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Abstract 

This study examines how artificial intelligence (AI) affects worker productivity, emphasising 

AI's capacity to automate jobs, reduce errors, and optimise workflows. It emphasises the need for 

dynamic reskilling initiatives and company-school cooperation to provide workers with the necessary 

skills. Using a two-log econometric model, the study examines the association between AI patents and 

productivity. It observes that the effects of AI differ across industries, with less automation in positions 

requiring creativity and emotional intelligence. The paper also suggests more research and examines 

the relationship between productivity and R&D costs, physical assets, and non-AI patents. 

Keywords : Artificial Intelligence, Worker Productivity, Reskilling and 

Upskilling, AI-Related Patents. 

JEL Classification Codes : E24, J01, J24, J89. 

Öz 

Bu çalışma, yapay zekanın (YZ) çalışan verimliliğini nasıl etkilediğini incelemekte ve YZ'nın 

işleri otomatikleştirme, hataları azaltma ve iş akışlarını optimize etme kapasitesini vurgulamaktadır. 

Çalışanlara gerekli becerileri kazandırmak için yeniden beceri kazandırma girişimlerine ve şirket-okul 

iş birliğine duyulan ihtiyaç vurgulanmaktadır. Çalışma, iki loglu model kullanılarak yapay zekâ 

patentleri ve üretkenlik arasındaki ilişkiyi incelemektedir. YZ'nın etkilerinin sektörler arasında 

farklılık gösterdiğini, yaratıcılık ve duygusal zekâ gerektiren pozisyonlarda daha az otomasyon 

olduğunu gözlemlemektedir. Çalışma aynı zamanda verimlilik ile Ar-Ge maliyetleri, fiziksel varlıklar 

ve yapay zekâ dışı patentler arasındaki ilişkiyi de incelemektedir. 

Anahtar Sözcükler : Yapay Zekâ, İşçi Üretkenliği, Yeniden Beceri Kazandırma ve 

Yükseltme, Yapay Zekâ ile İlgili Patentler. 
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A class of artificial intelligence (AI) algorithms known as "generative 

AI" produces new outputs depending on the input it has been trained 

on. Unlike conventional artificial intelligence (AI) systems, which are 
meant to identify patterns and forecast outcomes, generative AI 

generates original content, including text, audio, graphics, and more. 

World Economic Forum (WEF) 2023 

1. Introduction 

Entrepreneurship and artificial intelligence are two complex phenomena that have 

important implications for the employment market and the economy. Artificial intelligence 

(AI) solutions, such as automation systems and machine learning algorithms, can 

significantly increase worker productivity by allowing humans to focus on the more complex 

and creative aspects of their jobs by automating repetitive tasks. Automating repetitive tasks 

is a key way artificial intelligence (AI) affects worker productivity. 

AI-powered systems thrive at performing repeated jobs and activities with precision 

and efficiency. This accelerates procedures and reduces errors, hence enhancing total 

efficiency. Artificial intelligence (AI) can be especially useful in industries that rely 

significantly on repetitive tasks, such as manufacturing and data input, freeing human 

workers to solve problems and make more complex decisions. Automation has the potential 

to replace human work while enhancing productivity. There are concerns that if AI replaces 

human labour, specific jobs will become obsolete, resulting in job losses in specific 

industries. Advocates argue that technological developments have historically created new 

jobs while rendering some old ones obsolete. It is critical to provide workers with the skills 

they need to adapt to evolving work patterns in this century. AI's impact on worker 

productivity needs increased training and upskilling. As technology advances, experts in 

data analytics, machine learning, and artificial intelligence (AI) are in greater demand. 

Employers and educational institutions must work together to ensure people have the skills 

needed for future employment. People must be resilient lifelong learners to compete and 

fully participate in AI-driven businesses. 

The influence of artificial intelligence (AI) on labour productivity will differ between 

industries and professions. Artificial intelligence will replace more manual labour and 

repetitive jobs than those requiring creativity, emotional intelligence, and complex problem-

solving abilities. As a result, there's a growing need for AI jobs to increase efficiency while 

emphasising the value of human-only skills that machines cannot duplicate. Finally, it 

should be noted that integrating AI into labour productivity is dynamic and has advantages 

and disadvantages. To fully capitalise on AI’s benefits, reskilling workers proactively is 

essential to keeping them flexible and prepared for the ever-changing labour market. A 

future where AI boosts productivity and cultivates a workforce capable of navigating the 

intricacies of the technology landscape is one that policymakers, educators, and industry 

leaders will heavily influence. 

The linked studies are reviewed in the next section. Section 3 covers the company's 

adoption of AI-related installation and the data used to evaluate the composition of labour 
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productivity. Section 4 explains the estimating technique and interprets the estimation 

outcomes. The final section concludes this paper. 

2. Literature Review 

Growing life expectancies and falling birth rates have resulted in population ageing, 

a serious problem for many developed and emerging nations. Due to the decline in physical 

and mental capacities associated with ageing, older workers are perceived to be less 

inventive and productive than their younger peers. In ageing civilisations, some worries are 

that rising rates of old age and an ageing labour force may impede economic expansion. 

According to Brynjolfsson and McAfee (2014) and Goldfarb et al. (2020), artificial 

intelligence (AI) is the most significant general-purpose technology of this century. AI is a 

potent type of automation that trains computers to behave more like humans. According to 

Zhang et al. (2022), private investments in artificial intelligence (AI) are predicted to exceed 

$68 billion in 2020, setting new records yearly and impacting almost every element of 

society. Despite the general enthusiasm for AI, there still needs to be more clarity about how 

artificial intelligence (AI) interacts with conventional production factors like labour and 

capital. According to some (Frank et al., 2019; Webb, 2019), artificial intelligence (AI) will 

replace high-skill jobs, particularly those requiring a lot of education and experience. 

However, according to others, AI is a technology that deepens capital and has no bearing on 

labour (Bresnahan, 2019). 

The potential effects of recent developments in robotics and artificial intelligence 

(AI) on interrelated social outcomes like wages, growth, employment, and inequality have 

long been a source of controversy in the field of economic theories (Solow, 1957; Romer, 

1990; Aghion & Howitt, 1992; Antonelli, 2009). These theories assume that technological 

innovation and change will ultimately determine economic growth. According to Autor et 

al. (2003) and Barbieri et al. (2020), technological advancement may create wage 

polarisation because of proportionate increases in the demand for skilled workers compared 

to unskilled individuals. Automating tasks could result in job losses (Autor & Dorn, 2013; 

Vivarelli, 1995, 1995, 2013; Piva & Vivarelli, 2018; Josten & Lordan, 2020). These views 

are supported by recent theories, such as those regarding skill-biased technological change. 

Production is expected to increase as technology develops, according to economic 

theory. As a result of significant investments in digital innovation, developed nations have 

faced low productivity since the 1970s, a phenomenon known as the "Productivity Paradox" 

(Brynjolfsson, 1993). According to Gordon (2018), worker productivity is mainly blamed 

for this decline. Reversing the falling productivity trend and reviving the economy overall 

may be possible thanks to the wide range of applications of recent developments in AI 

technology. Agrawal et al. (2019b) note that artificial intelligence (AI) can boost 

productivity not just by automating the repurposing of current technology but also by 

lowering uncertainty through more accurate projections (Bartelsman et al., 2019; Cockburn 

et al., 2019). The AI revolution, which necessitates business restructuring, worker upskilling, 

and the emergence and diffusion of complementary inventions throughout the economy, 
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maybe the reason behind the continued low productivity growth despite recent significant 

technological advancements in AI (Brynjolfsson et al., 2019). 

It is not a commonly accepted notion among writers. Gordon (2016, 2018) argues 

that productivity is declining irreversibly and that current technological innovations -like the 

digital and even artificial intelligence revolutions- have led to overly optimistic expectations 

that they won't have the same disruptive power as innovations like internal combustion 

engines and electric power, which produced the remarkable productivity growth that the 

United States saw between the 1920s and 1970s. Jones (2009) shows how specialisation and 

teamwork rise with time, along with the age of the initial innovation, using a large dataset 

of innovators. He contends that to push the frontier, researchers must continue to learn more. 

Researchers claim that generating new ideas is becoming more complex and that 

research output has sharply declined across various industries, products, and businesses 

(Bloom et al., 2020). Gries and Naudé (2018) offer an alternative perspective and emphasise 

the possible significance of aggregate demand. Since most inventions are acquired by a few 

agents, automation and artificial intelligence (AI), in particular, increase inequality and 

decrease wages and labour share. This could lower productivity and possible economic 

growth. The total net employment growth for all businesses creating workers and net 

employment decreases for all businesses eliminating staff is the conventional job creation 

measure (Davis et al., 1996). Usually, industries, organisations, or companies are categorised 

according to corporate size, degree of internationalisation, and other factors used to create 

aggregations. Net job flows are the total quantity of employment created and eliminated or 

the difference between gross and net job flows. 

For instance, in Japan, Kodama and Inui (2015) and Ando and Kimura (2015) used 

the previously mentioned metrics to look at how changes in net and gross domestic 

employment were affected by foreign direct investment. Because positions added or 

eliminated within a company were not included in these studies, nor the majority of previous 

research, it is possible that the real employment adjustment needed to be increased (Ando & 

Kimura, 2017; Liu, 2018; Liu & Nin, 2018). They evaluated the growth or contraction of 

jobs at the company level by adding up the net employment gains or losses across growing 

(contracting out) divisions. To get a more accurate approximation of employment 

adjustment by manufacturing enterprises in Japan, we opt to examine the later subset of 

relevant research. 

Previous research demonstrates how competent workers and innovative technologies 

complement each other in terms of professional occupation and educational attainment. 

Highly skilled labourers can only implement these innovative technologies successfully and 

efficiently. Thus, frequently established innovative technologies and talented labourers are 

expected to have a favourable relationship. Nonetheless, it is well acknowledged that new 

technologies and unskilled labourers have a substituting effect (Machin & Van Reenen, 

1998; Los et al., 2014). 
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Since labour productivity is a significant indicator in measuring economic 

development and efficiency, the statistics used in the research align with this literature. The 

choice of labour productivity as the dependent variable is conceptually supported by 

economic theories that relate possible changes in productivity to technological progress, 

especially artificial intelligence (AI) (Solow, 1957; Romer, 1990; Brynjolfsson et al., 2019). 

The body of research indicates that labour substitution and capital deepening-two intricate 

processes that need empirical support-are two ways AI may affect productivity. The study 

investigates the hypotheses derived from the literature empirically by incorporating factors 

such as R&D spending (Inv), non-AI patents (nonAIPt), and AI-related patents (AIPt). The 

theory that innovation propels productivity development is directly extended by using patent 

applications as a proxy for innovation (Hausman et al., 1984; Kortum & Lerner, 1998). 

Furthermore, the ability to distinguish between patents on artificial intelligence and those 

that do not permit a more thorough examination of how various technological innovations 

influence productivity. The econometric model, particularly the log-log formulation, is 

methodologically consistent with the literature. This literature emphasises how labour and 

capital inputs affect productivity elasticity (Baddeley & Barrowclough, 2009). This model 

provides empirical insights that add to the ongoing debate indicated in the literature by 

allowing the relationship between AI innovation and productivity to be quantified. 

Therefore, the main ideas and theories covered in the literature are reflected in the data 

construction. The study is rigorous and relevant, based on a theoretical framework 

established by previous research. This allows the analysis to tackle the intricate concerns 

raised by the interplay between productivity and AI in the context of ageing populations and 

economic expansion. 

3. Data Construction 

The variable under investigation in this analysis is labour productivity. Productivity 

growth quantifies the economy's efficiency in using production inputs to produce a given 

output. In other words, the quantity of output each employee produces correlates with labour 

productivity. As a result, the ratio of firm total production to labour is used to calculate 

labour productivity. 

According to Hausman et al. (1984) and Kortum and Lerner (1998), patent 

applications are valuable for measuring innovation. Patents are a crucial component in 

measuring the progress of technologies in a nation and, perhaps more crucially, their 

influence on development, even though they are one of the metrics that receive the least 

attention from the media. In addition to reflecting a dynamic growth of knowledge and 

technologies that positively influence society, they first ensure financial gains through the 

marketing, sale, or licensing of technology. Additionally, patent applications are a sufficient 

measure of technological production (Griliches, 1990; Joutz & Gardner, 1996). Businesses 

are prepared to apply for a sizable return on their initial investments after investing 

considerable resources in developing a unique technology they deem to have commercial 

value. Companies that successfully leverage artificial intelligence to create novel products 

and services have a strong motivation to patent at least part of their innovations. Failing to 
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do so may allow other businesses to freely replicate their creations or prevent the original 

inventor from using their ideas in the marketplace through patents (Alderucci et al., 2020). 

Thus, this paper uses patent applications to create information flows while following the 

patent literature. 

Studies on the effects of creative effort and technological development have 

traditionally used patents. Companies are reorganising, refocusing, and downsizing their 

research departments to prioritise the timely and successful commercialisation of 

innovations and the continuous and quick advancement of existing technology (Kortum & 

Lerner, 2001). One possible explanation for the sharp rise in patenting might be an increase 

in invention and discovery. 

Therefore, this paper will investigate the following hypothesis: H0: Labour 

productivity and enterprises engaged in AI patenting are directly related (on one side). 

H0: Labour productivity and companies that pursue AI patents are directly related. 

H1: Labour productivity and companies that pursue AI patents do not directly correlate. 

To address the study question, "How does the introduction of AI-related innovations 

within the company influence labour productivity?" the hypothesis will be investigated using 

statistical inference. In all those aspects above, this paper's analysis of the number of AI 

advancements utilised for patenting reveals the results of R&D activities. Some other 

measures of R&D input include the number of workers at the beginning of each year and the 

total amount spent on R&D throughout the preceding for the last thirteen years. However, 

spending on research and development is a more comprehensive statistic than employment 

since it includes inputs to the process obtained from other organisations. 

The number of employees (Lab), the total number of fixed assets (Asst), the number 

of patents connected to artificial intelligence (AIPt), the number of patents unrelated to AI 

(nonAIPt), the labour productivity (Prod), and the R&D investments (Inv) are the data 

utilised. The PATSAT database (which contains data from leading industrialised and 

developing countries) and the ORBIS database (the world's most powerful comparable data 

resource on private companies) serve as the data source. Here, the total company output to 

labour ratio is called labour productivity. The information is given in terms of US dollars. 

The years 2020 through 2023 are covered. Twenty businesses from two distinct areas are 

included in the statistics: Japan and the USA. 

A double-log or log-log model was used for analysis. As the model shows, both sides 

of the equation appear to be written. In other words, the log-log specification fits both 

explanatory and independent variables. The model predicts that if X increases by 1%, Y 

should change by β1%, according to Baddeley and Barrowclough (2009). Thus, the 

coefficients reflect the complexity of the variables Y and X. The unknown effect of changing 

a single variable can be determined through regression analysis. Stated differently, a 

regression model calculates how much Y will change when Xn changes by one percentage 
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point. The dependent variable in this model is the natural logarithm of the labour 

productivity of an occupation. Knowledge enhancement was used to determine the 

dependent variable. An important explanatory variable is the number of AI license 

applications as it measures a firm’s artificial knowledge development. Therefore, the 

econometric model is: 

𝑌𝑖𝑡 = αiL𝛽 itCγ
itKδ

it eσ
it (1) 

In this case, the variables output, labour input, physical capital stock, and knowledge 

stock are represented by L, C, K, and Y. β, γ, and δ are the parameters that characterise 

labour elasticity. In this instance, the variables 𝑌𝑖𝑡, L𝑖𝑡, C𝑖𝑡, and K𝑖𝑡 symbolise the output, 

labour input, physical capital stock, and knowledge stock. α is a constant efficiency 

parameter that varies across firms but is constant over time. The parameters β, γ, and δ are 

the output elasticities concerning labour, capital, and knowledge. The efficiency parameter 

αi remains consistent and distinct across time in any business. Time-variant entities are 

related to an efficiency metric called σit. Applying log to the equation's two sides yields: 

Log 𝑌𝑖𝑡 = Logα + 𝛽 LogLit + γLogCit + δLogKit (2) 

The estimating equation that results when both sides of the equation are divided by 

labour and the resultant equation is differentiated twice in a row to eliminate the parameter 

α is as follows: 

𝑌𝑖𝑡

𝐿𝑖𝑡
 = 

𝛼𝐿ⅈ𝑡
𝛽
𝐶ⅈ𝑡
𝛾
𝐾𝑖
𝛿𝑡

𝐿𝑖𝑡
 (3) 

Log (
𝑌𝑖𝑡

𝐿𝑖𝑡
) =Log α+(β−1) Log Lit+γ Log Cit+δ Log Kit (4) 

Since 
𝑌𝑖𝑡

𝐿𝑖𝑡
 represents labour productivity, we define it as pit: 

pit= Log α+(β−1) Log Lit+γ Log Cit+δ Log Kit (5) 

To tackle the problem of the constant parameter 𝛼 α across businesses over time, we 

separate the labour input equation, Lit. To remove bias, this is rewritten to account for the 

firm-specific constant 𝛼, which is not directly visible. What results from the initial 

differentiation is: 

∆pit= (β−1) ∆Log Lit+γ ∆Log Cit+δ∆ Log Kit (6) 

Here, Δ represents the change from one time period to the next, effectively capturing 

the growth rates of the variables. To account for the dynamic nature of productivity, we 

introduce a lagged dependent variable pit−1, which represents the labour productivity of the 

previous period: 

pit = (1 + 𝝍) pit−1 + (𝛽 − 1) Δlit + γΔcit + δΔkit + μi + 𝜀 it (7) 
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The variables pit, Δlit, Δcit, and Δkit denote labour productivity, labour input growth, 

fixed capital growth, and knowledge stock change, respectively. 𝜀it is the typical error term, 

while μi represents the fixed impact of the idiosyncratic person and time-invariant company. 

To address productivity, the shift from Equation (2) to Equation (7) entails dividing the 

output by labour, differentiating to eliminate firm-specific constants, and adding lag 

variables to account for dynamic impacts. This yields an estimating equation that, especially 

in the context of AI-related breakthroughs, can more precisely reflect the relationship 

between productivity and the various inputs. 

Within the framework of this research, it is conceivable that the companies under 

observation -particularly those in the same geographical area, like Japan or the USA- are 

impacted by comparable technical advancements, market dynamics, or governmental 

policies. Horizontal cross-sectional dependence between enterprises may result from these 

variables. A time series' ability to maintain its statistical characteristics across time -such as 

its mean, variance, autocorrelation, etc.- is called stationarity. Spurious regression results, 

meaning the estimated connections between variables appear significant when they are not, 

can be caused by non-stationary data. It is critical to verify that the time series data (such as 

labour productivity, patent volume, and R&D investments) are stationary because the dataset 

covers several years (2020-2023). This is especially crucial when employing log-log models 

since non-stationary series can lead to inaccurate conclusions and misleading coefficients. 

4. Empirical Findings 

A balanced panel of data on businesses from two distinct locations is used in the 

model, and the data spans the years 2020-2023. The dataset has no missing values, so it is 

balanced. To keep things simple, the analysis that follows will use the columns that are 

supplied by the dataset: 

• Region: The three distinct regions in which the businesses operate are shown in 

this column. 

• Firm: The name of the observed firm is suggested in the column Firm. 

• Year: The information gathered between 2020 and 2023 is recorded in this 

column. 

• Prod: The labour productivity, or production, is the dependent variable. 

• Lab: Labour denotes the total number of workers. 

• AIPt: Pat contains the total number of patents about AI. 

• nonAIPt: This measures the total number of patents unrelated to AI. 

• Invest: Invest comprises all R&D investments. 

• Asst: Asset denotes the company's total amount of fixed assets. 

So, the study question is: 

• What impact does the company's adoption of AI-related advances have on worker 

productivity? 
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Table: 1 

Description of Variables 

Name  Variable 

Region Region 

Firm Firm Name 

Year Year 

Prod Labour Productivity 

Labour Number of Employees 

AIPt AI-related patents  

NonAIPt non-AI-related patents  

Inv R&D investment 

Turnover Physical Capital Stock 

Firmcode group(firm) 

RegionID group(region) 

YearID group (year) 

Table: 2 

Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Max 

regionID 363 2,091 0,831 1 3 

firmcode 363 17 9,535 1 33 

yearID 363 6 3,167 1 11 

Lprod 363 -0,806 1,159 -6,063 1,552 

Llabour 363 4,592 1,204 0,704 7,169 

lAIpt 363 4,721 0,428 3,434 5,969 

NonAIpt 363 -0,324 0,425 -1,839 0,789 

Linv 363 2,316 1,823 -2,056 6,588 

Lturnover 363 1,495 1,297 -2,244 5,052 

In the analysis, a pooled OLS is performed first. Pooled OLS requires fewer factors 

to handle. Suppose exogeneity means that the expected value of the disturbance is zero. In 

that case, if the disturbance is uncorrelated with any regressors, and/or the variance of the 

error terms is constant concerning the free variable (symmetry), then fixed effect or Rendon 

effect models are most likely appropriate. It also shows no autocorrelation; the barriers are 

not correlated. For this reason, the Hausman test is used to verify exogeneity. The presence 

of non-correlation and symmetry is tested using various statistical methods. The White 

Breusch Pagan test determines the presence of unusual ancestry. The Durbin-Watson test is 

used to examine non-independent relationships. 

When there is no need to consider individual effects or significant variability in the 

data, pooled OLS is an effective method for estimating the common effects across all cross-

sections and periods. Based on the summary statistics, it can be inferred that the average 

impact of labour productivity is determined by pooling ordinary least squares (OLS). 

Variables like labour productivity (Lprod), labour productivity (Llabour), AI-related patents 

(lAIpt), and non-AI-related patents (NonAIpt) vary between firms and periods. When the 

data do not show significant heterogeneity or individual effects that need to be considered, 

pooled OLS effectively predicts the common effects across all cross-sections and periods. A 

helpful first model to comprehend the average impact of these variables on labour 

productivity is provided by pooled ordinary least squares (OLS). This is because the 

summary statistics indicate that variables like labour productivity (Lprod), labour (labour), 

AI-related patents (lAIpt), and non-AI-related patents (NonAIpt) vary across firms and 

periods. 
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5. Linear Regression 

The outcome includes several noteworthy facts. The R2 number, also called R-

squared, indicates the proportion of the dependent variable's fluctuation that the independent 

variable can explain (Gujarati, 2006). The model’s independent variables account for 48% 

of the variation in labour productivity. This model estimates data from 363 observations. 

There appears to be a significant correlation between the response variable and the 

predictors, as indicated by the 45.8 F-statistic predictive power. The data analysis indicates 

the model's importance. The regression model's p-value indicates the statistical significance 

of the model (Prob> F). Greene (2008) states that it ascertains whether R2 deviates from 

zero. 

With a p-value of less than 0.05, a statistically significant relationship between X and 

Y is demonstrated. P-values with two tails test the hypothesis that each coefficient diverges 

from 0. A p-value of less than 0.05 is needed to rule out the null hypothesis. The model 

estimating procedure will have a 95% significance level. The analysis shows a statistically 

significant link between labour productivity and the independent variables. To find the t-

values, divide the standard errors associated with the coefficients. The t-values indicate a 

variable's significance in the observed model. As all the variables suggest, the dependent 

variable is significant in this instance; however, the independent variables in this model 

account for labour productivity. There appears to be a significant correlation between the 

response variable and the predictors, as indicated by the 45.8 F-statistics predictive power. 

The null hypothesis that the coefficient varies from zero is rejected if the t-value 

exceeds 1.96 (at the 0.05 confidence level). The correlation between the independent 

variables and (Y) is shown in the coefficient column. The model indicates that labour 

productivity and employee count have a negative relationship. Labour productivity rises by 

0.473% for every 1% decline in the workforce (ceteris paribus). In contrast, there is a 

positive correlation between total labour productivity and the amount of AI-related patents, 

total asset turnover, and R&D spending. 

Table: 3 

Linear Regression 

lprod Coef. St.Er. t-value p-value [95% Conf Interval] Sig 

Ilabour -0,473 0,176 -8,89 0 -0,548 -0417 *** 

LAIpt 0,618 0,438 5,27 0 0,26 0,958 *** 

LNonAIpt 0,457 0,289 4,07 0 0,313 0,651 *** 

Linv 0,361 0,024 10,27 0 0,354 0,472 *** 

Lturnover 0,214 0,179 4,98 0 -0,417 -0,164 *** 

Constant -2,48 0,547 -3,98 0 -3,541 -1,329 *** 

 

Mean dependent var -0,813 SD dependent var 1,063 

R-squared 0,428 Number of obs 363 

F-test 45,800 Prob > F 0,000 

Akaike crit. (AIC) 957,126 Bayesian crit. (BIC) 971,275 

*** p<.01, ** p<.05, * p<.1 

The autocorrelation test is run using the Durbin-Watson statistics. If autocorrelation 

is present, it may lead us to conclude that predictors are important when they are not by 
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undervaluing the standard error. An autocorrelation test is applied to the residuals of a 

statistical regression study using the Durbin Watson (DW) statistic. We may be led to feel 

that predictors are significant when they are not by autocorrelation, which undervalues the 

standard error. The first-order correlation, or one with a one-unit lag, is the kind of serial 

correlation the Durbin-Watson test searches for. For the Durbin-Watson test, the following 

are the hypotheses: 

H0 = first-order autocorrelation does not exist. 

H1 = first-order correlation exists. 

According to Hsiao (2003), a value of two denotes the absence of autocorrelation in 

the sample. The Durbin-Watson statistics range from one to four. Values ranging from zero 

to less than two signify positive autocorrelation. The closer a value is to zero, the stronger 

the association is in reality. Autocorrelation is negative when the value is between 2 and 4. 

An adverse autocorrelation is present in this instance. Therefore, using an FE or RE model 

will be more reasonable. 

Under the assumption of homogeneity amongst enterprises, the Pooled OLS model 

offers a generalised estimation of relationships between variables. Nevertheless, it ignores 

variations in firm-specific attributes that could impact output. However, to account for this 

heterogeneity, the FE and RE models show that firm-specific characteristics like size, age, 

and R&D activity impact productivity. Because the Pooled OLS model does not consider 

firm-specific effects, autocorrelation tests using the Durbin-Watson statistic indicate that the 

model may be biased towards missing variables. The Pooled OLS model's residuals have 

positive autocorrelation, which implies that the predictors' importance may have been 

overestimated. The FE and RE models overcome this problem by accounting for firm-

specific variability and yield more accurate estimates. The RE model is recommended since 

the p-value for comparing the FE and RE models is more than 0.05, indicating no significant 

coefficient difference. When changes between firms are uncorrelated with the predictors, 

this model is adequate for handling those variations. As such, it provides a more realistic 

representation of the effect of firm-specific variables on productivity than the Pooled OLS 

model, including size, age, and R&D activities. 

The panel models in the analysis do not include time and/or firm (industry) dummies. 

Since size, age, and R&D activities are the primary sources of variation in this study, it is 

understandable that a concentration on firm-level factors would lead to this omission. The 

study tries to investigate subtle correlations. However, including time or firm dummies 

would have absorbed the variance related to these firm-specific factors or generated 

multicollinearity. Furthermore, adding dummies would have decreased the number of 

degrees of freedom that could be estimated, which could have reduced the model's statistical 

strength. In addition, the choice not to utilise dummies is consistent with the theory that 

productivity outcomes are influenced mainly by firm-specific characteristics as opposed to 

temporal or industry-wide impacts. The fixed effects (FE) and random effects (RE) models 

show that these firm-specific characteristics considerably impact productivity. The business 
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variability is best reflected when dummies are removed from the picture. That is why time 

and firm dummies are not included in the models: the analysis focuses on comprehending 

the inherent heterogeneity among firms and how factors like firm size, age, and R&D on 

artificial intelligence affect productivity. 

Table: 4 

Fixed Effect 

lprod Coef. St.Er. t-value p-value [95% Conf Interval] Sig 

llabour -0,628 0,039 -16,10 0 -0,765 -0,59 *** 

lAIpt 0,463 0,034 13,61 0 0,273 0,421 *** 

lnonAIat 0,317 0,055 0,58 0 0,242 0,444 *** 

lturnover 0,139 0,038 4,82 0 0,088 0,209 *** 

linv 0,375 0,05 7,5 0 0,279 0,437 *** 

Constant  -0,281 0,219 -1,16 0,246 -0,732 0,189  

 

Mean dependent var -0,683 SD dependent var 968,000 

R-squared 0,549 Number of obs 363 

F-test 84,107 Prob> F 0,000 

Akaike crit. (AIC) -217,319 
Bayesian crit. (BIC) 

DW statistics 

-245,466 

1,87 

*** p<.01, ** p<.05, * p<.1 

The outcomes analysis indicates significance for the multiple regression model. A 

95% confidence level of less than 0.05 is shown by the Prob>F of 0.000. As X increases by 

one percentage point, the regressors' coefficients show how much Y changes. Every variable 

shows statistical significance in this case. To further refute the null hypothesis that each 

coefficient deviates from zero, the t-statistics must be more than 1.96 (with a 95% confidence 

level). The variable's significance increases with a larger t-value. Except for labour, all 

model variables have high t-values. In addition, the Durbin-Watson value of 1.87, nearly 

equal to 2, indicates that the residuals show little to no indication of positive autocorrelation. 

However, it is somewhat less than 2, suggesting a possible weak positive autocorrelation 

that isn't significant enough to cause alarm immediately. 

Table: 5 

Random Effect 

lprod Coef. St.Er. t-value p-value [95% Conf Interval] Sig 

llabour -0,57 0,037 -15,41 0 -0,719 -0,519 *** 

lAIpt 0,318 0,029 10,96 0 0,185 0,396 *** 

lnonAIpt 0,307 0,048 6,40 0 0,218 0,417 *** 

lturnover 0,119 0,027 4,41 0 0,069 0,185 *** 

linv 0,286 0,025 11,44 0 0,225 0,407 *** 

Constant -0,304 0,194 -1,57 0,204 -0,816 0,195  

 

Mean dependent Var -0,785 SD dependent Var 968,000 

Overall r-squared 0,217 Number of obs 363 

Chi-square 409,318 Prob> chi2 0,000 

R-squared within 

DW statistics 

0,537 

1,82 

R-squared 

Between 
0,217 

Again, the model is significant if Prob>chi2 is less than 0.05 at the 95% confidence 

level. Every variable indicates statistical significance with p-values less than 0.05. They also 

have high t-values. The Random Effects Model's Durbin-Watson statistic of 1.82 is near 2, 
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indicating that autocorrelation is not very high. However, the number is marginally less than 

2, suggesting that the residuals have a small positive autocorrelation. 

Given that the p-value of>0.05 is insufficient to rule out the null hypothesis that there 

is no significant difference between the FE and RE coefficients, the random effect model is 

the best fit. You may remember that in every situation when there is a possibility that 

variations across entities would have an impact on the dependent variable, the random effects 

estimator is employed. Put differently, labour productivity may be impacted by changes 

within firms. 

• The number of patents covering artificial intelligence has a beneficial impact on 

labour productivity. This shows that integrating AI breakthroughs within the 

organisation increases worker productivity. In other words, the more resources a 

corporation devotes to AI, the higher its labour productivity and potential 

economic worth. 

• The number of patents unrelated to artificial intelligence significantly impacts 

labour productivity. However, its influence is less than that of AI patents. Put 

differently, increasing worker productivity is more closely correlated with 

advancements in artificial intelligence. 

• Considering the correlation between productivity and physical capital stock, it 

seems that investments in manufacturing facilities, namely in ICT, can increase 

labour productivity and, consequently, industry productivity overall. 

• The evidence indicates that R&D investments increase labour productivity. Thus, 

encouraging firms to spend more on research and development can raise employee 

productivity. The collaboration emphasises how crucial it is for companies to 

focus more on expanding and improving their R&D departments. 

• Labour productivity and staff count have an inverse relationship. When 

productivity increases, fewer personnel are required. The production and 

displacement impacts discussed in the preceding chapter could help explain this 

outcome. 

6. Conclusions 

The results offer critical new perspectives on the intricate connection between 

employee productivity and technological advancements, especially about artificial 

intelligence. The study validates the favourable impact of technical improvements, 

particularly those linked to artificial intelligence, on labour productivity inside enterprises, 

which aligns with previous literature. Companies actively engaging in AI research will likely 

have higher productivity gains among their workforce. Specifically, the results show a 

statistically significant positive association between the number of AI-related patents and 

employee productivity. 

According to Agrawal et al. (2019a) and Brynjolfsson et al. (2019), AI can increase 

productivity through several methods, such as automation, optimisation, and more precise 
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decision-making. This conclusion is consistent with their theoretical propositions. A second 

argument favouring investing in both physical capital and artificial intelligence is the 

favourable association between labour productivity and R&D spending on tangible capital 

stocks. The claims made by Solow (1957) and Romer (1990) that technical innovation and 

capital deepening are important factors influencing economic development and productivity 

are also supported by this. The study also discloses several subtleties that set it apart from 

earlier research. Although prior research (Graetz & Micheals, 2018; Alderucci et al., 2020) 

usually indicates that artificial intelligence (AI) has a favourable effect on productivity, it 

frequently needs to distinguish between advances related to AI and those not. By focussing 

only on AI-related patents, this analysis shows that these innovations significantly influence 

labour productivity more than non-AI-related breakthroughs. This finding is significant 

because it highlights the unique contribution that artificial intelligence makes to productivity 

growth, a contribution that may need to be clarified in more general studies of technical 

innovation. 

Possible explanations for these results include AI's transformative character, which 

automates repetitive jobs and improves workers' ability to make decisions, resulting in more 

productive and effective use of resources. Additionally, companies that invest in AI-related 

advancements might be more progressive and flexible, which would help them better use 

new technology to increase productivity. On the other hand, the disruptive potential of non-

AI discoveries might not be as great as that of AI technology, leading to less notable 

productivity gains. Companies investing in AI and physical capital will likely see more 

significant productivity gains, underscoring the significance of a comprehensive approach 

to technological innovation. The study focused on R&D spending on tangible capital stocks 

and its positive correlation with productivity. 

In conclusion, this study adds to the body of knowledge about the beneficial effects 

of artificial intelligence (AI) on productivity while offering fresh perspectives on the relative 

significance of discoveries versus those unrelated to AI. The results show that organisations 

should prioritise AI-related R&D while also considering the additional role that physical 

capital investment plays in maximising productivity advantages. 

7. Suggestions for Future Research 

Several limitations in this paper suggest areas for future investigation. The model 

only considers companies that submitted at least one AI-related patent between 2020 and 

2023. This kind of sample may be chosen as the most desirable because AI patents are a sign 

of technological proficiency; as a result, sample selection may have influenced the results. 

More research might be done by analysing the data on a more significant sample of 

companies, including those that never patent and those that only patent in fields unrelated to 

artificial intelligence. 

The absence of a widely accepted definition of artificial intelligence is another 

limitation that most scientific studies about the field of AI share. Since this study only looks 
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at current definitions of AI, it makes sense to expand it to include a more thorough 

description to apply the results to automation and robotics. The author suggests conducting 

a qualitative investigation to enhance the research process further and offer a deeper 

comprehension of the subject. 
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