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Özet. Bu çalışmada, kesirli mertebeden Sharma-Tasso-Olver (STO) denkleminin yaklaşık
analitik çözümlerini elde etmek için homotopi analiz metodu (HAM) başarılı bir şekilde
uygulandı. Elde edilen sonuçlarla varyasyonel iterasyon metodu (VIM), Adomian ayrıştır-
ma metodu (ADM) ve homotopi pertürbasyon metodu (HPM) ile elde edilen sonuçların
karşılaştırılması; önemli ölçüde anlamlı sonuçlar elde ettiğimiz sonucuna varmamıza sebep
oldu. HAM çözümü, çözüm serilerinin yakınsaklık bölgesini kontrol etmek ve ayarlamak
için uygun bir yol sağlayan bir ~ yardımcı parametresini içerir.

Anahtar Kelimeler. Homotopi analiz metodu, yaklaşık analitik çözüm, kesirli mertebe-
den Sharma-Tasso-Olver denklemi, kesirli kalkülüs.

Abstract. In this paper, the homotopy analysis method (HAM) is successfully applied to
the fractional Sharma-Tasso-Olver equation to obtain its approximate analytical solutions.
Comparison of the obtained results with those of variational iteration method (VIM),
Adomian’s decomposition method (ADM) and homotopy perturbation method (HPM) has
led us to conclude that the method gives significantly important consequences. The HAM
solution includes an auxiliary parameter ~ which provides a convenient way of adjusting
and controlling the convergence region of solution series.

Keywords. Homotopy analysis method, approximate analytical solution, fractional
Sharma-Tasso-Olver equation, fractional calculus.

1. Introduction

Since many important phenomena in physics and engineering can only be well de-

scribed by fractional differential equations, a considerable interest in them has been

aroused recently due to their widespread applications in physics and engineering.

However, in general, there exists no method that gives an exact solution for a frac-

tional differential equation. Thus, their approximate analytical solutions have been
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sought and found by various methods such as VIM [1, 2], ADM [3, 4], HPM [5, 6]

and HAM [7, 8, 9]. The HAM which was first proposed by Liao [10, 11] is a pow-

erful tool for searching the approximate solutions of nonlinear evolution equations

(NLEEs). Unlike perturbation techniques, the HAM is not limited to any small

physical parameters in the considered equation. Therefore, the HAM can overcome

the foregoing restrictions and limitations of perturbation techniques so that it pro-

vides us with a powerful tool to analyze strongly nonlinear problems [12, 13]. In this

paper, we will apply the HAM to the fractional Sharma-Tasso-Olver equation. One

of the fractional differential equations arising in science and engineering is Sharma-

Tasso-Olver equation with time-fractional derivative of the form

Dα
t u+ 3au2x + 3au2ux + 3auuxx + auxxx = 0, t > 0, 0 < α ≤ 1 (1)

where a is an arbitary constant, α is a parameter describing the order of the frac-

tional time-derivative.

Several definitions of fractional integration and derivation such as Riemann-

Liouville’s and Casputo’s have been proposed. The Riemann-Liouville integral op-

erator [14] having order α > 0 is defined as

Jαf(x) =
1

Γ(α)

xˆ

0

(x− t)α−1f(t)dt (x > 0)

and as

J0f(x) = f(x)

for α = 0. Its fractional derivative of order α > 0 is generally used

Dαf(x) =
dn

dxn
Jn−αf(x) (n− 1 < α < n)

where n is an arbitrary integer. The Riemann-Liouville integral operator has an

important role for the development of the theory of both fractional derivatives and

integrals. In spite of this fact, it has certain disadvantages when it comes to mod-

elling real-world phenomena with fractional differential equations. This problem has

been solved by M. Caputo first in his article [15] and then in his book [16]. Caputo

definition, which is a modification of Riemann-Liouville definition, can be given as

Dαf(x) = Jn−αDnf(x) =
1

Γ(n− α)

xˆ

0

(x−t)n−α−1f (n)(t)dt, α > 0, (n−1 < α < n).
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Note that Caputo derivative has the following two important properties

DαJαf (x) = f (x)

and

JαDαf(x) = f(x)−
n−1∑
k=0

f (k)(0+)
xk

k!
(n− 1 < α < n).

2. HAM Solutions of Fractional Sharma-Tasso-Olver

Equation

The Eq. (1) is considered with the initial condition

u(x, 0) =
2k(w + tanh(kx))

1 + w tanh(kx)
(2)

where k, w ∈ C. To investigate the series solution of Eq. (1) with initial condition

(2) and to make a comparison with VIM, ADM and HPM solutions in Ref. [17], we

choose the linear operator

L [φ(x, t; q)] = Dα
t [φ(x, t; q)]

with the property

L [c] = 0

where c is constant. From Eq. (1), we can now define a nonlinear operator as

N [φ(x, t; q)] =
∂αφ(x, t; q)

∂tα
+ 3a

(
∂φ(x, t; q)

∂x

)2

+ 3a (φ(x, t; q))2
∂φ(x, t; q)

∂x
+ 3aφ(x, t; q)

∂2φ(x, t; q)

∂x2
+ a

∂3φ(x, t; q)

∂x3
.

Therefore, we construct the zero-order deformation equation as follows

(1− q)L[φ(x, t; q)− u0(x, t)] = q}N [φ(x, t; q)]. (3)

Obviously, if we choose q = 0 and q = 1, then we obtain

φ(x, t; 0) = u0(x, t) = u(x, 0),

φ(x, t; 1) = u(x, t)

respectively. Thus, as the embedding parameter q increases from 0 to 1, the solution
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φ(x, t; q) varies from the initial value u0(x, t) to the solution u(x, t). By expanding

φ(x, t; q) in Taylor series with respect to the embedding parameter q, we obtain

φ(x, t; q) = u0(x, t) +
∞∑
m=1

um(x, t)qm

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm

∣∣∣∣
q=0

.

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ are

properly chosen, the above series converges at q = 1, and one can have

u(x, t) = u0(x, t) +
∞∑
m=1

um(x, t)

which must be one of the solutions of the original nonlinear equation, as proved by

Liao [11, 18]. By differentiating Eq. (3) m times with respect to the embedding

parameter q, we obtain the mth-order deformation equation

L [um(x, t)− χmum−1(x, t)] = ~Rm (~um−1) (4)

where

Rm(~um−1) =
∂αum−1(x, t)

∂tα
+ 3a

m−1∑
n=0

∂un(x, t)

∂x

∂um−1−n(x, t)

∂x

+ 3a
m−1∑
n=0

(
n∑
k=0

uk(x, t)un−k(x, t)

)
∂um−1−n(x, t)

∂x

+ 3a
m−1∑
n=0

un(x, t)
∂2um−1−n(x, t)

∂x2
+ a

∂3um−1(x, t)

∂x3

and

χm =

{
0, m ≤ 1,

1, m > 1.

The solution of the mth-order deformation Eq. (4) for m ≥ 1 leads to

um(x, t) = χmum−1(x, t) + ~Jαt [Rm (~um−1)] . (5)

By using Eq. (5) with the initial condition given by (2), we successively obtain

u0(x, t) = u(x, 0) =
2k(w + tanh(kx))

1 + w tanh(kx)
,
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u1(x, t) =
16ak4(w2 − 1)2~tα

Γ(α + 1)(cosh(kx) + w sinh(kx))4
+

8ak4(w4 − 1)~tα cosh(2kx)

Γ(α + 1)(cosh(kx) + w sinh(kx))4

+
16ak4w(w2 − 1)~tα sinh(2kx)

Γ(α + 1)(cosh(kx) + w sinh(kx))4
,

...

etc. Therefore, the series solution expressed by the HAM can be written in the form

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + . . . . (6)

To demonstrate the efficiency of the method, we compare the HAM solutions of

fractional Sharma-Tasso-Olver equation given by Eq. (6) for α = 1 with exact

solutions [17]

u(x, t) =
2k(w + tanh(k(x− 4ak2t)))

1 + w tanh(k(x− 4ak2t))
. (7)

Note that our HAM solution series contains the auxiliary parameter ~ which pro-

vides us with a simply way to adjust and control the convergence of the solution

series. To obtain an appropriate range for ~, we consider the so-called ~-curve to

choose a proper value of ~ which ensures that the solution series is convergent, as

pointed by Liao [11], by discovering the valid region of ~ which corresponds to the

line segments nearly parallel to the horizontal axis. In Fig.1, we demonstrate the

~-curves of u(2, 0.01) given by 4th-order HAM solution (6) for α = 1, α = 0.9 and

α = 0.8. It can be seen from the figure that the valid range of ~ is approximately

−1.4 ≤ ~ ≤ −0.7.

Figure 1. The ~-curves of 4th-order approximate solutions obtained
by the HAM.
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The comparison of the results of the HAM, VIM [17], ADM [17], HPM [17] and

exact solution for α = 1 is given in Table 1. It shows that 4th-order approximate

solution obtained by the HAM for ~ = −1 is in good agrement at almost all points

(x, t).

Table 1. The results obtained by the HAM for ~ = −1 by 4th-order
approximate solution in comparison with the VIM, ADM, HPM in
Ref. [17] and exact solution at t = 0.01 for α = k = a = 1, and w = 1

2
.

x uVIM [17] uADM [17] uHPM [17] uHAM(x, t) Exact Solution
0 0.938798380 0.938800000 0.938800000 0.938808800 0.938808808
1 1.813642383 1.813642415 1.813642415 1.813631681 1.813631681
2 1.973721044 1.973721044 1.973721044 1.973719022 1.973719022
3 1.996423221 1.996423221 1.996423221 1.996422935 1.996422935
4 1.999515561 1.999515561 1.999515561 1.999515522 1.999515522
5 1.999934431 1.999934431 1.999934431 1.999934426 1.999934426
6 1.999991127 1.999991127 1.999991127 1.999991125 1.999991125
7 1.999998799 1.999998799 1.999998799 1.999998799 1.999998799
8 1.999999839 1.999999839 1.999999839 1.999999837 1.999999837
9 1.999999978 1.999999978 1.999999978 1.999999978 1.999999978

10 1.999999997 1.999999997 1.999999997 1.999999997 1.999999997

Fig. 2 shows the absolute error between numerical solution of u(x, t) during 0 ≤ t ≤
0.1 for −100 ≤ x ≤ 100, a = k = α = 1, w = 1

2
and ~ = −1 obtained by 4th-order

HAM and analytical solutions. It can be seen from this figure and Table 1 that the

choice of ~ = −1 is a suitable one.

Figure 2. The absolute error between the exact solution and the 4th-
order approximate solution obtained by the HAM for a = k = α = 1,
w = 1

2
and ~ = −1.
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Fig. 3 shows the numerical solutions of u(x, t) during 0 ≤ t ≤ 0.1 for −100 ≤ x ≤
100, a = k = α = 1, w = 1

2
and ~ = −1 obtained by 4th-order HAM for α = 0.9

and α = 0.8, respectively.

Figure 3. The results obtained by the HAM for α = 0.9, α = 0.8,
respectively, and ~ = −1 by 4th-order approximate solution when
a = k = 1 and w = 1

2
.

In order to investigate the state of the parameter ~ for smaller values of α, in Fig.

4, we illustrate the ~-curve of u(2, 0.01) given by the 4th-order HAM solution (6)

for, the same parameters as used in Ref. [17], α = 0.5 when a = ln 10, k = −π
2

and w = −1
5
. It can clearly be seen from the figure that the valid range of ~ lies

approximately in −0.1 ≤ ~ ≤ 0.5

Figure 4. The ~-curve of 4th-order approximate solutions obtained
by the HAM for α = 0.5, a = ln 10, k = −π

2
and w = −1

5
.
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Fig. 5 shows the numerical solution of u(x, t) during 0 ≤ t ≤ 1 for −100 ≤ x ≤ 100,

a = ln 10, k = −π
2
, w = −1

5
and ~ = 0.2 obtained by 4th-order HAM for α = 0.5.

Figure 5. The results obtained by the HAM for α = 0.5, and ~ =
0.2 by 4th-order approximate solution when a = ln 10, k = −π

2
and

w = −1
5
.

3. Conclusion

In this paper, the HAM has been successfully applied to obtain approximate analyt-

ical solution of fractional Sharmo-Tasso-Olver equation. It has also been seen that

the HAM solution of the problem converges very rapidly to the exact one by choos-

ing an appropriate auxiliary parameter ~. In conclusion, this study shows that the

HAM is a powerful and efficient technique with respect to VIM, ADM and HPM in

finding the approximate analytical solution of fractional Sharma-Tasso-Olver equa-

tion. Moreover, it can also be used to solve many other nonlinear evolution equations

arising in science and engineering.
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