of the equation (β−α+
√

2−2)r2−(α+β)r−
√

2+2 = 0
in the interval (0, 1), it follows that (β−α+

√
2−2)r2−(α+β)r−

√
2+2 ⩽ 0 for 0 ⩽ r ⩽ R2

and hence upon rewriting, we have
(α + β)r
1 − r2 ⩽ 1 + (β − α − 1)r2

1 − r2 − (
√

2 − 1), r ⩽ R2.

Therefore, for r ⩽ R2 the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ a(r) − (

√
2 − 1). (3.12)

where a(r) is given by (2.8). For 2(
√

2 − 1) < a <
√

2, [4, Lemma 2.1] provides the
containment

{w ∈ C : |w − a| < a − (
√

2 − 1)} ⊆ φ$(D) = Ω$. (3.13)
Using the inclusion in (3.13), it follows that the disc in (3.12) lies within Ω$ proving that
the CV$ radius for functions whose derivatives belongs to K(α, β) is at least R2.

To examine the sharpness, we consider the function f0 defined by (3.2). For z = −R2
in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
2 − (α + β)R2

1 − R2
2

=
√

2 − 1 = φ$(−1),
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this proves the sharpness of the radius R2 for the function f0 defined by (3.2) (See Fig.7(a)).
We now consider the case where R1 ⩽ R2. Clearly, R3 is the smallest positive root of

the equation (β − α + 1)r2 − (α + β)r − 1 = 0 in the interval (0, 1) and hence (β − α +
1)r2 − (α + β)r − 1 ⩽ 0 for 0 ⩽ r ⩽ R3. Rewriting this, we get

(α + β)r
1 − r2 ⩽

√
2 + 1 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R3.

Therefore, for r ⩽ R3, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ √

2 + 1 − a(r) (3.14)

where a(r) is given by (2.8). For
√

2 < a <
√

2 + 1, [4, Lemma 2.1] establishes the
inclusion:

{w ∈ C : |w − a| <
√

2 + 1 − a} ⊆ φ$(D) = Ω$. (3.15)
It is easy to that R2 ⩽ R3. Since R1 ⩽ R2, it follows that R1 ⩽ R3. For a(r) given by
(2.8), we have

√
2 = a(R1) ⩽ a(r) ⩽ a(R3) = 1 + (β − α − 1)R2

3
1 − R2

3
<

√
2 + 1.

Using the inclusion (3.15), it follows that the disc in (3.14) lies inside Ω$ proving that
the CV$ radius for functions whose derivatives belongs to K(α, β) is at least R3.

Consider the function f0 defined by (3.2) for proving the sharpness of the radius R3.
For z = R3 in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
3 + (α + β)R3

1 − R2
3

=
√

2 + 1 = φ$(1),

this establishes the sharpness of the radius R3 for the function f0 defined by (3.2) (See
Fig.7(b)). □

(a). Sharpness of RCV$ = R2

radius when α = 0.1 and β = 2

(b). Sharpness of RCV$ = R3

radius when α = 0.015 and β =
0.4

Figure 7. Sharpness of RCV$ radius

Corollary 3.14. Radius of convexity associated with the class CV$ for some special cases:
(1) The CV$ radius for the class CC(σ, 0) is

RCV$ = (2 −
√

2)

(2 − σ) +
√

(2 − σ)2 + (
√

2 − 2σ)(
√

2 − 2)
.
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(2) The CV$ radius for the class Vk is

RCV$ = 2(2 −
√

2)

k +
√

k2 + 8(1 −
√

2)
.

(3) The CV$ radius for the class SCC(α) is

RCV$ = (2 −
√

2)

(α + 1) +
√

(α + 1)2 + 2(2 −
√

2)
.

Sharma et al. [24] studied the class CVC = CV(φC) which consists of convex functions
associated with a cardiod, where φC(z) = 1 + (4/3)z + (2/3)z2.

Theorem 3.15. Let 0 ⩽ α ⩽ β. The sharp CVC radius for functions f such that f ′ ∈
K(α, β) is given by

RCVC
=
{

R2, R2 ⩽ R1

R3, R2 ⩾ R1

where

R1 =
( 2

3(β − α) + 2

)1/2
,

R2 = 4
3(α + β) +

√
9(α + β)2 − 8(3(β − α) − 2)

and

R3 = 4
(α + β) −

√
(α + β)2 + 8(β − α + 2)

.

Proof. We first consider the case where R2 ⩽ R1. Note that R1 is the positive root of the
equation (3(β − α) + 2)r2 − 2 = 0 which is equivalent to setting a(r) = 5/3 where a(r) is
given by (2.8). For r ⩽ R2 ⩽ R1, we see that the increasing function a(r) given by (2.8)
satisfies

1
3

< 1 ⩽ a(r) ⩽ a(R2) ⩽ 1 + (β − α − 1)R2
2

1 − R2
2

⩽ a(R1) = 5
3

.

Since R2 is the smallest positive root of the equation (3(β − α) − 2)r2 − 3(α + β)r + 2 = 0
in the interval (0, 1), it follows that (3(β − α) − 2)r2 − 3(α + β)r + 2 ⩽ 0 for 0 ⩽ r ⩽ R2
and hence upon rewriting, we have

(α + β)r
1 − r2 ⩽ 1 + (β − α − 1)r2

1 − r2 − 1
3

, r ⩽ R2.

Therefore, for r ⩽ R2, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ a(r) − 1

3
(3.16)

where a(r) is given by (2.8). For 1/3 < a < 5/3, [24, Lemma 2.5] provides the inclusion:
{w ∈ C : |w − a| < a − 1/3} ⊆ φC(D) = ΩC . (3.17)

Using the inclusion (3.17), it follows that the disc in (3.16) resides inside ΩC proving that
the CVC radius for functions whose derivatives belongs to K(α, β) is at least R2.

The function f0 defined by (3.2) proves the sharpness of the radius R2 . For z = −R2
in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
2 − (α + β)R2

1 − R2
2

= 1
3

= φC(−1),

which proves that the radius R2 is sharp for the function f0 defined by (3.2) (See Fig.8(a)).
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We now consider the case where R1 ⩽ R2. Clearly, R3 is the smallest positive root of
the equation (β − α + 2)r2 + (α + β)r − 2 = 0 in the interval (0, 1) and hence (β − α +
2)r2 + (α + β)r − 2 ⩽ 0 for 0 ⩽ r ⩽ R3. Upon rewriting, we get

(α + β)r
1 − r2 ⩽ 3 − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R3.

Therefore, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ 3 − a(r) (3.18)

where a(r) is given by (2.8). For 5/3 < a < 3, by [24, Lemma 2.5] the following inclusion
relation holds:

{w ∈ C : |w − a| < 3 − a} ⊆ φC(D) = ΩC . (3.19)
It is easy to see that R2 ⩽ R3. Since R1 ⩽ R2, it follows that R1 ⩽ R3. For a(r) given by
(2.8), we have

5
3

= a(R1) ⩽ a(r) ⩽ a(R3) = 1 + (β − α − 1)R2
3

1 − R2
3

< 3.

Using the inclusion in (3.19), it follows that the disc in (3.18) lies inside ΩC proving that
the CVC radius for functions whose derivatives belongs to K(α, β) is at least R3.

To prove the sharpness, we consider the function f0 defined by (3.2). For z = R3 in
(3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
3 + (α + β)R3

1 − R2
3

= 3 = φC(1).

which proves the sharpness of the radius R3 for the function f0 defined by (3.2) (See
Fig.8(b)). □

(a). Sharpness of RCVC = R2
radius when α = 0.3 and β = 2

(b). Sharpness of RCVC = R3
radius when α = 0.02 and β =
0.5

Figure 8. Sharpness of RCVC
radius

Corollary 3.16. Radius of convexity associated with the class CVC for some special cases:
(1) The CVC radius for the class CC(σ, 0) is

RCVC
= 2

3(2 − σ) +
√

9σ2 − 24σ + 28
.

(2) The CVC radius for the class Vk is

RCVC
= 4

3k +
√

9k2 − 32
.
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(3) The CVC radius for the class SCC(α) is

RCVC
= 2

3(α + 1) +
√

9(α + 1)2 − 8
.

Mendiratta et al. [16], introduced the class CVe = CV(φe) where φe(z) = ez, which con-
sists of all functions f ∈ A such that 1+(zf ′′(z)/f ′(z)) ≺ ez or equivalently |log(1 + (zf ′′(z)/f ′(z)))| <
1.

Theorem 3.17. Let 0 ⩽ α ⩽ β. The sharp CVe radius for functions f such that f ′ ∈
K(α, β) is given by

RCVe =
{

R2, R2 ⩽ R1

R3, R2 ⩾ R1

where

R1 =
(

e + e−1 − 2
2(β − α) + e + e−1 − 2

)1/2

,

R2 = 2(e − 1)
e(α + β) +

√
e2(α + β)2 − 4(e(β − α) − (e − 1))(e − 1)

and

R3 = 2(e − 1)
(α + β) +

√
(α + β)2 + 4(β − α + e − 1)(e − 1)

.

Proof. We first consider the case where R2 ⩽ R1. Note that R1 is the positive root of
the equation (2(β − α) + e + e−1 − 2)r2 − (e + e−1 − 2) = 0 which is equivalent to setting
a(r) = (e + e−1)/2 where a(r) is given by (2.8). For r ⩽ R2 ⩽ R1, we see that the
increasing function a(r) satisfies

1
e

< 1 ⩽ a(r) ⩽ a(R2) = 1 + (β − α − 1)R2
2

1 − R2
2

⩽ a(R1) = e + e−1

2
.

Since R2 is the smallest positive root of the equation (e(β−α)−e+1)r2−e(α+β)r+e−1 = 0
in the interval (0, 1), it follows that (e(β−α)−e+1)r2−e(α+β)r+e−1 ⩽ 0 for 0 ⩽ r ⩽ R2,
and hence upon rewriting, we have

(α + β)r
1 − r2 ⩽ 1 + (β − α − 1)r2

1 − r2 − 1
e

, r ⩽ R2.

Therefore, r ⩽ R2, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ a(r) − 1

e
(3.20)

where a(r) is given by (2.8). For 1/e < a ⩽ (e + e−1)/2, [16, Lemma 2.5] provides the
inclusion:

{w ∈ C : |w − a| < a − 1/e} ⊆ φe(D) = Ωe. (3.21)
Using the inclusion (3.21), it follows that the disc in (3.20) resides inside Ωe proving that
the CVe radius for functions whose derivatives belongs to K(α, β) is at least R2.

In order to prove the sharpness consider the function f0 defined by (3.2). For z = −R2
in (3.3), we have∣∣∣∣log

(
1 + zf ′′

0 (z)
f ′

0(z)

)∣∣∣∣ =
∣∣∣∣∣log

(
1 + (β − α − 1)R2

2 − (α + β)R2
1 − R2

2

)∣∣∣∣∣ =
∣∣∣∣log

(1
e

)∣∣∣∣ = 1,

which proves the sharpness of the radius R3 for the function f0 defined by (3.2) (See
Fig.9(a)).
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(a). Sharpness of RCVe = R2
radius when α = 0.1 and β =
1.9

(b). Sharpness of RCVe = R3
radius when α = 0.03 and β =
0.5

Figure 9. Sharpness of RCVe radius

We next consider the case where R1 ⩽ R2. Clearly, R3 is the smallest positive root of
the equation (β − α + e − 1)r2 + (α + β)r − (e − 1) = 0 in the interval (0, 1) and hence
(β − α + e − 1)r2 + (α + β)r − (e − 1) ⩽ 0 for 0 ⩽ r ⩽ R3. Rewriting this, we get

(α + β)r
1 − r2 ⩽ e − 1 + (β − α − 1)r2

1 − r2 , r ⩽ R3.

Therefore, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ e − a(r). (3.22)

where a(r) is given by (2.8). By [16, Lemma 2.5], for (e + e−1)/2 < a < e, the following
inclusion relation holds:

{w ∈ C : |w − a| < e − a} ⊆ φe(D) = Ωe. (3.23)

It is easy to see that R2 ⩽ R3. Since R1 ⩽ R2, it follows that R1 ⩽ R3. For a(r) given by
(2.8), we have

e + e−1

2
= a(R1) ⩽ a(r) ⩽ a(R3) = 1 + (β − α − 1)R2

3
1 − R2

3
< e.

Using the inclusion in (3.23), it follows that the disc in (3.22) lies inside Ωe proving that
the CVe radius is for functions whose derivatives belongs to K(α, β) at least R3.

To prove the sharpness, we consider the function f0 defined by (3.2). For z = R3 in
(3.3), we have∣∣∣∣log

(
1 + zf ′′

0 (z)
f ′

0(z)

)∣∣∣∣ =
∣∣∣∣∣log

(
1 + (β − α − 1)R2

3 + (α + β)R3
1 − R2

3

)∣∣∣∣∣ = |log e| = 1.

which proves the sharpness of the radius R3 for the function f0 defined by (3.2) (See
Fig.9(b)). □

Corollary 3.18. Radius of convexity associated with the class CVe for some special cases:
(1) The CVe radius for the class CC(σ, 0) is

RCVe = e − 1
e(2 − σ) +

√
e2(2 − σ)2 − (e(1 − 2σ) + 1)(e − 1)

.

(2) The CVe radius for the class Vk is

RCVe = 2(e − 1)
ek +

√
e2(k2 − 4) + 4

.
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(3) The CVe radius for the class SCC(α) is

RCVe = e − 1
e(α + 1) +

√
e2(α + 1)2 − (e2 − 1)

.

The class uniformly convex functions was introduced by Goodman [7]. A function f ∈ A

is said to be uniformly convex if and only if

Re
(

1 + zf ′′(z)
f ′(z)

)
>

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣
for all z ∈ D and the class of all uniformly convex functions is denoted by UCV. The
following theorem was proved earlier by Ravichandran et al. [20] for the case R2 ⩽ R1.
However, the proof given here is different. The result in the case R2 > R1 is not necessarily
sharp.

Theorem 3.19. Let 0 < γ ⩽ 1 and 0 ⩽ α ⩽ β. The radius of uniform convexity for
functions whose derivative belongs to K(α, β) is given by RUCV = R2 if R2 ⩽ R1 and
RUCV ⩾ R3, if R2 ⩾ R1 where

R1 =
( 1

2(β − α) + 1

)1/2
,

R2 = 1
(α + β) +

√
(α + β)2 − (2(β − α) − 1)

and

R3 =
(

1 − (α + β)2

2(β − α)

)1/2

.

Proof. We first consider the case where R2 ⩽ R1. Note that R1 is the positive root of
the equation (2(β − α) + 1)r2 − 1 = 0 which is equivalent to setting a(r) = 3/2 where a(r)
is given by (2.8). For r ⩽ R2 ⩽ R1, we see that the increasing function a(r) satisfies

1
2

< 1 ⩽ a(r) ⩽ a(R2) = 1 + (β − α − 1)R2
2

1 − R2
2

⩽ a(R1) = 3
2

.

Since R2 is the smallest positive root of the equation (2(β − α) − 1)r2 − 2(α + β)r + 1 = 0
in the interval (0, 1), it follows that (2(β − α) − 1)r2 − 2(α + β)r + 1 ⩽ 0 for 0 ⩽ r ⩽ R2,
and hence upon rewriting, we have

(α + β)r
1 − r2 ⩽ 1 + (β − α − 1)r2

1 − r2 − 1
2

, r ⩽ R2.

Therefore, r ⩽ R2, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ a(r) − 1

2
(3.24)

where a(r) is given by (2.8). For 1/2 < a ⩽ 3/2, [23, Lemma 1] provides the inclusion:
{w ∈ C : |w − a| < a − 1/2} ⊆ φ(D) = Ω (3.25)

where Ω is a parabolic region symmetric with respect to the real axis and (1/2, 0) is its
vertex. Using the inclusion (3.25), it follows that the disc in (3.24) resides inside Ω proving
that the UCV radius for functions whose derivatives belongs to K(α, β) is at least R2.

In order to prove the sharpness consider the function f0 defined by (3.2). For z = −R2
in (3.3), we have

1 + zf ′′
0 (z)

f ′
0(z)

= 1 + (β − α − 1)R2
2 − (α + β)R2

1 − R2
2

= 1
2

,

which proves the sharpness of the radius R2 for the function f0 defined by (3.2).
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We next consider the case where R1 ⩽ R2. Clearly, R3 is the smallest positive root
of the equation 2(β − α)r2 + (α + β)2 − 2(β − α) = 0 in the interval (0, 1) and hence
2(β − α)r2 + (α + β)2 − 2(β − α) ⩽ 0 for 0 ⩽ r ⩽ R3. Rewriting this, we get

(α + β)r
1 − r2 ⩽

(
2(β − α)r2

1 − r2

)1/2

, r ⩽ R3.

Therefore, the disc in (2.7) becomes∣∣∣∣1 + zf ′′(z)
f ′(z)

− a(r)
∣∣∣∣ ⩽ (2a(r) − 2)1/2. (3.26)

where a(r) is given by (2.8). By [23, Lemma 1], for 3/2 ⩽ a, the following inclusion
relation holds:

{w ∈ C : |w − a| <
√

2a − 2} ⊆ φ(D) = Ω. (3.27)

It is easy to see that R2 ⩽ R3. Since R1 ⩽ R2, it follows that R1 ⩽ R3. For a(r) given by
(2.8), we have

3
2

= a(R1) ⩽ a(r) ⩽ a(R3) = 1 + (β − α − 1)R2
3

1 − R2
3

.

Using the inclusion in (3.27), it follows that the disc in (3.26) lies inside Ω proving that
the UCV radius is for functions whose derivatives belongs to K(α, β) at least R3. □

A function f ∈ A is said to be strongly convex of order γ, 0 < γ ⩽ 1, if∣∣∣∣arg
(

1 + zf ′′(z)
f ′(z)

)∣∣∣∣ ⩽ πγ

2
.

The set of all such functions is denoted by SCV(γ). We state the following theorem without
proof. Finding the sharp radius constant is open.

Theorem 3.20. Let 0 < γ ⩽ 1 and 0 ⩽ α ⩽ β. The radius of strong convexity of order γ
for functions whose derivative belongs to K(α, β) is given by

RSCV(γ) ⩾
2 sin πγ

2

(α + β) +
√

(α + β)2 − 4(β − α − 1)(sin πγ
2 )2

.
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