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Ozet. Bu makalede w-koatomik modiil tanimi verildi ve dzellikleri incelendi. W-koatomik
modiillerin sonlu toplaminin da w-koatomik oldugu ispatlandi. W-koatomik modiillerin
genigleme altinda kapali oldugu gosterildi. Ayrica indirgenmis bir M modiiliinde her
yaribasit alt modiilii bir tiimleyene sahipse, M modiiliiniin w-koatomik oldugu ispatlanda.

Anahtar Kelimeler. Koatomik modiil, w-koatomik modiil, yaribasit modiil.

Abstract. In this paper we introduce w-coatomic modules and some of their properties.
We prove that the finite sum of w-coatomic modules is w-coatomic. It is shown that
w-coatomic modules are closed under extensions. It is proved that if an R-module M is
reduced and every proper semisimple submodule N of M has a supplement in M, then M
is w-coatomic.
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1. Introduction

Throughout this note, we assume that R is an associative ring with unity and all
modules are unital left R-modules, unless otherwise stated. Let R be a ring and M
be an R-module. Rad(M) and Soc(M) will denote the Jacobson radical and socle
of M, respectively. A module M is called coatomic if every proper submodule of M
is contained in a maximal submodule of M, equivalently, for a submodule N of M,
whenever Rad (M/N) = M/N, then M = N; see [1, 2, 3]. A module M is said to be
semisimple if every submodule of M is a direct summand in M. Semisimple mod-
ules, finitely generated modules, hollow modules and local modules are coatomic
modules. A module M is called finitely coatomic, or simply f-coatomic, if every

finitely generated proper submodule of M is contained in a maximal submodule of
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M; see [4]. We say that a module M is w-coatomic, if every nonzero proper semisim-
ple submodule of M is contained in a maximal submodule of M or equivalently, for
a semisimple submodule N of M, if Rad (M/N) = M/N, then M = N.

In this paper, we will assume that M has always a nonzero socle, that is, M con-
tains a nonzero simple submodule. Otherwise, if a module M has no nonzero sim-
ple submodule, then it has only 0 as a semisimple submodule. Thus, whenever
Rad (M/N) = M/N where N = 0, then M = N = 0. So, M has no maximal

submodules. Thus, M cannot be w-coatomic.

Clearly, any coatomic module which has a nonzero socle is w-coatomic but the

converse is not true.

Example 1.1. Let Z and Q be the sets of integers and rational integers, respectively.
Let us consider the Z-module M = (Z/8Z) & Q. Then Soc(M) is nonzero, because
Soc(Z/8Z) = Z/2Z and Soc(Q) = 0. So, every proper semisimple submodule of M
is of the form K & 0 where K is a proper semisimple submodule of Z/8Z. Note
that K = Z/27Z and K is contained in the maximal submodule (2 + 8Z) of Z/8Z.
So, K & 0 is contained in the maximal submodule (2 4 8Z) & Q. We claim that M
is not coatomic, because otherwise by [1, Lemma 4], Q must be coatomic. This is
impossible since Q has no maximal submodule, that is, Q is not coatomic, which is

a contradiction. Thus M is not coatomic.

2. Properties of W-Coatomic Modules

In [1, Corollary 5], it is proved that any finite direct sum of coatomic modules is

coatomic. We show that this property holds also for w-coatomic modules.

Proposition 2.1. Let M = My + M. If My and My are w-coatomic, then so is M.

Proof. Let U be a proper semisimple submodule of M. Let us consider U N M.
If UN M, = My, then M; C U and so M; is semisimple. If U N My = M,, then
My is semisimple. Thus M = M; + M, is semisimple and so M is w-coatomic. In
case M7 C U and U N My # M, since M, is w-coatomic, there exists a maximal
submodule Ky of My such that U N My C K,. Clearly, M; + K5 is a maximal
submodule of M; + M, and U C M; + K5 because every member of U is either in
My orin UNM,. If UNM; # My, then M; has a maximal submodule K such that
UnN M, C K;. Thus Ky + M, is maximal in M; 4+ My, so U C K; + Ms, because
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parts of U that are included in M; are in K; and parts of U staying in M, are in
M. O

Corollary 2.2. Any finite direct sum of w-coatomic modules is w-coatomic.

Lemma 2.3. Let
0O—L—M-—N—70

be a short exact sequence. If both L and N are w-coatomic, then so is M.

Proof. Let U be a proper semisimple submodule of M. Let’s consider N as M/L.
Then (U+L)/L is a semisimple submodule of M /L. Suppose that (U+L)/L = M/L,
then M = U + L. Since every semisimple module and L are w-coatomic, M is w-
coatomic, by Proposition 2.1. Let (U + L)/L be a proper submodule of M /L. Since
M/L is w-coatomic, there exists a maximal submodule K/L in M/L such that
(U+L)/L C K/L for some submodule K of M containing L. Thus, K is a maximal

submodule in M containing U'. O

Unfortunately, no factor module of a w-coatomic module is w-coatomic.

Example 2.4. Let Z be the set of integers. Let M = Z ® Zy~), where Z,~) is
the Priifer p-group for any prime p. Since Soc(Z) = 0 and Soc(Z ) = Z/pZ, then
Soc(M) # 0. M is w-coatomic, because pZ @ Zy~) is maximal in M and every
proper semisimple submodule of M is contained in pZ @ Zyee). But M/Z = Z e

is not w-coatomic, since Zy~) has no maximal submodule.
A ring R is a left V-ring if each simple left R-module is injective; see [5].

Proposition 2.5. Let R be a left V-ring and let M be w-coatomic. Then M/N is

w-coatomic for a simple submodule N of M.

Proof. Let L/N be a proper semisimple submodule of M/N and let Rad(M/L) =
M/L. Obviously, Soc(L/N) = L/N. Since R is a left V-ring and N is simple
submodule of M, then N is an injective submodule in M, and it is a direct summand
in L. By [6, Ch. 9, Exercise 12(a)], Soc(L/N) = (Soc(L) + N)/N, and it follows
that L/N = (Soc(L) + N)/N. Thus L = Soc(L) + N. Then L is a semisimple
submodule in M, because N is a simple submodule. By assumption M = L. 0
Let M be an R-module and U,V submodules of M. We say that V' is a supplement
of U in M, if it is minimal with respect to the property U +V = M or equivalently,
M=U+VadUNV <« V;see [7, Ch. 8, Sec. 41]. M is called supplemented, if
every submodule of M has a supplement in M; see [7, Ch. 8, Sec. 41].
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Proposition 2.6. Let M be an R-module, U be a proper semisimple submodule of
M and V' be a supplement of U in M. Then M is w-coatomic if and only if V 1is

w-coatomic.

Proof. (=) Let M be w-coatomic and U be a proper semisimple submodule of
M. Let V be a supplement of U, then M = U +V and UNV < V. Because
U is semisimple in M, U = (UNV) & U’ for some submodule U’ of U. Then it
follows that M = U +V = (UNV)+ U + V. Therefore M = U’ + V. Since
0=UNV)NU" =V NU', then M = U @& V. Let Rad(V/V') = V/V' for a
semisimple submodule V' of V. Then M/(U' V') = (U & V)/(U & V') =V/V'is
a radical module, that is, Rad(M/(U' @ V")) = M/(U" & V’). Since U’ and V' are
semisimple submodules of M, so is U’ @ V'. By assumption, M/(U' @ V') = 0, that
is, M = U’ & V’. By minimality of V', V = V’. Hence V is w-coatomic.

(<) Let V be a supplement of U. Then M = U +V and U NV <« V. Since

U is semisimple submodule in M and V' is w-coatomic, by Proposition 2.1, M is

w-coatomic. O

Lemma 2.7. Let M be an R-module with Rad(M) w-coatomic. If every semisimple

submodule has a supplement in M, then M 1is w-coatomic.

Proof. Let U be a proper semisimple submodule of M and let Rad(M/U) = M/U.
By assumption, U has a supplement V in M, thatis, M =U+V and UNV <« V.
Since U is a semisimple submodule in M, U = (UNV) @ U’ for some submodule U’
of U. It follows that M = U +V =({UNV)+U +V and so M = U’ + V. Because
0=UnNV)NU' =V NU', then M =U"® V. By [8, Lemma 1.2], Rad(M/U) =
(Rad(M) + U)/U. So (Rad(M)+ U)/U = M/U. It implies M = Rad(M) + U.

Since Rad(M) and U are w-coatomic, M is w-coatomic by Proposition 2.1. O

The proof of the following corollary follows from Lemma 2.3 and Proposition 2.6.

Corollary 2.8. Let M be an R-module, U be a proper semisimple submodule of M
and V' be a supplement of U in M. If M/U is w-coatomic, then V is w-coatomic.

We need some lemmas in order to prove that M is a w-coatomic module if M is

reduced and every proper semisimple submodule has a supplement in M.

Lemma 2.9. Let M be a module and U be a proper semisimple submodule of M
contained in Rad(M). Then U is small in M.
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Proof. Let U be a submodule of Rad(M) where U is semisimple in M. By [6,
Corollary 9.1.5], Soc(U) C Soc(Rad(M)). Since U is semisimple, then Soc(U) = U.
Thus U C Soc(Rad(M)). By [9, Ch. 1, Sec. 2.8(9)], Soc(Rad(M)) < M. Then it
follows that U < M. O

Lemma 2.10. Let M/Rad(M) be semisimple, then every semisimple submodule of
M has a supplement.

Proof. Let N be a proper semisimple submodule of M. Then (N+Rad(M))/Rad(M)
is a semisimple submodule of M/ Rad(M). By assumption, (N +Rad(M))/Rad(M)
is direct summand in M/ Rad (M), that is,
M N+ Rad(M) EB N’
Rad(M) Rad(M) Rad(M)

for some submodule N’ of M. Then M = N + N’ and N N N’ C Rad(M). Since
N N N’ is semisimple, by Lemma 2.9, NN N < M. N = (NNN')® K for some
submodule K of N because N is semisimple. Thus M = N+ N’ implies M = N'+K.
Then N'N K = 0 follows from (NNN')NK =N'NK =0. That is, M = N' & K.
If NNNN < M, by [7, Ch. 3, Sec. 19.3], NN N’ < N’. Hence N has a supplement
N’"in M. U

We say that a module M is reduced if the only radical submodule of M is the zero

module; see [8].

Proposition 2.11. Let M be a reduced module. If every semisimple submodule of

M has a supplement in M, then M is w-coatomic.

Proof. Let N be a proper semisimple submodule of M and let Rad (M/N) = M/N.
By assumption, /N has a supplement K in M. Thatis, M = N+ K and NNK < K.
Then M = N’ @ K for some submodule N’ of N because N is semisimple. By [7,
Ch. 4, Sec. 21.6], Rad(M) = Rad(K) < K. By [8, Lemma 1.2], Rad (M/N) =
(Rad(M)+N)/N, then M/N = (Rad(M)+N)/N. It follows that M = Rad(M)+N.
By [7, Ch. 8, Sec. 41|, K = Rad(M) = Rad(K). Since M is reduced, K = 0. Thus
M = N. O

Proposition 2.12. Let Rad(M) < M. If every semisimple submodule of M has a
supplement in M, then M is w-coatomic.

Proof. Let N be a proper semisimple submodule of M and let Rad (M/N) =
M/N. By assumption, N has a supplement in M. Therefore Rad (M/N) =
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(Rad(M) + N)/N, by [8, Lemma 1.2]. It implies M/N = (Rad(M) + N)/N, that
is, M = Rad(M) + N. Then M = N because Rad(M) < M. O

We also have the following corollary by Lemma 2.10 and Proposition 2.11.

Corollary 2.13. Let R be a discrete valuation ring and M be a reduced R-module.

Then M 1is w-coatomic.

In [1, Lemma 3|, Giingdroglu has proved that every submodule of a coatomic module
is coatomic over a discrete valuation ring. We proved the same lemma under a weaker

condition.

Lemma 2.14. Let R be a discrete valuation ring. Every submodule of Rad(M) is

w-coatomic if and only if every submodule U of M is w-coatomic.

Proof. (=) Let U be a submodule of M and N be a semisimple submodule of U.
Let Rad (U/N) = U/N. We have by the isomorphism theorem and the modular
law:

U+ Rad(M) U+ (N +Rad(M)) U - U
N+Rad(M) N +Rad(M) UN(N+Rad(M)) ~ N+ (UnRad(M))’
We claim that (U + Rad(M))/(N + Rad(M)) does not have a maximal submodule.
Suppose that (U+Rad(M))/(N+Rad(M)) has a maximal submodule. By the above
isomorphisms, there is a maximal submodule K of U containing N + (U NRad(M)).
Then K/(N + (U NRad(M))) is a maximal submodule in U/(N + (U NRad(M))).
So K/N is a maximal submodule in U/N. This is impossible since Rad (U/N) =
U/N, a contradiction. So, for U; = U + Rad(M) and N; = N + Rad(M), we
have Rad (U;/N;) = U;/N;. Since R is a discrete valuation ring, then M/ Rad(M)
is semisimple. So N;/Rad(M) is a direct summand in M/Rad(M), that is, for
submodule K7 of M,

I

M N & K,
Rad(M) Rad(M) =~ Rad(M)

Then M = N; + K; and Ny N K; = Rad(M). Since

U, Uy M K M
D Rad () cRad ([ Z) ~Rad [ —2L ) cRad [ —2 ) =
Ny fa (Nl) = (Nl) fta (Rad(M)) < (Rad(M)> o

then U; = N;. Hence U + Rad(M) = N + Rad(M) and so U = N + (U NRad(M)).

From

rad (U U N+ (UnRad(M)) ., UNRad(M)
N) N N ~ NNRad(M)’
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it follows that
U NRad(M) ~ Rad (UﬂRad(M))

N N Rad(M) N N Rad(M)
Since U N Rad(M) is a submodule of Rad(M), by assumption U N Rad(M) is w-
coatomic. Since NNRad(M) is a submodule of N, then NNRad(M) is a semisimple
submodule of U N Rad(M). Therefore U N Rad(M) = N NRad(M). Then U = N.

Thus U is w-coatomic.
(<) Let U be a submodule of Rad(M). Then U is also a submodule of M. By

assumption, U is w-coatomic. O

3. W-Local and W-Coatomic Modules

In [10], the authors defined w-local module as follows: A module M is called w-local
if it has a unique maximal submodule. It is clear that a module is w-local if and

only if its radical is maximal.

An example is given in order to show that not every w-local module is w-coatomic

and vice versa.

Example 3.1. Let M = Q@®(Z/pZ) be an abelian group for any prime p. Then J =
Q@ 0 is the unique maximal submodule of M. Thus M is w-local. K = 0& (Z/pZ)
is a proper semisimple submodule of M and since K is not contained in .J, then M is
not w-coatomic. Conversely, let’s consider the abelian group M = Z ® Z ) for any
prime p. By Example 2.4, M is w-coatomic. pZ @ Z,~) is the maximal submodule

of M. But pZ @ Z e~y is not unique in M. So M is not w-local.

We need an extra property to give the relationship between w-local and w-coatomic

modules.

Proposition 3.2. If M s w-local and reduced, then M is w-coatomic.

Proof. Let N be a proper semisimple submodule of M. Since M is w-local, then its
radical is maximal. So M/ Rad(M) is semisimple. By Lemma 2.10, every semisimple
submodule of M has a supplement in M, then by Proposition 2.11, M is w-coatomic,

because M is reduced. O

Proposition 3.3. Let M be a w-local module. If Rad(M) < M, then M is w-

coatomic.

Proof. If M is w-local, then M/ Rad(M) is semisimple. By Lemma 2.10 and Propo-

sition 2.12, M is w-coatomic. 0
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