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Abstract
In this paper, we apply Rice’s formula, typically employed to calculate the mean number of
upcrossings for stationary Gaussian processes, and extend it to the broader framework of
generalized mixtures of Gaussian processes. The class of generalized mixtures of Gaussian
distributions, recently introduced by [3], is highly comprehensive and includes significant
subclasses such as mean mixtures of Gaussian, variance mixtures of Gaussian, mean-
variance mixtures of Gaussian, and even scale mixtures of skew-Gaussian distributions.
Consequently, our results hold substantial generality, enabling the extension of Rice’s
formula to address specific scenarios within these subclasses.
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1. Introduction
The expected number of upcrossings provides valuable information on the frequency

with which a stochastic process exceeds a specified threshold. This is particularly relevant
in fields such as finance, engineering, and insurance [13,15,23]. In structural engineering,
upcrossings are frequently used to assess structural reliability, particularly in materials
exposed to random loads over time. These crossings can indicate potential fatigue or risk
of failure, helping engineers design structures with better resilience to varying stresses
[24,25]. In financial risk management, the frequency with which asset prices cross certain
thresholds, such as strike prices in options, directly affects pricing, hedging strategies, and
overall risk assessment [9]. Similarly, in insurance, analyzing upcrossings aids in estimating
risk exposure and determining appropriate premiums by assessing the likelihood of extreme
events, such as catastrophic losses or threshold-based claims. The applications of the
upcrossing concept also extend to hydrology, as discussed by [8] and [20].

Upcrossings are closely related to the first passage time, defined as the time it takes
for a stochastic process to reach a specified level for the first time [10]. When a process
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exhibits frequent upcrossings, it indicates that the process repeatedly hits and exceeds the
threshold, implying shorter intervals between successive crossings. In this sense, the time
between upcrossings can be interpreted as a "first passage time" for each cycle.

Consider {Xt = X (t) ; t > 0} as a continuous stationary stochastic process, and for
a fixed level u, let N (u,Xt) be the number of points at which Xt up crosses u in the
unit interval (0, 1). Then, Rice demonstrated in [22] and [23] that the expected value of
N (u,Xt) can be obtained by

E (N (u,Xt)) =
∫ +∞

0
xfXt (u) f

X
′
t |Xt=u (x) dx = E

(
X

′+

t |Xt = u

)
fXt (u) ,

where X ′
t represents the L2-derivative of Xt and X ′+

t is defined as the maximum of 0 and
X

′
t .
Consider the case of a stationary Gaussian process, i.e., when Xt is a standardized

stationary Gaussian process with finite second spectral moment λ2 , i.e., V ar
(
X

′
t

)
= λ2.

In such situations, from the result of [23], the above equation simplifies to

E (N (u,Xt)) =
√
λ2

2π exp
(

−u2

2

)
=

√
λ2√
2π
φ (u) ,

where φ (.) is the probability density function (PDF) of a standard Gaussian distribution.
For a non-standard stationary Gaussian process, i.e., when for each t, Xt∼N

(
µ, σ2), the

aforementioned equation becomes

E (N (u,Xt)) = σ
√
λ2√

2π
φ
(
u;µ, σ2

)
, (1.1)

where φ
(
.;µ, σ2) denotes the PDF of N

(
µ, σ2) .

Notably, Rice’s original derivation does not strictly require the process X (t) to be
fully stationary, which would mean that the process’s statistical properties, such as mean,
variance, and autocovariance, remain invariant under time shifts. Instead, Rice’s formula
can also be applied to processes with stationary increments, where the distribution of
X (t+ s) −X(s) depends only on the time difference t, regardless of the starting point s.
This weaker assumption of stationary increments is sufficient for many applications, as it
captures the uniformity of changes over time. However, for the simplified and widely used
version of the formula, the assumption of full stationarity is often adopted to facilitate
analysis and interpretation.

One of the most noteworthy applications of Rice’s formula is its association with the
maximum tail distribution. If we define M (t) = max

0≤s≤t
X (s) , then the upper Rice bound

for the maximum tail can be expressed as follows (see [14]):

Pr (M (t) > u) ≤ Pr(X (0) ≥ u) + tE (N (u,Xt)) . (1.2)
Specifically, in the case of a stationary Gaussian process, utilizing (1.1), this relationship
can be written as

Pr (M (t) > u) ≤ 1 − Φ
(
u− µ

σ

)
+ t

σ
√
λ2√

2π
φ
(
u;µ, σ2

)
.

Note that the preceding discussion has focused on upcrossings. However, similar results
hold for downcrossings as well. Specifically, the mean number of downcrossings is also
given by analogous formulae.

Most applications and generalizations of Rice’s formula have traditionally focused on
Gaussian processes. However, they have also been extended to encompass functions of
Gaussian processes, such as lognormal processes [8] or χ2 processes [12]. Furthermore,
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Klüppelberg and Rasmussen [11] have demonstrated analogous results for the class of
multivariate generalized hyperbolic processes. Recently, Masoliver and Palassini [17] gen-
eralized Rice’s formula for general Gaussian processes, removing restrictions on the inde-
pendence of Xt and its derivative X ′

t , allowing them to follow from a bivariate Gaussian
process. However, in this field, limited attention has been paid to analyzing datasets
with asymmetrical distributions and data skewness. Due to the fact that in engineering,
economics, and other applied fields, we encounter data with heavy tails and asymmetric
distributions, addressing this topic will be of paramount importance.

Our primary objective in this paper is to extend Rice’s formula to a highly versatile class
of continuous mixtures of Gaussian processes, where for each t, Xt follows a generalized
mixture of Gaussian (GMG) distribution. The GMG class, recently introduced by [3], is
exceptionally comprehensive and encompasses many well-known and significant subclasses
of continuous mixtures of Gaussian distributions, such as the mean mixture of Gauss-
ian (MMG), variance mixture of Gaussian (VMG), mean-variance mixture of Gaussian
(MVMG) and also scale mixtures of skew-Gaussian (SMSG) distributions. These classes
of distributions encompass a wide range of essential distributions, including Student’s
t, skew-Gaussian (SG) and its extended versions, generalized hyperbolic (GH), Laplace,
skew-t (ST), and skew-Gaussian generalized hyperbolic distributions, all as special cases.
Hence, our results are highly general and can be applied to extend Rice’s formula for
specific cases involving MMG, VMG, MVMG, SMSG processes, and more.

2. Extending Rice’s formula for GMG processes

In recent decades, various formulations have been discussed in the literature that involve
continuous mixtures of Gaussian variables. These formulations allow a mixing variable to
act on the mean [2,19], the variance, or both the mean and variance of a Gaussian variable
[7,19]. This approach transforms these basic components from fixed constants to random
quantities, introducing greater flexibility. As mentioned above, Arellano-Valle and Azzalini
[3] proposed a highly general framework for continuous mixture distributions, known as
the GMG distribution, which unifies all these formulations and can be defined as follows:

Definition 1. Let X∼N (0, 1) be a standard Gaussian random variable independent of
univariate random variables U and V with joint cumulative distribution function (CDF)
GU,V . Then, a random variable Y is said to have a GMG distribution if it has the stochastic
representation as

Y=ξ + r (U, V ) γ + s (U, V )σX=ξ +Rγ + SσX, (2.1)

where r = r (u, v) is any real-valued function, s = s (u, v) is a positive-valued function, and
ξ∈R, γ∈R, and σ∈R+. For notational simplicity, we denote the random variables r (U, V )
and s (U, V ) by R and S, respectively. We denote the random vector with representation
in (2.1) by Y ∼ GMG(ξ, γ, σ;GU,V ).

From (2.1), if U and V have a joint PDF g (u, v; τ ) , then an integral form of the PDF
of Y ∼ GMG(ξ, γ, σ;GU,V ) can be derived as

fGMG (y; ξ, γ, σ;GU,V ) =
∫∫

R2
φ
(
y; ξ + rγ, s2σ2

)
g (u, v; τ ) dudv.

Definition 2. (GMG process) Let X = {X (t) ; t > 0} be a standardized stationary
Gaussian process in (2.1), and the random variables U and V be defined as in Definition
1. Then, the stochastic process

Y (t) =ξ +Rγ + SσX (t) , (2.2)

is referred to as the GMG process with parameters (ξ, γ, σ) and mixing distribution GU,V .
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In this section, we aim to extend Rice’s formula for the class of GMG processes. To
achieve this, we introduce the concepts of univariate and bivariate weighted distributions,
along with a key lemma, essential for subsequent derivations. The notion of univariate
weighted distributions was first introduced by [21]. Suppose U be a univariate random
variable with a PDF fU (u) and let w(u) be a non-negative weight function such that
E (w(U)) < ∞. Then, the PDF of the corresponding weighted random variable Uw is
defined as

fUw(u) = w (u) fU (u)
E (w(U)) .

Furthermore, the extension of weighted distributions to the bivariate case has been
thoroughly explored by [16]. Let (U, V ) be paired random variables with joint PDF
fU,V (u, v) and a non-negative weight function w(u, v) such that E (w(U, V )) be finite.
Then, the PDF of the corresponding weighted random variables (U, V )w is given by

f(U,V )w
(u, v) = w (u, v) fU,V (u, v)

E (w(U, V )) . (2.3)

Now, let (U, V )s denote the special case where in (2.3), w (u, v) = s (u, v) and G(U,V )s

denote the CDF of (U, V )s. For this special case, we present the following lemma.

Lemma 1. Let U and V be bivariate random variables with a joint CDF GU,V . Then,
we have

E
[
Sφ
(
y; ξ +Rγ, S2σ2

)]
= E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

)
,

where r (U, V ) = R and s (U, V ) = S and fGMG

(
y; ξ, γ, σ;G(U,V )s

)
is the PDF of Y ∼

GMG(ξ, γ, σ;G(U,V )s
).

Proof. Let Y ∼ GMG(ξ, γ, σ;G(U,V )s
), then from the stochastic representation of the

GMG distribution given by (2.1), we have

Y |((U, V )s = (u, v)) ∼ N
(
ξ + rγ, s2σ2

)
,

and so from Bayes’ rule the PDF of weighted random variables (U, V )s given Y = y can
be written as

f(U,V )s|Y=y (u, v) =
f
Y
∣∣(U,V )s=(u,v) (y)f(U,V )s

(u, v)

fY (y) = φ
(
y; ξ + rγ, s2σ2) sfU,V (u, v)

E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

) .
(2.4)

Therefore, we have

E
[
Sφ
(
y; ξ +Rγ, S2σ2

)]
=
∫∫

R2
sφ
(
y; ξ + rγ, s2σ2

)
fU,V (u, v)dudv

Substituting from (2.4), we get∫∫
R2
sφ
(
y; ξ + rγ, s2σ2

)
fU,V (u, v)dudv = E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

)
×∫∫

R2
f(U,V )s|Y=y (u, v)dudv.

Since f(U,V )s|Y=y (u, v) is the conditional PDF of (U, V )s given Y = y, we have∫∫
R2
f(U,V )s|Y=y (u, v)dudv = 1,

and so we arrive at the desired result.
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Theorem 1. Let Yt be a GMG process with parameters (ξ, γ, σ) and mixing distribution
GU,V . Then, the mean number of upcrossings per unit time by the process Yt is given by

E (N (y, Yt)) = σ
√
λ2√

2π
E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

)

Proof: From (2.2), Yt |(U = u, V = v) is Gaussian process with mean ξ+rγ and variance
s2σ2. So, from (1.1), we have

E (N (y, Yt) |(U = u, V = v)) =
√
λ2σs√
2π

φ
(
y; ξ + rγ, s2σ2

)
.

Using the result from Lemma 1, we have

E (N (y, Yt)) = E [E (N (y, Yt) |(U = u, V = v))] = σ
√
λ2√

2π
E
(
Sφ
(
y; ξ +Rγ, S2σ2

))
= σ

√
λ2√

2π
E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

)
.

which completes the proof.

As a direct result of Theorem 1 and (1.2), we can derive an upper bound for the
maximum tail distribution in the case of a stationary GMG process as

Pr (M (t) > y) ≤ 1 − FGMG

(
y; ξ, γ, σ;G(U,V )s

)
+ t

σ
√
λ2√

2π
E (S) fGMG

(
y; ξ, γ, σ;G(U,V )s

)
.

(2.5)

3. Some special cases
In this section, we employ the general results established in the previous section to

address several specific sub-classes of GMG processes.

3.1. Mean mixture of Gaussian (MMG) process
The class of MMG process is a simplified form of (2.2) where r (u, v) = u and s (u, v) = 1.

Consequently, we can express it as

Y (t) =ξ + Uγ + σX (t) . (3.1)
Several distributional properties of the MMG class of distributions have been obtained by
[19]. If U has a PDF, denoted by f (u,ν) , then the integration form for the PDF of the
MMG distribution can be derived as

fMMG (y; ξ, γ, σ;GU ) =
∫
R
φ
(
y; ξ + uγ, σ2

)
fU (u,ν) du. (3.2)

Using the results in Theorem 1 by letting r (u, v) = u and s (u, v) = 1, we can derive
the mean number of upcrossings per unit time by the MMG process as presented in the
following corollary.

Corollary 1. Let Yt be an MMG process with parameters (ξ, γ, σ) and mixing distribution
GU . Then, we have

E (N (y, Yt)) = σ
√
λ2√

2π
fMMG (y; ξ, γ, σ;GU ) . (3.3)
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Simply from (2.5), for a stationary MMG process, we can formulate an upper bound for
the maximum tail distribution as follows:

Pr (M (t) > y) ≤ 1 − FMMG (y; ξ, γ, σ;GU ) + t
σ

√
λ2√

2π
fMMG (y; ξ, γ, σ;GU ) . (3.4)

3.1.1. Some noteworthy special cases. In this subsection, we present three notable
special cases of MMG processes and proceed to calculate the mean number of upcrossings
per unit time for these particular instances.

Rayleigh mean mixture of Gaussian (RMMG) process: Let U in (3.1) have a
standard Rayleigh distribution with density gU (u) = ue− 1

2u
2
I[0,+∞] (u). Then, we say that

the process Y (t) with stochastic representation in (3.1) follows a RMMG process. Using
(3.3), we have

E (N (y, Yt)) = σ
√
λ2√

2π
fRMMG (y; ξ, γ, σ) ,

where fRMMG (.; ξ, γ, σ) can be derived from (3.2) by letting U be a standard Rayleigh
random variable as follows

fRMMG (y; ξ, γ, σ) =
√

2π
1 + η2

1
σ∗φ

(
y − ξ

σ∗

)
Φ
(
η

(
y − ξ

σ∗

))φ
(
η
(
y−ξ
σ∗

))
Φ
(
η
(
y−ξ
σ∗

)) + η

(
y − ξ

σ∗

) ,
where

σ∗2 = σ2 + γ2and η = γ

σ
. (3.5)

Skew-Gaussian (SG) process: The SG process is a significant special subclass of
MMG processes when U in (3.1) follows a standard positive half-Gaussian distribution. If
Yt represents an SG process with parameters (ξ, γ, σ) , the mean number of upcrossings
per unit time can be directly obtained from (3.3) as

E (N (y, Yt)) = σ
√
λ2√

2π
fSG (y; ξ, γ, σ) , (3.6)

where fSG (y; ξ, γ, σ) is the PDF of the SG distribution introduced by [4], given by

fSG (y; ξ, γ, σ) = 2
σ∗φ

(
y − ξ

σ∗

)
Φ
(
η

(
y − ξ

σ∗

))
,

with σ∗2 and η defined as in (3.5).

Gamma mean mixture of Gaussian (GMMG) process: Suppose U in (3.1) follows
a Gamma distribution with a shape parameter α and a rate parameter equal to 1. In
this scenario, we refer to the stochastic process Yt as a GMMG process with parameter
(ξ, γ, σ,α). Employing the outcome from (3.3), we arrive at the following expression

E (N (y, Yt)) = σ
√
λ2√

2π
fGMMG (y; ξ, γ, σ,α) ,

where fGMMG (.; ξ, γ, σ,α) can be obtained from (3.2) after certain calculations as

fGMMG (y; ξ, γ, σ,α) =
1
σφ
(
y−ξ
σ

)
Γ (α)

√
1 + η2 ζ

−1
((

y − ξ

σ

)
− 1
η

)
×

MLTN

(1
η

(
y − ξ

σ

)
− 1
η2 ,

1
η2 , α− 1

)
,
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where ζ (x) = φ(x)
Φ(x) and MLTN

(
µ, σ2, n

)
represents the n-th moment of a truncated

Gaussian distribution with location µ, scale σ and truncation set (0,+∞) .
It should be noted that when we set α = 1, the gamma distribution simplifies to the

standard exponential distribution. In this case, we can refer to the associated random
process Yt as the exponential mean mixture Gaussian process. The distributional charac-
teristics of this class have been thoroughly investigated by [19].

It is worth noting that in order to derive an upper bound for the maximum tail dis-
tribution in these three cases, it is sufficient to substitute the MMG distribution in (3.4)
with the appropriate distribution.

3.2. Mean-variance mixture of Gaussian (MVMG) process
The class of MVMG distributions provides a meaningful alternative to the Gaussian

distribution, particularly for datasets exhibiting high skewness and kurtosis, often seen
in economic, engineering, and financial data. A notable subclass within MVMG is the
generalized hyperbolic (GH) distribution, which includes widely recognized distributions
such as Student’s t, Laplace, and variance gamma. For further information on MVMG
distributions and their applications (see [1, 6]).

In this subsection, we intend to define MVMG processes as special cases of GMG pro-
cesses. To achieve this, it is sufficient to set r (U, V ) = V, s (U, V ) = V

1
2 in (2.2). Hence,

we arrive at the formulation

Y (t) =ξ + V γ + V
1
2σX (t) . (3.7)

Using the results in Theorems 1 by letting r (u, v) = v and s (u, v) = v
1
2 , we can derive

the mean number of upcrossings per unit time for a MVMG process, as presented in the
following corollary.

Corollary 2. Let Yt be an MVMG process with parameters (ξ, γ, σ) and mixing distri-
bution GV . Then, we have

E (N (y, Yt)) = σ
√
λ2√

2π
E
(
V

1
2
)
fMVMG (y; ξ, γ, σ;GVs) ,

where s = s (v) = v
1
2 .

3.2.1. Special case of GH process. A particularly significant formulation arises when
V in (3.7) follows a Generalized Inverse Gaussian (GIG) distribution with density

g (v;κ, χ, ψ) =
(
ψ

χ

)κ
2 vκ−1

2Kκ
(√
χψ
) exp

(
−1

2
(
v−1χ+ vψ

))
, v > 0,

where Kλ (·) represents the modified Bessel function of third kind with index κ ∈ R.
Parameters χ and ψ must satisfy certain conditions: χ ≥ 0, ψ > 0 if κ > 0, ψ ≥ 0, χ > 0
if κ < 0, and χ > 0, ψ > 0 if κ = 0. Going forward, we’ll denote V ∼ GIG (κ, χ, ψ) for
the random variable V following the aforementioned GIG distribution. In this context,
the moments of V can be expressed as

E (V m) =
(
χ

ψ

)m
2 Kκ+m

(√
χψ
)

Kκ
(√
χψ
) , m ∈ R. (3.8)
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In this scenario, we refer to the stochastic process Yt as a GH process with parameter
(ξ, γ, σ, κ, χ, ψ). The PDF of GH distribution is given for y ∈ R by

fGH (y; ξ, γ, σ,κ, χ, ψ) = c×
Kκ− 1

2

(√(
χ+

(
y−ξ
σ

)2
)(

ψ + γ2

σ2

))
(√(

χ+
(
y−ξ
σ

)2
)(

ψ + γ2

σ2

)) 1
2 −κ

exp
(
γ
y−ξ
σ2

)
,

where

c =

(
ψ
χ

)κ
2
(
ψ + γ2

σ2

) 1
2 −κ

√
2πσKκ

(√
χψ
) .

Klüppelberg and Rasmussen [11] originally calculated the mean upcrossings per unit
time for the GH process in a multivariate scenario. Here, we utilize our previously
outlined methodology to once again extract their findings, focusing this time on the
univariate case. To achieve this, consider V ∼ GIG (κ, χ, ψ) . Consequently, we have
Vs ∼ GIG

(
κ+ 1

2 , χ, ψ
)
. By utilizing this relationship alongside the insights from Corol-

lary 2 and (3.8), we are able to deduce the mean number of upcrossings per unit time for
the Yt process as

E (N (y, Yt)) = σ
√
λ2√

2π

(
χ

ψ

) 1
4 Kκ+ 1

2

(√
χψ
)

Kκ
(√
χψ
) fGH

(
y; ξ, γ, σ, κ+ 1

2 , χ, ψ
)
.

The conclusions drawn from this subsection can be utilized to deduce an upper bound
for the maximum tail distribution of the MVMG processes. For instance, in the case
of a stationary GH process, we can formulate an upper bound for the maximum tail
distribution as follows:

Pr (M (t) > y) ≤ 1 − FGH (y; ξ, γ, σ,κ, χ, ψ) + t
σ

√
λ2√

2π

(
χ

ψ

) 1
4

×

Kκ+ 1
2

(√
χψ
)

Kκ
(√
χψ
) fGH

(
y; ξ, γ, σ, κ+ 1

2 , χ, ψ
)
.

Remark. Variance mixtures of Gaussian processes can be obtained from the VMMG
process simply by setting γ = 0, and so we do not present the corresponding expressions
here for the sake of brevity.

3.3. Scale mixtures of skew-Gaussian (SMSG) process
Branco and Dey [5] were the first to introduce a concept that closely resembles SMSG

distributions. This class, being a scale mixture of skewed versions of Gaussian distribu-
tions, offers remarkable flexibility for modeling data with significant skewness and heavy
tails. In this subsection, our aim is to introduce the class of SMSG processes as a special
case of GMG processes. For this purpose, let Y (t) be defined as

Y (t) =ξ + V
1
2Z (t) ,

where Z (t) represents an SG process with parameter γ, σ and ξ = 0. By combining this
representation with the additive form of SG processes, expressed as Z (t) =Uγ + σX (t) ,
where U is a standard half-Gaussian variable, we can write

Y (t) =ξ + UV
1
2γ + V

1
2σX (t) (3.9)
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which falls into the category given by (2.2) with r (u, v) = uv
1
2 and s (u, v) = v

1
2 . By

employing the results from Theorems 1 and selecting r (u, v) = uv
1
2 and s (u, v) = v

1
2 , we

can calculate the mean number of upcrossings per unit time for an SMSG process.

Corollary 3. Let Yt be an SMSG process with parameters (ξ, γ, σ) and mixing distribution
GU,V . Then, we have

E (N (y, Yt)) = σ
√
λ2√

2π
E
(
V

1
2
)
fSMSG

(
y; ξ, γ, σ;G(U,V )s

)
,

where s = s (v) = v
1
2 , and fSMSG

(
y; ξ, γ, σ;G(U,V )s

)
is the PDF of the SMSG distribution

with parameters (ξ, γ, σ) and the mixing distribution G(U,V )s
.

Skew-Gaussian generalized hyperbolic (SGGH) process: The concept of SGGH
distribution was initially introduced by [26] and represents a flexible family of distributions
that subsumes several well-known parametric distributions as special cases, including the
SG and ST distributions. Using the results of [26], we obtain the PDF of the univariate
SGGH distribution as

fSGGH (y; ξ, γ, σ,κ, χ, ψ) = 2
σ∗ fSY GH

((
y−ξ
σ∗

)
;κ, χ, ψ

)
×

FSY GH

η (y−ξ
σ∗

)
;κ− 1

2 ,

√√√√(χ+
(
y−ξ
σ∗

)2)
, ψ

 ,
where σ∗2 and η are defined as in (3.5) and fSY GH (.; ξ, σ,κ, χ, ψ) and FSY GH (.; ξ, σ,κ, χ, ψ)
denote the PDF and CDF of the symmetric generalized hyperbolic distribution with pa-
rameter (ξ, σ,κ, χ, ψ), respectively, such that

fSY GH (z;κ, χ, ψ) = ψ
1
4

χ
κ
2
√

2πKκ
(√
χψ
)Kκ− 1

2

(√
ψ (χ+ z2)

)
(√

(χ+ z2)
) 1

2 −κ
.

To introduce the SGGH process, let V ∼ GIG (κ, χ, ψ) in (3.9). Under this assump-
tion, the stochastic process Y (t), as represented in (3.9), conforms to an SGGH pro-
cess. Since in this scenario, U and V are independent, we have (U, V )s = (U, Vs) where
Vs ∼ GIG

(
κ+ 1

2 , χ, ψ
)
. Using this relationship, along with insights from Corollary 3 and

(3.8), the mean number of upcrossings per unit time for the Yt process can be deduced as

E (N (y, Yt)) = σ
√
λ2√

2π

(
χ

ψ

) 1
4 Kκ+ 1

2

(√
χψ
)

Kκ
(√
χψ
) fSGGH

(
y; ξ, γ, σ, κ+ 1

2 , χ, ψ
)
.

Skew-t (ST) process: A notable member of this class, which has garnered significant
attention since 2001 both in theoretical and applied contexts, is the ST process. This pro-
cess arises when V follows an inverse Gamma distribution with shape and scale parameters(
ν
2
)
, denoted as V ∼ IG

(
ν
2 ,

ν
2
)
. In this scenario, once again, U and V are independent.

Thus, we have (U, V )s = (U, Vs), and additionally, we can demonstrate that ν−1
ν Vs fol-

lows an inverse-gamma distribution, specifically ν−1
ν Vs ∼ IG

(
ν−1

2 , ν−1
2

)
. Utilizing this

relationship and the insights from Corollary 3, along with the expression

E
(
V

1
2
)

=
Γ
(
ν−1

2

)√
ν
2

Γ
(
ν
2
) ,

we can derive the mean number of upcrossings per unit time for the Yt process as
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E (N (y, Yt)) = σ
√
λ2√

2π

Γ
(
ν−1

2

)√
ν
2

Γ
(
ν
2
) fST

(
y; ξ,

√
ν

ν − 1γ,
√

ν

ν − 1σ,ν − 1
)
, (3.10)

where fST (.; ξ, γ, σ,ν) is PDF of the ST distribution with parameters (ξ, γ, σ,ν). It can
be expressed as

fST (y; ξ, γ, σ,ν) = 2
σ∗ t

((
y−ξ
σ∗

)
; ν
)
T

η (y−ξ
σ∗

)√√√√ ν + 1

ν +
(
y−ξ
σ∗

)2 ; ν + 1

 ,
where σ∗ and η are as defined before and t (.; ν) and T (.; ν) represent the PDF and CDF
of the standardized Student’s t-distribution with ν degrees of freedom, respectively.

As previously mentioned in the previous sections, the findings of this subsection can also
be used to derive an upper bound for the maximum tail distribution of SMSG processes,
particularly in specific instances of these processes.

4. Simulation study
To provide a more complete validation of the theoretical results, we conducted an exten-

sive simulation study. We considered a multiple set of parameters and increasing sample
sizes n to investigate the limiting behavior of the average number of cross sections and
the precision of the theoretical formula. The processes studied include the SG and ST
processes. For the simulation study, we considered the following parameter sets and steps:
• Parameter sets:

– SG process: All combinations of ξ = 0.5, 1.0; γ = 0.75, 1.00, 1.50; σ = 1.0, 2.5, 4.0;
resulting in 18 different cases.

– ST process: All combinations of ξ = 0.5, 1.0; γ = 0.75, 1.50; σ = 2.5, 4.0; ν =
4, 10, 15; resulting in 24 different cases.

• For each parameter set, N = 100, 000 sample paths each with n = 1000 points were
simulated over the interval [0, 1].

• Theoretical upcrossings were computed for each case using (3.6) and (3.10).
Figure 1 shows 25 simulated paths for SG and ST processes with parameters ξ = 1,
γ = 1.5, σ = 2.5, ν = 10, and an upcrossing level b0 = 5, respectively. Tables 1 and 2
show the comparison of the simulated and theoretical average number of upcrossings for
selected parameter sets. To determine the effect of the number of points in each simulated
path, several values of n = 100, 200, 500, 1000 were examined for one parameter set of
each distribution. This analysis ensures that n = 1000 points are sufficient for simulating
the sample paths over [0, 1]. Table 3 summarizes the results.

5. Real data application: Bitcoin daily closing prices
Bitcoin prices, known for their high volatility and dynamic nature, serve as an excellent

data set to validate advanced statistical models. Their distinctive features, such as heavy
tails, skewness, and volatility clustering, present unique challenges that require robust
and sophisticated modeling frameworks. Given these characteristics, we analyze the daily
closing prices of Bitcoin using the SG process, a flexible model capable of capturing the
complex statistical properties of financial time series.
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Figure 1. Time series plots of 25 simulated paths with n = 200 sample points.
Top: SG process. Bottom: ST process. A horizontal line at the upcrossing level
b0 = 5 is included to illustrate upcrossings.

Table 1. Comparison of simulated and theoretical average number of level 2.5
upcrossings of SG process for 18 different parameter sets

ξ γ σ E(N) Ê(N) ξ γ σ E(N) Ê(N)
0.5 0.75 1.0 3.133 3.135 1.0 0.75 1.0 5.057 5.057

2.5 6.716 6.716 2.5 7.346 7.347
4.0 7.441 7.434 4.0 7.710 7.707

1.00 1.0 3.814 3.810 1.00 1.0 5.486 5.476
2.5 6.917 6.926 2.5 7.442 7.440
4.0 7.526 7.523 4.0 7.749 7.755

1.50 1.0 4.542 4.545 1.50 1.0 5.583 5.585
2.5 7.115 7.113 2.5 7.427 7.418
4.0 7.608 7.598 4.0 7.740 7.737

5.1. Descriptive statistics and trend analysis
The data, obtained from Yahoo Finance, cover the period from March 1, 2024, to Octo-

ber 31, 2024, comprising 245 observations. To facilitate analysis, the data set was divided
into five groups of 49 consecutive samples, each group being treated as an observed sample
path of the SG process. Descriptive statistics, skewness, and kurtosis values for the entire
series and its five groups are presented in Tables 4, 5, and 6. These results provide insights
into the distributional properties and variability of Bitcoin prices. Figure 2 illustrates
the time series for the entire dataset, highlighting overall trends and fluctuations. Fig-
ure 4 shows the five divided groups along with their mean series. To evaluate stationarity
and trends, we conducted a Mann-Kendall test on the mean series. This approach aligns
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Table 2. Comparison of simulated and theoretical average number of level 2.5
upcrossings of ST process for 24 different parameter sets

ξ γ σ ν E(N) Ê(N) ξ γ σ ν E(N) Ê(N)
0.5 0.75 2.5 4 6.720 6.718 1 0.75 2.5 4 7.307 7.306

10 6.718 6.723 10 7.330 7.323
15 6.717 6.712 15 7.335 7.335

4.0 4 7.422 7.416 4.0 4 7.689 7.685
10 7.433 7.431 10 7.701 7.689
15 7.435 7.426 15 7.704 7.697

1.50 2.5 4 7.009 7.023 1.50 2.5 4 7.324 7.324
10 7.071 7.072 10 7.384 7.385
15 7.085 7.078 15 7.398 7.404

4.0 4 7.550 7.550 4.0 4 7.692 7.689
10 7.584 7.581 10 7.720 7.714
15 7.592 7.593 15 7.726 7.724

Table 3. Limiting behaviour of simulated average of number of level b = 2.5
upcrossings for SG and ST with parameters ξ = 1, γ = 1.5, σ = 2.5, ν = 10 with
multiple n values.

E(N) Ê(N)
n - 50 100 200 500 1000
SG 7.427 6.771 7.255 7.383 7.413 7.425
ST 7.384 6.723 7.213 7.335 7.372 7.385

Table 4. Descriptive statistics of Bitcoin prices (in USD).

Statistic Part 1 Part 2 Part 3 Part 4 Part 5 All
Min. 61276.69 58254.01 55849.11 53948.75 58192.51 53948.75
1st Qu. 65315.12 63113.23 60320.14 57648.71 62089.95 60811.28
Median 68300.09 65231.58 64118.79 59119.48 63394.84 64118.79
Mean 67443.13 65519.61 63380.25 60005.06 64542.47 64178.10
3rd Qu. 69702.15 68296.22 66490.30 61415.07 67361.41 67612.72
Max. 73083.50 71448.20 69647.99 68255.87 72720.49 73083.50
Std Dev 3080.85 3337.66 3939.58 3683.16 3474.62 4278.94

Table 5. Skewness analysis of Bitcoin prices.

Statistic Part 1 Part 2 Part 3 Part 4 Part 5 All
Skewness -0.3042 -0.1271 -0.2799 0.6016 0.3695 -0.1962
P-value 0.3387 0.6857 0.3777 0.0688 0.2485 0.2012

Table 6. Kurtosis analysis of Bitcoin prices.

Statistic Part 1 Part 2 Part 3 Part 4 Part 5 All
Kurtosis 2.0391 2.1309 1.9753 2.7924 2.4059 2.2595
P-value 0.0363 0.0857 0.0170 0.9544 0.4076 0.0003

with the continuity assumptions of the underlying stochastic model, ensuring that trend
analysis avoids bias from finite discontinuities between segments. The Mann-Kendall test
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result (τ = 0.163, p = 0.0997) provides weak evidence against stationarity, supporting the
suitability of the SG process for these data.

Figure 2. Time series of Bitcoin prices from March 1, 2024, to October 31, 2024.

5.2. Fitting the SG process
To validate the applicability of the SG process, we performed maximum likelihood

estimation (MLE) on the five observed sample paths. The estimated parameters of the
model were ξ̂ = 5.9671, γ̂ = 0.5119, and σ̂2 = 0.1235. These parameters were used
to compute the theoretical expected number of upcrossings of a threshold value b0 =
6.8. Figure 3 shows the time series of these groups with a horizontal line at b0 = 6.8,
representing the upcrossing threshold.
The empirical estimate of the expected number of upcrossings was Ê(N) = 3.211. Using
the fitted parameters, the theoretical expected number of upcrossings was calculated as
Ê(N) = 3.2, closely matching the empirical result. This agreement between theoretical
and empirical results highlights the suitability of the model to capture key statistical
features of the Bitcoin price dynamics.
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Figure 3. Time series plots of the 5 groups of bitcoin daily closing prices with
b0 = 6.8 as the upcrossing threshold.

Figure 4. Time series of five parts of bitcoin prices and their mean series.
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6. Concluding remarks

In this paper, we have extended the well-known Rice formula to obtain precise expres-
sions for the mean number of upcrossings per unit time within the rich family of GMG
processes, which in particular includes several significant subclasses of continuous mixtures
of Gaussian processes, such as MMG, MVMG, and SMSG processes. Future directions for
this work include extending the upcrossing framework to multivariate processes, enabling
the study of simultaneous threshold crossings in multiple correlated processes, which is
particularly relevant in portfolio risk analysis and multisystem reliability. Furthermore, in-
vestigating the relationship between upcrossings and first passage time for non-stationary
or time-dependent processes could provide deeper insights into the dynamics of extreme
events, thereby broadening the applicability of the proposed framework across diverse
fields.
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