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Abstract  Keywords 

Due to the negative effects of emissions caused by fossil fuels used by aircraft engines 

on the environment and human health, and the fact that fuel consumption is a high 

cost input for airlines, the aviation community has many studies on both issues. In 

order to overcome these problems, much space has been devoted to modeling, 

prediction and optimization studies on emissions and fuel consumption in the 

literature. Within the scope of this study, a model was created to predict the NOx 

emission values and fuel flow of high by-pass turbofan engines, which are also used 

in today's commercial air transportation. 165 different turbofan data taken from the 

International Civil Aviation Organization (ICAO) emission databank were used for 

modeling, and the specified parameters were modeled according to the by-pass ratio 

(BPR), overall pressure ratio (OPR) and rated thrust input parameters. In this context, 

the Cuckoo search algorithm-support vector regression (CSA-SVR) method for the 

Landing and Take-off (LTO) cycle, which includes the idle, take-off (T/O), climb out 

(C/O) and approach (App) phases, was used for the first time in the literature for the 

above-mentioned purpose. As a result of the error analysis methods, the minimum R2 

value for 4 phases in FF estimation was found to be 0.972763. This value for NOX 

was 0.6745 in the idle phase. However, the fact that this value was found to be 

0.861497, 0.884984 and 0.792779 for T/O, C/O and App, respectively, shows the 

success of the model in estimating actual data. 
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1. INTRODUCTION 

 

Although situations such as the continuous development of technology, industrialization and the 

constant increase in transportation networks are important developments for humanity, they also bring 

certain problems. One of these problems is air pollution. It should not be forgotten that this situation, 

which has a negative impact on the environment and human health, may also be caused by natural factors 

(volcanic factors, wild fire, etc.) in addition to the anthropogenic factors mentioned above. 

Transportation, one of the anthropogenic factors, has a significant share in air pollution. Emissions 

resulting from air, land, sea and rail transportation are also partially responsible for climate change, 

stratospheric ozone depletion and acid deposition [1,3]. 

 

The speed that aviation provides to its customers, especially in international transportation, compared 

to other types of transportation, causes its rapid growth. As a matter of fact, research predicts that despite 

the negative effects of Covid-19, air transportation will grow between 3.6% and 3.8% on an annual basis 

between 2019 and 2041 [4,5]. Increasing air traffic will also increase total fuel consumption and fuel-

related emissions. In order to overcome the mentioned problems, aircraft/engine manufacturers are 

trying to produce more efficient aircraft/engines, relevant authorities are developing different 
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procedures and methods to make aircraft stay in the air and on the ground shorter, and also; they have 

brought solutions such as turning to alternative fuels (Hydrogen) [6–10]. 

 

Research shows that aircraft engines account for approximately 2% of global greenhouse gas emissions 

due to the fossil fuel they use. However, with increasing air traffic, this value is estimated to be around 

3% in 2050. Among transportation modes, approximately 10% of global greenhouse gas emissions 

originate from aircraft engines. In this context, being able to use fuel efficiently and reduce emissions is 

very important for economic and environmental sustainability [11,12]. Namely; According to 

International Air Transport Association (IATA) data, fuel costs (271 billion USD) constituted a very 

large percentage of airline operating costs, approximately 32%, in 2023 [13]. 

 

Emissions caused by aircraft engines spread to the environment within and above the troposphere layer 

of the atmosphere. These are nitrogen oxides (NOx), carbon dioxide (CO2), various sulfur oxides (SOx), 

water vapor (H2O), carbon monoxide (CO), various non-methane hydrocarbons (NMHC), other gases 

and particles [1, 14]. Within the scope of this study, NOx-related estimation was made. Aviation NOx 

emissions have adverse effects on local air quality and human health. NOx emissions change the levels 

of methane (CH4) and atmospheric ozone (O3), two important greenhouse gases, and thus also affect the 

climate [15]. In addition, the impact of aviation among all anthropogenic sources in NOx production is 

approximately 3% [1]. In this regard, considering the future development of aviation, studies on NOx 

are important. 

 

Due to the importance of reducing emissions, there are many studies in the literature on emission 

estimation, modeling and optimization for different aircraft engines in aviation. Metaheuristic methods 

are frequently used for this purpose. The basis for this lies in the success of these methods in challenging 

modeling and optimization problems in many different fields. Modeling work for 51 different mixed-

flow turbofan engines can be given as an example of the mentioned studies. A multiple regression model 

was created for the engines specified within the scope of the study. Afterwards, it was aimed to increase 

the model accuracy by using the simulated annealing and genetic algorithms (GA) methods. The data 

used are data published by the International Civil Aviation Organization (ICAO). Model input values 

are by-pass ratio (BPR), overall pressure ratio (OPR) and fuel flow (FF), which have significant effects 

on engine performance. Using the 3 specified input values, rated thrust, different exergetic parameters 

and NOx emission index (EI) values were predicted. As a result of the analysis, the coefficient of 

determination (R2) value was found to be approximately 0.862 for NOx EI [16]. In another study on the 

subject, certain exergy parameters were calculated for the take-off phase. Additionally, models 

estimating emission values and calculated exergy parameters were created. SVR and long short-term 

memory (LSTM) methods were used to model 171 different high BPR turbofan engines. In the study 

where FF was also modeled for the take-off phase, HC, NOx and CO EI parameters were estimated. 

ICAO data was used for modeling and model input values were determined as rated thrust, BPR, OPR 

and combustion type. The study stands out as the first study on modeling the emission index and 

exergetic environmental parameters of high-bypass turbofan engines using the specified methods. The 

fact that the R2 values of the models are very close to 1 shows the accuracy of the study [17]. Apart from 

emissions, there are also many studies on fuel consumption modeling alone. The basis for this lies in 

the fact that fuel consumption has a significant share in the operating expenses of airlines and is the 

main source of emissions. Trani et al. (2004) created an aircraft fuel consumption model using the 

Fokker F-100 aircraft performance manual and the artificial neural network (ANN) method [18]. Other 

studies on the subject were conducted by Baklacioglu (2015) and Baklacioglu (2016). In his first study, 

the author created a fuel flow rate model for commercial aircraft for the climbing flight profile using the 

GA method. True airspeed (TAS) and altitude were used as input values [19]. In the other study, a model 

was created for the B737-800 aircraft by using ANN and GA methods together. The goal is to create a 

model that predicts actual data for climb, cruise and descent based on TAS and altitude inputs [6]. 

Moreover, Ridvan and Baklacioglu conducted two different studies on climb and descent flight profiles, 

respectively, using CSA and particle swarm optimization (PSO) method. The data set used in the study 
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is flight data recorder (FDR) data of B737-800, one of the most used aircraft in medium-haul commercial 

air transportation. TAS and altitude, which directly affect flight performance and therefore fuel 

consumption, were used as model input values. Actual data were predicted with high accuracy in both 

fuel flow rate models [20, 21]. 

 

As a result of the literature research, to the author's knowledge, there is no study using the CSA-SVR 

method on NOx emissions and fuel flow for the landing and take-off (LTO) cycle of turbofan engines 

with high BPR. This study stands out in this context as it is the first in this field. BPR, rated thrust and 

OPR, which have a significant impact on engine performance, were used as model input values. The 

created model predicts FF and NOx with high accuracy according to the input values specified for the 

LTO cycle, which includes the idle, take-off, climb out and approach phases. In the study, data sets 

taken from the ICAO emission databank for 165 different high-bypass turbofan engines were used [22]. 

Although the input parameters and number of engines used are high, the prediction success is quite high, 

which shows the accuracy of the study. The fact that the engines are used in today's commercial air 

transportation shows the up-to-dateness of the study; Moreover, modeling for 4 different phases is 

important for the breadth of the scope. 

 

2. CUCKOO SEARCH ALGORTIHM 

 

Although CSA is a relatively new algorithm, it is frequently used in many areas. The most important 

reasons for this are that changing the parameters in the algorithm does not have much effect on the 

solution quality, CSA explores the search space more efficiently by using Lévy flights instead of 

standard random walks, and the risk of getting stuck in local minima is low. Research shows that the 

performance of the CSA method is better than GA and PSO, two of the most used metaheuristic 

methods. The main inspiration for the algorithm is brood parasitism, which is the reproductive strategy 

of some cuckoo species. CSA is built on 3 basic rules given below [20, 23, 24]. 

 

 Each cuckoo lays one egg in a randomly selected nest at one time. 

 The best nests with high-quality eggs will be passed on to future generations. 

 In CSA, the number of nests is fixed and the egg laid will be found by the host bird with a 

probability between 0 and 1. If the host bird notices the cuckoo egg, it will either get rid of it or 

leave its current nest to build a new nest [20,25]. 

 

CSA uses a combination of local and global random walk. The extent to which the algorithm's global 

and local search capabilities will be used is determined by the switching factor (pa). Local random walk 

is shown in equation 1. 
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where xi
t is the current solution and xi

t+1 indicates the new solution. From the other terms s and α are 

step size and step size scaling factor, respectively. While H(u) denotes the heaviside function, xj
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t 

are two randomly selected different solutions. Finally, ϵ refers to a random number drawn from a 

uniform distribution, while the symbol ⊗ is the entry-wise product. The global random walk is specified 

in the equations below. 
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The global random walk uses Lévy flights. Therefore, λ is the Lévy flight parameter and the function Γ 

is a constant given for λ. One of the other terms, αL(s, λ ) is the transition probability  [20,23,25–27]. 
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3. SUPPORT VECTOR REGRESSION  

 

SVR is a high-dimensional and non-linear mapping machine learning method with low computational 

complexity that gives very good results in challenging optimization problems [28,29]. The general 

equations for SVR are shown below: 

Consider a series of training points, {(x1, d1), (x2, d2),  . . . , (xi, di)}, x ∈ Rn ve y ∈ R. x are the input 

values and d expressions are used to specify the output values. The main goal is to define a regression 

function such as y=f(x) that accurately predicts the outputs di corresponding to a new set of input-output 

samples expressed as (xi, di). The linear regression function (in feature space) is shown below: 
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where Ф(x) is the high-dimensional feature space mapped non-linearly from the input space x. Other 

terms ω and b are coefficients. These coefficients can be estimated by minimizing the basic problem of 

SVR as follows: 
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where slack variables ξ and ξ∗ are used to measure the error of the up and down sides, respectively, and 

C is the regulator. This basic optimization problem is a linearly constrained quadratic programming 

problem that can be solved by introducing Lagrangian multipliers and applying Karush-Kuhn-Tucker 

(KKT) conditions for solving the dual problem: 
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Where K(xi, xj) is used to denote the kernel function, and the value of this function is equal to the product 

Ф (xi) and Ф(xj). Additionally, in equation 6, the terms α and α* associated with the constraints are used 

to express the Lagrangian multipliers. The kernel function used for SVR modeling in the study is the 

Radial basis function (Gaussian). The equation used for this is expressed below [17,29–31]: 
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4. RESULT AND DISCUSSION 

 

The aim of the study is to create a model that will predict NOx, which has a very negative impact on the 

environment and human health, and FF, which is one of the largest cost inputs of airline operating 

expenses and is actually the source of emissions. For modeling, 165 different high-bypass turbofan 
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engines taken from the ICAO emission databank and frequently used in today's commercial air 

transportation were used. The most commonly used engines today were used in the analyses. CFM56-

5B/7B engines and their variants are some of them. These engines are used in aircraft such as A320 and 

B738, which are frequently preferred in commercial air transportation. Moreover, GE90, CF6, LEAP 

1A/1B, GEnx-1B/-2B etc. engines and their variants were used. The areas of use of these engines are 

again the most preferred aircrafts such as B777, B747, A320 Neo, B737 Max, B787 respectively. The 

above engines are only a few of the engines used in the analyses. Some of the mentioned engines can 

be used in other aircrafts in addition to the above aircrafts. In the model, NOx and FF were estimated 

according to 3 different input values (BPR, OPR and Rated Thrust) and 4 different phases (Idle, Take-

off, Climb out and approach). The large number of engines and input values makes modeling very 

difficult. To overcome this problem, the CSA-SVR method was used. The basis for this is that the SVR 

method provides very successful results in complex and challenging problems. However, SVR 

parameters that affect SVR performance and therefore solution quality need to be adjusted very well. 

For this, the CSA method was used. Using the CSA method, the SVR performance parameters that 

would give the best results were found and then modeling was done with SVR. Very good results were 

obtained as a result of combining the superior features of the two methods. The SVR parameters 

mentioned are regularization parameter (C), The tube size of e-insensitive loss function (ε) and γ. One 

of the specified hyper-parameters, C, determines the trade-off cost between minimizing training error 

and minimizing model complexity. Another important term, γ, is the variance of the Gaussian kernel 

function. ε is equivalent to the approximation accuracy placed on the training data points [29]. 

 

In the CSA-SVR model, the objective function is to find hyper parameters that will minimize the Mean 

squared error (MSE) value between real values and model values. In this context, the number of nests, 

or in other words, the number of solutions, for the CSA method was taken as 25, in line with the 

literature. As a matter of fact, studies on CSA performance show that this parameter gives better results 

in the range of 15-25. In addition, pa, which is an important performance indicator for the CSA algorithm 

and determines the local and global search ability of the algorithm, was taken as 0.25, similar to the 

literature. This value means that the algorithm allocates 25% of the entire search to local search and the 

remaining 75% to global search. Performance studies show that pa values between 0.15 and 0.30 have a 

positive effect on optimization performance [24].  In the CSA method, the lower limits of the coefficient 

(C, ε, γ) are determined as 10-4 for ε, 10-2 for the other two parameters, and the upper limits are 10-1 for 

ε and 104 for the other parameters. A low value of ε is important for the accuracy of the method. 

Therefore, ε differs in value from the other two parameters. With the idea that expanding the solution 

range would have a positive effect on the result efficiency, the other two parameters were taken within 

the ranges mentioned above. Finally, the stopping criterion in the CSA-SVR method was determined as 

5000 iterations. The specified value was taken because increasing the number of iterations above this 

value does not affect the accuracy much and significantly prolongs the solution time. 

 

Although the CSA method is a new metaheuristic algorithm, it can use the search space quite effectively, 

offer quite different solution suggestions and does not easily get stuck in local minimum. This 

contributes a lot to giving the best results in the selection of hyperparameters required for SVR. Thanks 

to these features, it is estimated that it will give better results than grid search, which is one of the most 

used methods for this purpose. For the SVR part of the CSA-SVR method, the LIBSVM package, which 

was introduced in 2000, was used. LIBSVM is a widely used and very popular support vector machine 

(SVM) method [30]. Using a method widely known in the field is important for the accuracy of the 

results. This article uses a combination of CSA and SVR as a method. The preference of LIBSVM, 

which allows easy adjustment in hyperparameter selection in SVR usage, provides both the ease of 

integration of CSA and SVR and the ability to offer different options in hyperparameter selection. Thus, 

the optimization process can be carried out more effectively, quickly and efficiently. The engines used 

in the study also cover the engines of the aircraft most frequently used in commercial air transportation 

today. This means that the scope of this study is quite broad. In addition to the above-mentioned 

advantages in estimating the specified parameters, the use of the CSA-SVR method for the first time in 
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the literature will provide a new approach to studies on fuel consumption and emission prediction. In 

order to measure the accuracy of the model, 80% of the 165 data were taken as train and the remaining 

20% as test data. The data is randomly separated. The data ratio is taken as 80% and 20%, similar to the 

literature. A high ratio of train data such as 70-80% is necessary for an accurate model and a test ratio 

of 20% was deemed sufficient to evaluate the model performance.The ranges of input values are given 

in Figure 1-2. In addition, the comparison of real NOx data and model data is shown in Figure 3-6, and 

the comparison of real FF data and model data is shown in Figures 7-10. 

 

 
 

Figure 1. BPR and OPR values of aircraft engines 

 

As can be seen in Figure 2, BPR varies between 4.3 and 12.7211. The average by-pass ratio of turbofan 

engines is approximately 7.095. At the same time, when the specified figure is examined, the maximum 

value of OPR is 47.5 and the minimum value is approximately 21.4. The average OPR value is 

approximately 32.543. In Figure 3, rated thrust values of turbofan engines in kN were given. Unlike 

BPR and OPR input values, rated thrust varies depending on engine power, so it was shown for 4 

different phases. 
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Figure 2. Rated thrust values for 4 different phases 
 

Figure 3-6 shows the comparison of actual data and model NOx data for 4 different phases. When the 

specified figures are examined, it is seen that the data are shown separately as train and test data, and 

the real and model data results largely match in both data sets. The fact that the NOx values of turbofan 

engines are quite different reveals a non-linear structure. Despite this, very successful results were 

obtained with the CSA-SVR model. In the figures shown, it can be seen that the NOx value is maximum 

64.36 (g/kg) for T/O and 6.98 (g/kg) for idle. In addition, the phase with the lowest minimum value is 

idle (2.86 g/kg), while the phase with the highest value is T/O with 13.51 g/kg. One of the most important 

reasons for this is the difference in engine power between phases. 



Oruç / Estuscience – Se , 25 [4] – 2024 

 

549 

 
 

Figure 3. Comparison of actual NOx values and model values for the T/O phase 
 

 
 

Figure 4. Comparison of actual NOx values and model values for the C/O phase 
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Figure 5. Comparison of actual NOx values and model values for the app phase 

 

 
 

Figure 6. Comparison of actual NOx values and model values for the idle phase 
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FF modeling was also performed within the scope of the study. Comparison of model results and actual 

data is shown in Figures 7-10. It can be seen from the figures that the FF model is in good agreement 

with the real data, as is the case with the NOx data. In addition, the phase with the highest FF is T/O and 

the phase with the lowest is idle. 
 

 
 

Figure 7. Comparison of actual FF values and model values for the T/O phase 

 
 

Figure 8. Comparison of actual FF values and model values for the C/O phase 
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Figure 9. Comparison of actual FF values and model values for the app phase 

 

 
 

Figure 10. Comparison of actual FF values and model values for the idle phase 
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SVR performance parameters, in other words CSA model coefficients, were shown in Table 1, and 

model error rates were shown in Table 2. In Table 2, error rates are given in terms of MSE and 

Coefficient of Determination (R2). The R2 value being close to 1 indicates that there is a good 

relationship between the data set. In this context, values close to 1 indicate the accuracy of the model. 

 
Table 1. SVR performance parameter values according to NOx and FF models 

 
  ε γ C 

N
O

x
 

T/O 0.0201 2131.7276 8167.9149 

C/O 0.0001 2477.6724 1120.2005 

App 0.0120 5041.9103 9451.5192 

Idle 0.04 614.1491 10000 

     

F
F

 

T/O 0.0001 0.01 10000 

C/O 0.0001 0.01 10000 

App 0.0001 0.01 9559.3102 

Idle 0.0196 0.01 10000 

 
Table 2. Model error values 

 
  Train Test 

  MSE R2 MSE R2 

N
O

x
 

T/O 2.79205 0.986192 19.7715 0.861497 

C/O 6.72358x10-2 0.999061 8.6542 0.884984 

App 0.768855 0.86489 1.68079 0.792779 

Idle 8.83527 0.842976 15.6282 0.6745 

      

F
F

 

T/O 1.01026 0.988502 0.568287 0.994988 

C/O 0.406476 0.992692 0.221538 0.996991 

App 7.32728x10-2 0.986911 4.804x10-2 0.994013 

Idle 3.23715 0.948679 2.59692 0.972763 

        

 

5. CONCLUSION  

 

The fact that emissions caused by aircraft engines have a significant impact on the environment and 

human health has caused the aviation community to carry out many studies on the subject. In addition, 

the fact that fuel consumption is one of the biggest cost items of airline companies increases the 

importance of this problem and has led to many studies on both subjects in the literature. 

 

Within the scope of this study, a model was created to predict the NOx emission values and fuel flow of 

turbofan engines with high by-pass ratio, which are also used in today's commercial air transportation. 

165 different turbofan data taken from the ICAO emission databank were used for modeling. The two 

mentioned parameters were modeled based on BPR, OPR and rated thrust input data. Actual data for 4 
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different phases were estimated with the CSA-SVR method. The important findings obtained within the 

scope of the study are listed below: 

 

1. The fact that this study is the first to use the CSA-SVR method on modeling NOx emissions and 

fuel flow for the LTO cycle of turbofan engines with high by-pass ratio shows the originality of 

the method. 

2. The use of BPR and OPR design parameters, which have significant effects on engine 

performance, and rated thrust, which is another important engine performance indicator, as input 

data shows the accuracy and reliability of the study. 

3. For the SVR part of the CSA-SVR method, the LIBSVM package, which was introduced in 

2000, was used. LIBSVM is a widely used and very popular support vector machine (SVM) 

method. Using a method that is widely known in the field is important for the reliability of the 

results. 

4. The fact that today's commercial air transportation engines are used for modeling and the 

number of engines is quite high, 165, also shows the timeliness and accuracy of the study. 

5. As a result of the error analysis methods, the fact that R2 values are close to 1 in estimating NOx 

and FF values, which have a very non-linear structure according to engine types, is another 

indicator that shows accuracy. Namely; minimum R2 value for 4 phases in FF estimation was 

found as 0.972763. This value for NOX was 0.6745 in the idle phase. However, this value is 

0.861497, 0.884984 and 0.792779 for T/O, C/O and App, respectively, and this shows that the 

values are close to 1. 

6. In future studies, different emission parameters will be estimated using different metaheuristic 

methods. 

According to the results obtained, the parameters of bypass ratio, rated thrust and overall pressure ratio 

affect fuel consumption and NOX values for different flight phases. Sensitivity analyses can be 

performed to measure the degree of effect of these parameters. Since the accuracy is high in this method, 

similar approaches can be applied for different emission indices (HC, CO etc.). Moreover, algorithms 

such as PSO and GA, which are frequently compared with CSA, can be integrated into the SVR method 

in emission modeling studies and compared. 
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