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Ozet. Bu makalenin amaci, bir bulanik metrik uzayinin doniigim fonksiyonu tarafindan
tiiretilen bulanik yaridinamik sistemler i¢in topolojik entropi kavramini genigletmektir.
Eger bir metrik uzaymin iki diizgiin denk metrigi varsa o halde bulanik entropi bu iki
metrige bagh bir degismezdir. Rasgele biiytikliikte bulanik entropili kaotik bulanik yari-
dinamik sistemlerin ingasi ig¢in bir metot sunuyoruz. Ayrica, bulanik entropinin bulanik
diizgiin topolojik denklik bagmntis1 altinda kalic1 oldugunu ispathyoruz.t

Anahtar Kelimeler. Bulanik entropi, bulanik metrik uzayi, yaritikiz, bulanik yaritikiz.

Abstract. The aim of this paper is to extend the notion of topological entropy for fuzzy
semidynamical systems created by a self-map on a fuzzy metric space. We show that if a
metric space has two uniformly equivalent metrics, then fuzzy entropy is a constant up to
these two metrics. We present a method to construct chaotic fuzzy semidynamical systems
with arbitrary large fuzzy entropy. We also prove that fuzzy entropy is a persistent object
under a fuzzy uniformly topological equivalent relation.
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1. Introduction

Stability of physical and engineering systems can be considered from geometrical
[1], and topological viewpoints. In both of them, topological entropy is one of the
main tools to determine the complexity of a system. Also, it is an essential invariant
in application [12, 14, 16]. The positive topological entropy of a map implies to its
chaotic behavior [4]. Topological entropy for continuous maps first has been studied
by Bowen and Dinaburg [2, 5, 17]. This notion has been extended for discontinuous
maps in [3]. In fuzzy metric spaces [6, 7, 8, 9, 10, 13] the notion of metric has been
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extended to the rate of nearness. So we need a new concept of topological entropy to
explain the complexity of systems created by the self-maps of fuzzy metric spaces.
This notion must determine the complexity and as given in [15] it does not change
under synchronization and fuzzy topological conjugate relations. In Section 3 we
introduce the notion of fuzzy entropy and in Theorem 3.2 we show that it is an
extension of the notion of topological entropy. In Theorem 3.3 we prove that it is
a persistent object up to uniformly equivalent metrics. We prove that the set of
topological entropies is not bounded from above and this is good news for engineers
who theoretically can construct fuzzy systems with an arbitrarily large complexity.
In fact Theorem 3.5 implies that it is possible to construct security systems with an
arbitrarily large security. As a final result we show that fuzzy entropy is a constant

object up to fuzzy uniformly topological equivalent relations.

2. Preliminaries

Let us recall the notion of topological entropy for discontinuous maps. We assume
(X, d) is a compact metric space, T : X — X is a mapping and 7" is the composition
of T, v times with itself, where ¢ is a natural number. The mapping 7" may not be

continuous.

For a natural number n we define:
dp(z,y) = max{d(T"(x),T"(y)) : 2,y € X and i € {0,1,2,....,n — 1}}.

If #FC X, e>0andn €N, then F is called an (n,€) spanning subset of X with
respect to T if for given x € X there is y € F such that d,(z,y) < e. A subset
E of X is called an (n,e€) separated if d,(x,y) > € when z and y are different
points in E. r,(e, X, T) denotes the number of elements of an (n,€) spanning set
for X with respect to T with the smallest cardinality. Also, s, (e, X,T) denotes
the number of elements of an (n,e€) separated set for X with respect to T" with
the largest cardinality. We define r(e, X, T) = lim,_,o.(1/n)(log(r,(e, X,T))) and
s(e, X, T) = lim, o0 (1/n)(log(s, (e, X, T))). The entropy of T" is denoted by h(7") and
it defined by h(T') := lim,o (e, X,T). To extend this notion for fuzzy dynamical

systems we recall the concept of continuous triangular norm [13].

A binary operation * : [0,1] x [0,1] — [0,1] is a continuous ¢t-norm if it satisfies

the following condition;

i)  is an associative and commutative operation;
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ii) ax1=a for all a € [0, 1];
iii) a* b < c*d whenever a < ¢, b < d, where a,b,c,d € [0, 1].

A fuzzy metric space is a tripe (X, M, *) where X is a nonempty set, * is a continuous
t-norm and M : X x X x (0,00) — [0, 1] is a mapping which has the following

properties:

For every z,y,z € X and t,s > 0;

M(z,y,t) = 1if and only if x = y;
M(x,y,t) = M(y,z,t);

M(x,z,t+s) > M(x,y,t) * M(y, z, s);
M(

z,y,.): (0,00) — [0, 1] is a continuous map.

Definition 2.1. A fuzzy metric space (X, M, ) is called semicompact if for every
t > 0 and € > 0 there is z1,29,...,z, € X such that X = |J._, B(z;,€,t), where
B(zi, e, t) ={x: M(x,x;,t) > 1— €}

In this paper, we assume that 7' : X — X is a mapping and (X, M, %) is a semi-

compact fuzzy metric space.

For a natural number n we define:
M, (z,y,t) = min{ M (T"(z), T"(y),t) : z,y € X and i € {0,1,2,....,n — 1}}.

IfFCX,e>0,t>0andn €N, then F is called an (n, €, t) fuzzy spanning subset
of X with respect to T if for given = € X thereis y € F such that M, (z,y,t) > 1—e.
Subset E of X is called an (n, e, t) fuzzy separated if M, (z,y,t) < 1 — ¢, when z
and y are different points in E. r,(e,t, X, T) denotes the number of elements of an
(n, €, t) fuzzy spanning set for X with respect to T, with the smallest cardinality.
Also, s,(€,t, X, T) denotes the number of elements of an (n, €, t) fuzzy separated set
for X with respect to T, with the largest cardinality. We define

r(e,t, X, T) = lim l(logrn(e,t,X,T)), and

n—oo N,

1
s(e,t, X, T) = lim —

n—oo N,

(log s, (€,t, X, T)).

3. Fuzzy Entropy

Let us to begin this section with the following theorem.
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Theorem 3.1. Let (X, M, x) be a semicompact fuzzy metric space andT : X — X
be a mapping. Then r,(e,t, X, T) and r(e,t, X, T) are natural numbers.

Proof. Let ¢ > 0, ¢t > 0 and n € N be given. Since * is a continuous ¢t-norm and
1% 1 =1 then there is 1 > A > 0 such that (1 — A) * (1 — X) > (1 — €). Moreover
the semi compactness of X implies X C Ule B(x;, A\, t/2), for some x; € X, and
1<i<k.

We define
. t
Aliogtrjnot) = {x :T'(x) € B (xji,)\, 5)} where 1 < j; < k.

For each non empty set A, j,...j._,) We choose a unique ¥, j,....in_1) € Agojr,in1)
and we define A := {y¢oj1,..jn_1) : 1 < ji < k}. Since for every 0 <i <n —1, j; is
between 1 and k, then |A| < k", where |A| denotes the cardinality of A. We show
that A is an (n, €, t) fuzzy spanning set for X with respect to T'. Let x be an arbitrary
Josjtyenin_) = X, then for every 0 <7 < n — 1 there
is 1 < j; < k such that x € Ay j,,..j._.)- Therefore yeo i i) € AGojr,gnr)-
Now the definition of A )) € B(xj,, A, t/2) for
each0<i<n-—1.So

M(T (ZE), T (y(j07j17~--,jn—1)’ t) =M (T (ZL‘), T (y(j07j1:--~7jn—1))7 5 + 5)

member of X. Since ;<4 A

J05J1 5+ dn—1) implies Ti(x)a Ti(y(jO)jh“'vjnfl

i t i t
> M (T (I)7xji7 5) * M <xjw T (y(j07j17---7jn71)>7 5)
> (=N (1-X)> (1- )
Thus
Mo, Yejojr,jnr)s t) = 1 — € for every 0 <i <n — 1.

Since Yo ji,....jn1) 15 @ member of A, then A is an (n, €,t) fuzzy spanning set for X
with respect to 7. So r,(e,t, X, T) < k™. Thus
1
r(e,t, X, T) = lim —logr,(e, t, X, T) < k.
n—oo N,

Hence r,(€,t, X, T) and r(e, t, X, T) are natural numbers. O

Remark 3.1.
(i) If €; < €9 then ry(e,t, X, T) > ry(eo,t, X, T) and r(e1,t, X, T)
(i) If €, < €3 then s, (1,8, X, T) > su(€2,t, X, T) and s(ey, ¢, X, T')

(Eg,t,X, T)

>r
> S(Gg,t,X, T)
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Now we define fuzzy entropy for a map 7T on a semicompact fuzzy metric space
(X, M, %).

Definition 3.1. Let (X, M, ) be semicompact and 7' : X — X be a mapping.
Then we define the entropy of 1" by hpr(T') := limeo(r(e, t, X, T)).

Since the fuzzy metric M has essential role in the above definition we denote the

fuzzy entropy by hy a (7).

The next theorem implies that fuzzy entropy is an extension of topological entropy.

Theorem 3.2. Let (X,d) be a compact metric space. Also, let (X, M, x) be a fuzzy
semicompact such that M(x,y,t) = t/(t + d(z,y)), and * be an arbitrary t-norm.
Now let T : X — X be a maping. Then h(T') = hp(T).

Proof. Let t > 0 be given. Also consider F be (n, €) spanning set for X with respect

to T. If x is a member of X, then there is y € F such that d,,(x,y) < e. Therefore
t €

M, (z,y,t) > =1- .

(x 4 ) t+e t+e¢

So F'is (n,€e/(t + €),t) fuzzy spanning set for X with respect to 7. Thus

T (L,t,X,T) <r,(e,X,T)
t+e

and so

r (L,t,x, T> < r(e, X, T).
t+ e

Then hp+(T) < h(T). Now Let F be (n,¢,t) fuzzy spanning set for X with respect
to T. If = is a member of X, then there is y € F such that M, (z,y,t) > 1 — €.
Therefore d,(z,y) < te/(1 —€). So F is (n,te/(1 — €)) spanning set for X with
respect to T'. Thus

¢
ro (—E,X, T> < role,t, X, T)

1—e¢
and so
. <1t—€X T) < (et X,T).
—€
Then h(T') < hpy(T). Therefore hy (1) = h(T). O

Let (X1, My, %), (Xa, Ma, x9) be two fuzzy metric spaces. A function T': X; — X
is called fuzzy continuous. If for every x € X, ¢t > 0 and € > 0 there is § > 0 such
that, My(z,,1) > (1 — 8) implies My(T(x), T(5), 1) > (1— ).

Now we define uniformly fuzzy continuity for a mapping 7.
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Definition 3.2. Let (X, My, *1), (Xa, My, x2) be fuzzy metric spaces. A mapping
T : Xy — X, is called uniformly fuzzy continuous. If for every ¢ > 0 and € > 0
there is 0 > 0 such that, M;(z,y,t) > (1 — ) implies My(T'(x),T(y),t) > (1 —€),
for every x,y € X;.

Also, two fuzzy metrics (X, M, *) and (X, Mj,*;) on X are called uniformly fuzzy
equivalent if two mappings id : (X, M,x) — (X, My, *;) and id : (X, My, %) —

(X, M, %) are uniformly fuzzy continuous.

Theorem 3.3.

(i) Let n € N, t > 0 and € > 0. Also, let A\ > 0 be a number such that
(1=XN)*(1=X) > (1—¢€). Thenr,(e,t, X, T) < s,(e,t, X, T) < rp(N\t/2, X, T).

(i) Let (X, My,*1) and (X, My, *9) be uniformly fuzzy equivalent and T : X — X
be a mapping. Then hpr(T) = har, +(T).

Proof.

(i) If E is an (n,€,t) fuzzy separated subset of X with the maximum cardinality
then E is an (n,€,t) fuzzy spanning set for X with respect to T, to prove
this, let z € X. Since E have maximum cardinality then there is y € E such
that M,(x,y,t) > 1 —e. Therefore r,(e,t, X, T) < s,(e,t,X,T). To show
the other inequality suppose F is an (n, €, t) fuzzy separated subset of X with
respect to T and F' is an (n, A, t/2) fuzzy spanning set for X with respect to
T. We define ¢ : E — F as follows. For x € E, we define ¢(z) € F such
that M, (x,¢(x),t/2) > (1 — A). ¢ is injective, because if z; and z5 are two
members of E such that ¢(x1) = ¢(z2), then M, (x1, P(x1),t/2) > 1 — X and
M, (zq, ¢(x2),t/2) > 1 — . So

My (21, 72,t) > My (21, 9(21),1/2) ¥ My (d(21),72,1/2) > 1 — €.

Since x1,x9 € F then 1 = x5. So the cardinality of E is not greater than of
F. Hence s,(6,t,X,T) < r,(\t/2,X,T).
(ii) Let €; > 0 be given, choose €; > 0 such that

Mi(z,y,t) = (1 — &) = M(z,y,t) = (1 — &)
and choose €3 > 0 such that

M(z,y,t) > (1 —€e3) = My(z,y,t) > (1 — €).
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Then

ro(€r, t, (X, M, %), T) < ry(e, t, (X, My, %), T)
and

ro(ea, t, (X, My, %), T) < ry(es, t, (X, M, *),T).
Hence

r(er, (X, M, %), T) < r(e, (X, My, *),T) < r(es, (X, M,x*),T).
If e, — 0, then ¢ — 0, and €3 — 0 then

hpge(T) = hag, +(T).

O

Corollary 3.1. 7(e,t, X, T) < s(e,t, X, T) < r(A\t/2,X,T), where (1=X\)x(1—\) >
(1—e).

Theorem 3.4. Let (X, M, *) be a semicompact fuzzy metric space and T : X — X

be a mapping. Then hpr(T™) < mhp(T), where m is a natural number.

Proof. Let n € N and € > 0 be given. If F'is an (nm, €, t) fuzzy spaning set for X
with respect to 7', then F' is an (n,¢,t) fuzzy separated set for X with respect to
T™. Therefore ry,(€,t, X, T™) < rpm(€,t, X, T). So hpre(T™) < mhp(T). O

In the next theorem we present a condition which implies the equality instead of

inequality mentioned in Theorem 3.4.

Theorem 3.5. LetT : X — X be a mapping such that M (z,y,t) > M (T (x),T(y),t)

for every x,y € X. Then hpe(T™) = mhp(T), where m is a natural number.

Proof. Let n € N and € > 0 be given. Since M(x,y,t) > M(T(z),T(y),t) for every
z,y € X. Then M,(z,y,t) = M(T" *(z),T" (y),t). Therefore rp,(e,t, X,T) <
ro(€,t, X, T™). So b (T™) < mhp(T). O

Let (X7, My, *;) and (Xs, Ms, %3) be two semicompact fuzzy metric spaces. We
define a fuzzy metric space (X; X X, M, ), by defining a * b = min{a x; b, a %,
b} and M((z,y),(x',y'),t) = min{M;(x,2',t), Ms(y,y',t)}. Let (Xy, My, +*;) and
(Xa, My, %5) be two semicompact fuzzy metric spaces. Moreover let T} : X7 — X
and Ty : Xy — X5 be two mappings . We define T : X7 x Xy — X; X X5 by
T((z,y)) = (T1(x), T5(y)). Then we have the next theorem.
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Theorem 3.6. hM,t(T> S hMl,t<T1) + hM27t(T2).

Proof. Let n € N and € > 0 be given. Let F} and F5 be (n,¢€,t) fuzzy spanning sets
for Xy and X, with respect to T} and Ty respectively. Then F; x F; is an (n,¢€,t)
fuzzy spanning set for X with respect to T'. So

Tn<€7t7X7 T) S T’n(E,t7X, Tl)/rn(eytaXy TQ)v
and as a result hpr¢(T) < by, +(Th) + hoasy 1 (15). O

Definition 3.3. Let T": (X, M,*) — (X, M,*) and S : (Y, M’ ") — (Y, M’ «") be
two mappings. Then 7" and S are called fuzzy topological equivalent if there is a
fuzzy homeomorphism ¢ : (X, M, ) — (Y, M’,«") such that goT = S o g.

Theorem 3.7. In Definition 3.3, let g and g—* be two fuzzy uniformly continuous
maps. Then har(T) = ha +(S).

Proof. Let ¢ > 0, t > 0 be given and n be a natural number. Since g is fuzzy
uniformly continuous, then there is 6 > 0 such that M(x,2/,t) > 1 — § implies
M'(g(z),g(x’),t) > 1 —e€. Now let F' be an (n,d,t) fuzzy spanning set for X with
respect to 7. We show that g(F') is (n,€,t) fuzzy spanning set for Y with respect
to S. Let y € Y be given. So there is x € X such that g(z) = y. Therefore there
is « € F that M, (z,2',t) > 1 — 6. Now we have M(T"(z), T"(z'),t) > 1 — ¢ for
0<i<n-—1 So M(g(T(x)),g(T(z')),t) > 1 —¢€for 0 <i < mn—1. Since
goT = Sog, we have M'(S%(g(x)), S (g(z")),t) > 1 — €. Therefore g(F) is (n, €, t)
fuzzy spanning set for Y with respect to S. So r,(¢,t,Y,S) < r,(0,¢, X, T). Thus
hae +(S) < hart(T). By a similar method, we can deduce hps+(T) < hpp4(S). So

hare(T) = har 1 (S).

Now let us to present an example.

Example 3.1. Let (X, M, %) be fuzzy semicompact such that

X = {2 m e (01)), dl)Z R = Y0072,
T £Yi
00 (1) ) — t
M) W50 = g, )

and * be an arbitrary t-norm. For every z = (2;)2, € X, k, denotes the largest

natural number ¢ such that z; = z; for every j <1i. Also, if for each 7 € N, z; =1
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or, for each 1 € N, x; = 0 we put k, = co. We define T': X — X by

(Tigr, )2, if Ky is an odd number
T(x = (2:)i21) = (®irw,)2y if Ky is an even number

x if Kk, is infinity

We show that the fuzzy entropy of T' is positive. We define g : X — X by

Titw, )70y if Ky is finite
glo = (m2y) = (Freee ) 1 o e
x if Kk, is infinity
Let ¢t > 0 be given. Moreover let A = 1/(1 4 32t), ¢ = 1/32 and n € N be an even
number. Then there is k € N such that n = 2k. We say that x ~ y if z; = y; and
Kgi(z) = Kgi(y) for 0 <4 < (k—1). It is clear that ~ is a equivalence relation on X.
If
A= {[‘T] rr e X, KRgi(x) S {172}70 <1< (k: - 1)}7

then the number of members of A is 2¥"'. For [z] € A, we choose a unique yy, € [z].
If B = {y}y : [x]is a member of A}, then |B| = |A| = 2¥"'. We take y,y’ € B such
that y = (v;)3%, # v = (¥))2,. If y1 # vy, then d(y,y’) > e. If y; =y, then there is
0 <t < (k—1)such that kg ) # Kgi(y) and Kgi() = Kgi(y) for 0 < j <t. We know
that Kgi(y) = Kgiy), for 0 < j < t. So there is m < 2t such that ¢'(y) = (Yitm)
and ¢'(v') = (¥},.,)21. Hence d(T™(y),T™(y’)) > €. Thus

0o
=1

t 1
t+d(T(y), T'(y')) )}
So sp(A\t, X, T) > |B| = 2¥"1. Let \¢ be a number such that (1 — ) * (1 — \g) >
1 — A. Theorem 3.3 implies, r,,(Xo, /2, X, T) > s,(\, ¢, X, T) > 2" So hagy/o(T) >
(log2)/2.

Mn(y7y,7t)=min{ :ogig(n—l)}g1—

4. Conclusion

Uncertainty is a special property of human made means. Thus fuzzy systems are
more compatible with human made means or natural description of phenomena.
In this direction fuzzy entropy is a good means to describe the complexity of a
fuzzy system. In Theorem 3.5 we present a method to construct systems with an
arbitrarily large security. We suggest another method to construct complex systems
with finding a condition for the equality instead of inequality presented in Theorem

3.6, and this is a topic for further research.
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