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 In this study, the generalizability and distributivity of three different chaotic systems within 
an industrial robotics time series dataset are explored using an annotated artificial 
intelligence algorithm. A time series dataset derived from industrial robotics processes was 
constructed and transformed into the Runge-Kutta system, comprising fourth-order 
differential equations for normalization. Among the processed data, variables related to x-y-z 
positions underwent chaotic transformations through Lorenz, Chen, and Rossler chaos 
systems. The x variable and angle variables from the transformed x-y-z data were inputted 
into the InterpretML model, an annotated artificial intelligence model, to elucidate the effects 
of angle variables on the x position variable. As a result of this analysis, InterpretML Local 
analysis revealed a sensitivity of 0.05 for the Rossler chaos system, 0.15 for Chen, and 0.25 for 
Lorenz. Furthermore, global analysis indicated precision rates of 0.17 for Rossler, 0.255 for 
Chen, and 0.35 for Lorenz chaos systems. These sensitivity results suggest that the Rossler 
chaos system consistently provides more accurate results in both InterpretML local and global 
analyses compared to other chaotic systems. This study contributes significantly to the 
literature by analyzing the distributive and generalization properties of chaos systems and 
enhancing understanding of these systems. 
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1. Introduction  
 

Chaos theory has become a powerful tool for 
understanding seemingly random events in nature and 
human-made systems. Its importance comes from its 
ability to explain and observe complex and unpredictable 
behavior. Both natural events and artificial systems, 
covering events ranging from changeable weather 
conditions against fluctuations in financial markets also 
helping with precision and adaptability in industrial 
robotics while increasing the efficiency of these systems.  
These chaotic events can affect the movement and 
performance of robot arms, impacting trajectory 
planning, control strategies, and overall system 
efficiency. Machine learning, a subfield of artificial 
intelligence, empowers computers to learn from data and 
solve complex problems iteratively. Algorithms analyze 
vast datasets to identify patterns and relationships, 

enabling them to make forecasts and support decision-
making. On the other hand, Interpretable Artificial 
Intelligence improving the understandability of machine 
learning models and by providing increased 
performance techniques to explain their decisions. 
Although it is widely is used by health professionals as a 
reliable guide for disease diagnosis and treatment 
planning, but also widely used in areas such as financial 
analysis, market forecasting for risk assessment, In 
manufacturing sector. Machine learning and 
interpretable artificial intelligence is used to optimize 
production processes, quality control and can predict 
errors and thus improve operational efficiency. In the 
automotive industry, with the development of 
technology driver assistance systems and autonomous 
vehicle technologies, machine learning and interpretable 
artificial intelligence analyzes various sensor data and 
take decisions to improve driving safety and 
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system performance. They are also used in the field of 
education to evaluate student performance and 
personalize learning processes. The study defended 
users' right to disclosure in algorithms affecting 
information privacy by presenting an interpretable AI 
framework for COVID-19 screening in chest X-ray, 
leveraging transfer learning techniques to overcome 
dataset limitations and achieve high diagnostic accuracy 
[1]. Additionally, another study aims to detect early-
stage lung cancer based on machine learning methods, 
employing nine different algorithms including NB, LR, 
DT, RF, GB, and SVM. The success of the classification 
algorithms used was evaluated using the metrics of 
accuracy, sensitivity, and precision calculated using the 
parameters of the confusion matrix, showing that the 
proposed model can detect cancer with a maximum 
accuracy of 91% [2]. 

In order to test the methods proposed in this article, 
a data set was created using Advanced Kinematics, a 
robotic process, and the Runge-Kutta 4 equation (RK4). 
By passing the spatial x-y-z column data in this created 
data set through Lorenz, Chen and Rossler chaos 
systems, the suitability of the proposed methods to the 
input parameters is ensured. The effects of angle 
variables on the column data of the transformed x 
position are explained by the interpretML algorithm, an 
Explainable Artificial Intelligence model. In addition, the 
effects of the angle variables created by the robot arms in 
their forward kinematic movement on the converted x 
column data are explained with the interpretML 
algorithm, which is also an Explainable Artificial 
Intelligence model. In addition to contributing to the 
advancement of chaotic data analysis, the aim of the 
study is to explain the interaction of chaotic systems in 
the field of industrial robotics with machine learning and 
to pave the way for new applications and understandings 
in this interdisciplinary field. 

Recent research has revealed the great potential of 
the intersection of machine learning (ML) techniques and 
chaotic systems. These techniques have been used 
successfully in fields ranging from quantum physics to 
radar and communications systems. In one study, 
machine learning methods were used in discoveries in 
quantum physics. High accuracy has been achieved to 
classify different regimes in single-particle and multi-
particle systems. Using neural network algorithms, it has 
been possible to distinguish orderly and chaotic behavior 
in quantum billiard models [3]. Another study has shown 
that the standard Hidden Markov Modeling (HMM) 
method is effective in classifying multiple regimes in 
chaotic dynamical systems. Using numerical data from 
known chaotic systems such as Hénon and Lorenz 
attractors, this method has significantly increased 
regime classification accuracy and computational speed 
[4]. A study using controlled chaotic trajectories for 
integration in radar and communications systems 
provides a new solution to a significant challenge in this 
field. This approach allows radar and communication 
systems to coexist even in chaotic situations by encoding 
binary information and exhibits satisfactory 
performance in terms of bit error rate and target 
detection accuracy [5]. Another study extending the use 

of chaotic systems to the field of biomedical research 
investigated the application of chaotic feature extraction 
for gait analysis. Through the analysis of pressure sensor 
data and nonlinear time series, this research aims to 
distinguish between healthy and diseased subjects and 
demonstrate the potential of chaotic approaches in 
diagnosing balance disorders [6]. Addressed the 
challenge of distinguishing noise-corrupted chaotic 
dynamics from randomness through convolutional 
neural networks, while critically analyzed methods for 
processed food classification [7, 8]. Introduced a feature 
selection method amalgamating chaotic salp swarm 
algorithm and extreme learning machine for network 
intrusion detection, and proposed a novel approach for 
extreme learning machine regression problems [9, 10]. 
Curated a database of chaotic dynamical systems and 
discussed chaos as a benchmark for forecasting and data-
driven modeling, and devised a method employing 
reservoir computers to classify hyperchaotic, chaotic, 
and regular signals [11, 12]. Explored neural networks' 
aptitude in classifying regular versus chaotic time series, 
while investigated singular value statistics of non-
Hermitian random matrices for quantifying dissipative 
quantum chaos [13, 14]. Proposed a causality measure 
for extracting brain connectivity, and introduced a 
dataset for electromyogram signal analysis [15, 16]. 
Developed a prognostic model utilizing chaotic 
convolutional neural networks for epileptic seizure 
prediction, and delved into emergent topology in 
dissipative quantum chaos [17, 18]. Elucidated universal 
hard-edge statistics of non-Hermitian random matrices, 
while proposed an enhanced reptile search optimization 
with convolutional autoencoder for soil nutrient 
classification [19, 20]. Introduced a rapid AI model for 
COVID-19 diagnosis and prognosis, and discussed active 
learning within fractal decision boundaries [21, 22]. 
Lastly, expedited reinforcement learning using chaotic 
evolutionary computation for a driver's support display 
system, and advocated for a hybrid forecasting method 
blending machine learning with knowledge-based 
models [23, 24]. Employed machine learning to forecast 
chaotic origami dynamics, while developed a hybrid 
method combining HAVOK analysis and machine 
learning for chaotic time series prediction [25, 26]. 
Demonstrating the effectiveness of machine learning 
techniques, particularly the Extra Trees Regressor, in 
predicting latitude, longitude, and Haversine distance 
with high accuracy, the findings are supported by 
evaluation metrics and methodologies such as Cooks' 
distance outlier detection, t-SNE manifold analysis, and 
feature importance ranking [27]. 

 
2. Material and method 

 
This section is the most important part of the article. 

In the narration to be made in this section, each step 
performed throughout the study should be specified in 
sufficient detail to be repeatable by someone else. In 
order for the scientific validity of the study to be 
accepted, it must be repeatable. Details that may affect 
the results must be conveyed. 
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2.1. Dataset used in the study 
 

In this section, the sub-processes used during the 
creation of the data set are mentioned. While creating the 
data set, Forward Kinematics and Trajectory Planning 
functions, which are robotic processes, were used. 
Creating the data set using these two robotic processes 
was an important step in saving cost and time and 
providing a theoretical basis for the study. 

 
2.1.1. Trajectory planning 
 

Trajectory planning functions are functions that are 
used very effectively, especially in the field of industrial 
robotics. These functions are used to plan the trajectory 
of the robot arm's movement in Cartesian space. 
Although there are many trajectory planning functions, 
the cubic spline trajectory planning function was used in 
this study for its effectiveness and interpretability. This 
function is essentially a polynomial function and is used 
to plan and interpret the orbital movement of the robotic 
arm. 

This function, defined by the cubic spline trajectory 
equation: 

 
𝑞(𝑡) =  𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 (1) 

 
 The variables 𝑎0, 𝑎1, 𝑎2, 𝑎3 in the formula 1 are 

coefficients that contribute to the accuracy, stability and 
efficiency of the actions taken in the forward kinematic 
movement of the robot. The potential values of these 
coefficients change during and after each movement of 
the robot arm in Cartesian space. 

 
2.1.2. Forward kinematics 
 

There are two types of approaches in detailed 
transformation analysis of robotic arm movement. The 
first approach is the Inverse Kinematics approach and 
examines the transformation in a way that takes the 
position value as input and the angle value as the output 
value. The second approach is the Advanced Kinematics 
Approach, which uses the transformation angle value as 
input and examines the position value as output. In the 
Forward Kinematics Approach, Cartesian space is used to 
determine the orientation, position and orientation of the 
end effector of the robot arm. The Cartesian coordinates 
of the connection joints of the robotic arm are 
determined in Cartesian Space based on the angles 
connected to the motors. When performing Advanced 
Kinematics, the DH parameters method is most 
commonly used. This method consists of determining the 
essential parameters of the robot in a certain matrix and 
placing them in this matrix, and performing the forward 
kinematics process with the transformation matrix 
obtained. The DH parameters, key elements in this 
process, include link lengths (𝑎𝑖), joint angles (𝜃𝑖), link 
offsets (𝑑𝑖), and the twist angles (𝛼𝑖). The modified 
forward kinematics formula can be expressed as follows: 

 

𝑇𝑖−1
𝑖

= [𝑐𝜃𝑖  − 𝑠𝜃𝑖  0 𝑎𝑖  𝑠𝜃𝑖𝑐𝛼𝑖  𝑐𝜃𝑖𝑐𝛼𝑖  − 𝑠𝛼𝑖  
− 𝑠𝛼𝑖𝑑𝑖  𝑠𝜃𝑖𝑠𝛼𝑖  𝑐𝜃𝑖𝑠𝛼𝑖  𝑐𝛼𝑖 𝑐𝛼𝑖𝑑𝑖  0 0 0 1   ] 

(2) 
 

 
𝑎𝑖  : The distance between joint (i – 1) and joint i 

along the common normal 
𝛼𝑖  : The rotation angle between joint (i - 1) and joint 

i, measured about the common normal, in radians 
𝑑𝑖  : The link offset between joint i – 1 and joint i 

along the previous z - axis 
𝜃𝑖  : The joint angle, representing the rotation from 

the 𝑧𝑖−1 axis tot the 𝑧𝑖  axis, in radians 
 

Here, c and s represent cosine and sine, respectively. 
Utilizing this transformation matrix enabled the 
calculation of the numerical coordinates (x, y, z) for the 
robot arm's end effector as time progressed, resulting in 
a detailed time-series dataset. 

In this study, it was aimed to create a data set on the 
ABB140 model industrial robot arm. Therefore, when 
selecting the parameters of the DH method while 
performing the forward kinematics process, special 
parameters of the ABB140 model industrial robot arm 
were selected. The selection of our parameters has 
confined our ABB140 model robotic arm within the space 
of our dataset. Table 1 shows the DH parameters of our 
ABB140 model robotic arm. 

 
Table 1. DH Table of ABB140 Robot. 

𝑖 𝑎𝑖  𝛼𝑖  𝑑𝑖  𝜃𝑖  

1 0.000 90 0.535 𝜃1 

2 0.000 -90 0.000 𝜃2 

3 0.425 90 0.000 𝜃3 

4 0.392 0 0.650 𝜃4 

5 0.000 90 0.000 𝜃5 

6 0.000 -90 0.110 𝜃6 

 
To derive the total transformation matrix from the DH 

parameter table, individual transformation matrices are 
created for each link using these parameters. The 
transformation matrices we create represent the spatial 
relationship between adjacent links in the robotic arm. 
By multiplying these matrices, we obtain the overall 
transformation matrix. The overall transformation 
matrix allows us to compute the end-effector position for 
any set of joint angles. The transformation matrices of 
the joints obtained using the DH table are stated in 
equation (3). The total transformation matrix obtained 
by multiplying the transformation matrices of the joints 
is also specified in equation (4). 

 
𝑇0

1 = [𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1)   𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1)  0 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1)   −
𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1)   𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1)  0 𝑎1

𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1)  0 0 1 𝑑1 0 0 0 1   ] 
 
 

𝑇1
2 = [𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃2)   𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃2)  0 

𝑠𝑖𝑛 𝑎2𝑠𝑖𝑛 (𝜃2)  (𝜃2)   
𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃2)  0 − 𝑎2

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃2)  0 0 1 0 0 0 0 1   ] 
 

(3) 
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𝑇2
3 = [𝑐𝑜𝑠 cos(𝜃3)  0 −𝑠𝑖𝑛 sin(𝜃3)  0 𝑠𝑖𝑛 sin(𝜃3)  0

𝑐𝑜𝑠 cos(𝜃3)  0 0 − 1 0 0 0 0 0 1   ] 
 
 

𝑇3
4

= [𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃4)  0 
𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃4)  0 (𝜃4)  0 (𝜃4)  0 0 1 0 𝑑3 0 0 0 1   ] 

 
 

𝑇4
5 = [(𝜃5)  0 (𝜃5)  0 (𝜃5)  0 

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃5)  0 0 0 1 0 0 0 0 1   ] 
 
 

𝑇5
6 = [𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃6)  (𝜃6)  0 0 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃6)   

𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃6)  0 0 0 0 1 𝑑6 0 0 0 1   ] 

 
The total transformation matrix obtained by 

multiplying the transformation matrices of the joints is 
also specified in equation (4). 

 
𝑇0

6

= [𝑟11 𝑟12 𝑟13 𝑟14 𝑟21 𝑟22 𝑟23 𝑟24 𝑟31 𝑟32 𝑟33 𝑟34 𝑟41 𝑟42 𝑟43 𝑟44   ] 
 

𝑟11 = ((𝑆23𝐶1𝐶4 + 𝑆1𝑆4)𝐶5 + 𝑆5𝐶23𝐶1)𝐶6

+ (𝑆23𝑆4𝐶1 − 𝑆1𝐶4)𝑆6 

𝑟12 = ((𝑆23𝐶1𝐶4 + 𝑆1𝑆4)𝐶5 + 𝑆5𝐶23𝐶1)𝑆6

+ (𝑆23𝑆4𝐶1 − 𝑆1𝐶4)𝐶6 
𝑟13 = −(𝑆23𝐶1𝐶4 + 𝑆1𝑆4)𝑆5 + 𝐶23𝐶1𝐶5 

𝑟14 = −((𝑆23𝐶1𝐶4 + 𝑆1𝑆4)𝑆5 − 𝐶23𝐶1𝐶5)𝑑6 + 𝑎1𝐶1 + 𝑎2𝑆2𝐶1

+ 𝑑3𝐶23 
 

𝑟21 = −((𝑆23𝑆1𝐶4 − 𝐶1𝑆4)𝐶5 + 𝑆1𝑆5𝐶23)𝐶6

+ (𝑆23𝑆1𝑆4 + 𝐶1𝐶4)𝑆6 

𝑟22 = ((𝑆23𝑆1𝐶4 − 𝐶1𝑆4)𝐶5 + 𝑆5𝐶23𝑆1)𝑆6

+ (𝑆23𝑆4𝑆1 + 𝐶1𝐶4)𝐶6 
𝑟23 = −(𝑆23𝑆1𝐶4 − 𝐶1𝑆4)𝑆5 + 𝑆1𝐶23𝐶5 

𝑟24 = ((𝑆23𝑆1𝐶4 − 𝐶1𝑆4)𝑆5 − 𝑆1𝐶23𝐶5)𝑑6 + 𝑎1𝑆1 + 𝑎2𝑆1𝑆2

+ 𝑑3𝑆1𝐶23 
 

𝑟31 = (𝑆23𝑆5 − 𝐶23𝐶4𝐶5)𝐶6 + 𝑆4𝑆6𝐶23 
𝑟32 = −(𝑆23𝑆5 − 𝐶23𝐶4𝐶5)𝑆6 + 𝑆4𝐶23𝐶6 

𝑟33 = −𝑆23𝐶5 − 𝑆5𝐶23𝐶4 
𝑟34 = (𝑆23𝐶5 + 𝑆5𝐶23𝐶4)𝑑6 + 𝑎2𝐶2 + 𝑑1 − 𝑑3𝑆23 

𝑟41 = 0 
𝑟42 = 0 
𝑟43 = 0 
𝑟44 = 1 

(4) 

 

While creating the data set, multiple robotic 
processes were monitored and necessary actions were 
taken using the information collected from the ABB140 
model industrial robot arm. The process of creating the 
dataset is shown in Figure 1. Figure 2 shows the 
visualization of x-y-z data within the dataset. 

 

 
Figure 1. Production Flow Diagram of the Dataset. 

 

 
Figure 2. (a) End Effector's X-coordinate Over Time,(b) 
End Effector's Y-coordinate Over Time,(c) End Effector's 
Z-coordinate Over Time. 
 
2.1.3. Data preprocessing 
 

In the second stage of creating the data set produced 
in the study, the data set obtained as a result of robotic 
processes was subjected to a preprocessing operation 
and the data was smoothed. Runge Kutta 4 order method 
were used as this preprocessing operation. This method 
is differential equations, and thanks to these numerical 
operations, it is aimed to improve the accuracy of the 
data in the data set. The algorithm is expressed by the 
following formula: 

 
𝑘1 = ℎ. 𝑓(𝑡𝑛, 𝑦𝑛) (5) 

 

𝑘2 = ℎ. 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
) 

(6) 

 

𝑘3 = ℎ. 𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
) 

(7) 

 
𝑘4 = ℎ. 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3) (8) 

 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 2𝑘4) 

(9) 

 
In this method, the variable tn is determined as the 

current time, the variable yn is the current state, the 
variable ℎ is the time step, and the function 𝑓(𝑡𝑛, 𝑦𝑛) is 
determined as the derivative of the variable state 'y' 
according to time 't'. This method allows creating a 
consistent data set for further kinematics analysis by 
recursively calculating the current state at all time steps. 
In the mathematical formula, the variable 𝑦𝑛+1contains 
four more intermediate steps (𝑘1, 𝑘2, 𝑘3, 𝑘4) to help 
calculate the value of its future state. When examining 
time series, the RK4 method is used, which plays an 
important role in making sense of the differential 
equations (ODE) that create dynamic chaos systems. This 
method is used here due to its high efficiency and 
accuracy in approximating the answers of ODEs. In 
complex systems, RK4 finds the complexity of patterns in 
time series data and provides high accuracy by making 
strong predictions about the behavior of the system. The 
RK4 method, which is preferred to analyze time-
changing situations in scientific applications such as 
robotics and dynamic system creation, provides a good 
balance between analysis efficiency and accuracy. This 
helps researchers gain in-depth information by 
simplifying the general understanding and prediction of 
the mobility of the dynamic system over time while 
increasing the reliability of the method. Figure 3, shows 
the roadmap used in preprocessing the experimental 
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dataset. Figure 4 shows the visualization of x-y-z location 
data obtained from the pre-processed dataset. 

 

 
Figure 3. Pre-Processing the Data Set. 

 
 

 
Figure 4. (a) Time Evolution of End Effector X 
Position,(b) Time Evolution of End Effector Y Position, (c) 
Time Evolution of End Effector Z Position. 
 
2.2. Chaos system in use 
 
2.2.1. Lorenz chaos system 
 

The emergence of the Lorenz chaotic system is 
considered an example of complex chaos through 
complex simple concepts and patterns. This chaotic 
system emerged as a result of Edward Lorenz's use of it 
in his weather forecasting studies. This system, known as 
the 'butterfly effect', emphasizes that phenomena 
obtained from small initial conditions can lead to 
significant consequences. This chaotic behavior is used in 
various fields such as meteorology, economics, 
seismology and neuroscience. It is also used to calculate 
complex and multi-parameter situations, such as 
measuring market fluctuations in financial terms, heart 
rhythm dynamics in medical terms, and population 
changes in social terms. Figure 5 presents graphs 
comparing the cross-sections of the columns of the robot 
arm's x, y, z positions of the new data set processed by 
the chaotic system with the original data set. Figure 6 
shows the relational graphics of the data in the columns 
of x-y, y-z and x-z position change in the data set where 
the chaotic system is processed. The Lorenz system is 
governed by ordinary differential equations (ODEs), 
which generate the following data set: 
 

𝑑𝑡

𝑑𝑡
= 𝜎(𝑦 − 𝑥) 

(10) 

 
𝑑𝑦

𝑑𝑡
= 𝑥(𝑝 − 𝑧) − 𝑦 

(11) 

 
𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 

(12) 

 

𝜎 : Prandtl number defines it as a function of the viscosity 
of the fluid depending on its thermal conductivity. 
 
𝜌 : Rayleigh number is defined as the relationship of the 
liquid layer with temperature. 
 
𝛽 : Geometric factor, finds the effect of the ratios 
consisting of the horizontal and vertical dimensions of 
the convection cell on the system. 

 
Figure 5.  (a) RK4-Lorenz X-coordinate Trajectories,(b) 
RK4-Lorenz Y-coordinate Trajectories,(c) RK4-Lorenz Z-
coordinate Trajectories. 
 

 
Figure 6.  (a) Original-Lorenz X-Z Relationship,(b) 
Original-Lorenz X-Y Relationship,(c) OriginalLorenz Y-Z 
Relationship.   
 
2.2.2. Chen chaos system 
 

The Chen chaos system is a valuable tool for modeling 
complex systems, particularly those exhibiting chaotic 
and unpredictable behavior. Chaos inherently disrupts 
order, making it challenging to understand and predict 
these systems dynamics. The Chen system tackles this 
challenge by unraveling the complexities and providing 
insights into their behavior. Its versatility extends to 
various fields, including weather forecasting, financial 
market analysis, and population dynamics, where it helps 
evaluate future trends and potential scenarios. The Chen 
chaos system plays a critical role in solving real-world 
problems by combining computer simulations, 
mathematical modeling, and data analysis techniques.  

Figures 7 and 8 visually describe the system's impact. 
Figure 7 compares the original dataset (x-yz columns) 
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with the post-implementation data (x, y, z columns) 
extracted after applying the Chen system. Figure 8 
utilizes relational graphs to showcase the 
interdependencies between data points (x-y, y-z, and x-
z) processed through the system. The specific 
mathematical formulation of the Chen system involves 
three sets of Ordinary Differential Equations, which will 
be discussed in the following section. 

 
𝑑𝑥

𝑑𝑡
= 𝑎(𝑥 − 𝑦) 

(13) 

 
𝑑𝑥

𝑑𝑡
= (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦 

(14) 

 
𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧 

(15) 

 
𝑎 : A parameter that controls the change in the 

evolution rate of the system. 
𝑏 : A parameter affecting the nonlinearity of the 

system. 
𝑐 : A parameter influencing the coupling between 

variables. 
 

 
Figure 7.  (a) RK4-Chen X Positions,(b) RK4-Chen Y 
Positions,(c) RK4-Chen Z Positions. 

 

 
Figure 8.  (a) Original-Chen X-Z Relationship,(b) 
Original-Chen X-Y Relationship,(c) Original-Chen Y-Z 
Relationship. 
 

2.2.3. Rossler Chaos System 
 

The Rossler chaos system consists of a set of 
differential equations to determine chaotic behavior. 
This system was designed by Edward Lorenz during a 
study to model the chaotic behavior of weather. This 
system, which is a 3D dynamic workspace, offers the 
most concrete example of the chaotic behavior created 
by variable parameters. Therefore, it is known as the 
most important system of chaos theory. Randomness 
provides a fundamental model for research and analysis 
in many physical, biological and engineering 
applications, especially signal processing and 
cryptography. 
 
Figure 9 shows the comparison of the x, y, z values of our 
new data set after applying the Rossler chaos system to 
the x, y, z values in our data set. Figure 10 shows the 
correlations between x-, y-z and x-z values obtained after 
the Rossler chaos system we applied to our data set. 
 
The differential equations that make up the Rossler chaos 
system are as follows: 
 

𝑑𝑥

𝑑𝑡
= −𝑦 − 𝑧 

(16) 

 
𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦 

(17) 

 
𝑑𝑧

𝑑𝑡
= 𝑏 + 𝑧(𝑥 − 𝑐) 

(18) 

 
𝑎 : A parameter determining the strength of the 
nonlinear term in the y equation. 
𝑏 : A parameter affecting the linear term in the z 
equation. 
𝑐 : A parameter influencing the nonlinear term in 
the z equation. 

 

 
Figure 9.  (a) RK4-Rossler X Positions,(b) RK4-Rossler Y 
Positions,(c) RK4-Rossler Z Positions. 
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Figure 10.  (a) Original-Rossler X-Z Relationship,(b) 
Original-Rossler X-Z Relationship,(c) OriginalRossler Y-Z 
Relationship. 
 
2.3. Interpretable AI model in use 
 

Interpretable AI stands out as a field of research that 
aims to explain the inner workings of complex artificial 
intelligence models and make them understandable by 
humans. This approach uses features or attributes that 
can be understood and accurately expressed to explain 
algorithm-based decision processes that are traditionally 
difficult to understand. This way, the model's decisions 
can be accessed reliably while gaining a deeper 
understanding of how the model works. It is important to 
ensure reliability by increasing the transparency of 
decision processes, especially in critical application areas 
such as medical diagnoses, legal decisions and financial 
analyses.Insufficient interpretability of machine learning 
models used in healthcare may impede data-driven 
decision-making in the healthcare sector [28]. In the 
study definitions, nuances, challenges,and requirements 
for the design of interpretable machine learning models 
in healthcare are extensively discussed; furthermore, 
various uses of these models in healthcare and the 
selection of the appropriate interpretable machine 
learning algorithm for a given problem are addressed. 
Figure 6 shows the output of an interpretML model 
showing the importance of the “Native Country” attribute 
in different countries. The model predicted that this 
feature had the highest importance in the first country 
and the lowest importance in the second country. 

 

 
Figure 11.  InterpretML Analysis Report. 
 
3. Results  
 

In this study, an angle-position data set of an 
industrial robot arm was created by using the advanced 
kinematics formulae of the robot arm. The position 
variable X in the generated data set was transformed by 

Lorenz, Chen and Rossler chaos systems. The 
transformed X position variable and the angle variables 
in the data set were explained with InterpretML, an 
Interpreted Artificial Intelligence model. 

In Figure 12, the global explanation of the effects of 
Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Lorenz chaos 
system with InterpretML is visualized. Joint Angle 1 
variable 0.1, Joint Angle 2 variable 0.088, Joint Angle 3 
variable 0.087, Joint Angle 4 variable 0.086, Joint Angle 5 
variable 0.085, Joint Angle 6 variable 0.085, Joint Angle 6 
variable 0.084, binary angles have almost 0 weighted 
effect on Lorenz X position variable. As a result of these 
weighted effects, it is observed that Joint Angle 1 has the 
most effect on Lorenz X position and Joint Angle 6 has the 
least effect. 
 

 
Figure 12.  InterpretML Global Analysis for Lorenz X 
Position. 
 

 
Figure 13.  InterpretML Local Analysis for Lorenz X 
Position. 

 
In Figure 13, the local explanation of the effects of 

Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Lorenz chaos 
system with InterpretML is visualized. Joint Angle 1 
variable -0.73, Joint Angle 2 variable -0.97, Joint Angle 3 
variable -1.45, Joint Angle 4 variable -0.73, Joint Angle 5 
variable -0.97, Joint Angle 6 variable -1.45, binary angles 
have almost 0 weighted effect on Lorenz X position 
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variable. As a result of these weighted effects, it is 
observed that Joint Angle 3 and Joint Angle 6 variables 
have the highest negative effect on Lorenz X position, 
while Joint Angle 1 and Joint Angle 4 variables have the 
least effect. 
 

 
Figure 14.  InterpretML Global Analysis for Rossler X 
Position. 
 

In Figure 14, the global explanation of the effects of 
Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Rossler chaos 
system with InterpretML is visualized. Joint Angle 1 
variable 0.168, Joint Angle 2 variable 0.17, Joint Angle 3 
variable 0.165, Joint Angle 4 variable 0.162, Joint Angle 5 
variable 0.16, Joint Angle 6 variable 0.16, Joint Angle 6 
variable 0.084, binary angles have almost 0 weighted 
effect on Rossler X position variable. As a result of these 
weighted effects, it is observed that Joint Angle 2 has the 
most effect on Lorenz X position and Joint Angle 5 and 
Joint Angle 6 has the least effect. 
 

 
Figure 15.  InterpretML Local Analysis for Rossler X 
Position. 
 

In Figure 15, the local explanation of the effects of 
Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Rossler chaos 
system with InterpretML is visualized. Joint Angle 1 
variable 0.023, Joint Angle 2 variable 0.05, Joint Angle 3 
variable 0.033, Joint Angle 4 variable 0.045, Joint Angle 5 
variable 0.028, Joint Angle 6 variable -1.45, binary angles 
have almost 0 weighted effect on Rossler X position 
variable. As a result of these weighted effects, it is 
observed that Joint Angle 2 variable have the highest 

positive effect on Lorenz X position, while Joint Angle 1 
variable have the least effect. 
 

 
Figure 16.  InterpretML Global Analysis for Chen X 
Position. 
 

In Figure 16, the global explanation of the effects of 
Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Chen chaos 
system with InterpretML is visualized. Joint Angle 1 
variable variable 0.053, Joint Angle 2 variable variable 
0.057, Joint Angle 3 variable 0.052, Joint Angle 4 variable 
variable 0.052, Joint Angle 5 variable 0.047, Joint Angle 6 
variable 0.051, Joint Angle 5-6 0.28, Joint Angle 4-6 
0.273,Joint Angle 4-5 0.27 have weighted effect on Chen 
X position variable. As a result of these weighted effects, 
it is observed that Joint Joint Angle 5-6 has the most effect 
on Chen X position and Joint Angle 5 has the least effect. 
 

 
Figure 17.  InterpretML Local Analysis for Chen X 
Position. 

In Figure 17, the local explanation of the effects of 
Joint Angle 1, Joint Angle 2, Joint Angle 3, Joint Angle 4, 
Joint Angle 5, Joint Angle 6 variables in the data set on the 
X position variable passed through the Chen chaos 
system with InterpretML is visualized. Joint Angle 1 
variable -0.09, Joint Angle 2 variable -0.07, Joint Angle 3 
variable -0.05, Joint Angle 4 variable -0.11, Joint Angle 5 
variable -0.045, Joint Angle 6 variable -0.045,Joint Angle 
4-5 -0.1, Joint Angle 4-6 -0.105 and Joint Angle 5-6 -0.125 
weighted effect on Chen X position variable. As a result of 
these weighted effects, it is observed that Joint Angle 5-6 
have the highest negative effect on Chen X position, while 
Joint Angle 6 variable have the least effect. 
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4. Discussion 
 

As a result of this study, it has been shown that time 
series data of chaos systems can be used successfully to 
improve the learning ability. The time series data set of 
the ABB140 model industrial robot was processed with 
three different chaos systems: Lorenz, Rossler and Chen, 
and significant improvements were observed in the 
understandability and interpretability of the data set. 
The transformations created with this chaos system 
provided important information about the relationship 
between the position variable X and the angle variables. 

The InterpretML model, an explainable artificial 
intelligence model, was used to detect the effects of 
angles on the transformed X position data. Results found 
with InterpretML showed that it is robust in both global 
and local analysis; Its compatibility with the Rossler 
chaos system has been determined. These results have 
been observed in the role of advanced interpretability 
techniques such as InterpretML to extract useful 
information from complex data sets generated by chaotic 
models. By comparing the usability of OmniXAI and 
InterpretML integrated frameworks in the healthcare 
industry and in terms of explaining the models' 
predictions, Yu found that InterpretML explained its data 
more accurately [29]. 

A contribution to the existing literature is made by 
emphasizing the importance of chaos systems in 
increasing the interpretability of machine learning 
models, especially in areas such as robotics and 
industrial automation. By exploiting the inherent 
dynamics of chaotic systems, not only the learning 
capabilities of our model were improved, but also the 
distributional relationships of chaos systems were 
revealed and their efficiency regarding their applicability 
in data analysis and prediction was demonstrated. Abdul 
Karim advocates a shift towards a question-based 
approach to interpretability in machine learning, 
emphasizing the importance of addressing specific 
questions about interpretability rather than focusing 
solely on the tools used, thereby encouraging a deeper 
understanding of machine learning not just as a science. 
It is just an engineering application [30]. 
 
5. Conclusion  
 

In this study, the chaos distribution on the industrial 
robot data set was tried to be explained with annotated 
artificial intelligence. Advanced kinematics and 
trajectory planning functions were used when designing 
the data set, and thus the first versions of the data set 
were created. The obtained data set was pre-processed 
with the Runge Kutta 4 method and the data set we will 
mainly use was created. The created original data set was 
passed through 3 different chaos systems and the effects 
of the angle variables in the data set on the position 
variable X were explained in detail with Annotated 
Artificial Intelligence. In the updated data set, the data of 
x, y and z position variables were transformed by passing 
through these 3 chaos systems: Lorenz, Rossler and 
Chen. The effects of angles on the transformed X position 
data are explained with the InterpretML model, which is 

an Explanatory Artificial Intelligence model. As a result of 
the explanation, InterpretML explained the local analysis 
for the Rossler chaos system with 0.05, Chen 0.15 and 
Lorenz 0.25 precision; Global analysis for Rossler chaos 
system with precision of 0.17, Chen with precision of 
0.255 and Lorenz with precision of 0.35. According to 
these precise results, InterpretML is more consistent in 
local and global analysis because the Rossler chaos 
system gives more accurate results than other chaos 
systems. This study sheds light on the importance and 
explanation of the distributiveness of chaos systems. 

In the future, as the functionality of integrating chaos 
theory into machine learning methodologies is seen, it 
will create new possibilities in data-driven decision-
making in various fields. Future research efforts are 
expected to be directed towards integrating insights 
from chaos theory to improve the interpretability of 
machine learning models and facilitate the development 
of more robust and effective predictive models. Chun 
Zhang argues for the necessity of integrating chaos 
theory with machine learning. This integration may 
enable the development of new and powerful tools for 
data-driven decision-making in various fields in the 
future. Future research is expected to use insights from 
chaos theory to help improve the interpretability of 
machine learning models and create more robust and 
effective predictive models [31]. 
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