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Özet. Bu çalışmada, Ramani denkleminin hareket eden dalga çözümleri için (G′/G)-
açılım metodu sunuldu. Bu metod yardımı ile yukarıda bahsedilen denklemin bazı hareket
eden dalga çözümleri bulundu.

Anahtar Kelimeler. Altıncı mertebeden Ramani denklemi, (G′/G)-açılım metodu,
hareket eden dalga çözümleri, lineer olmayan denklem.

Abstract. In this study, we implemented the (G′/G)-expansion method the traveling
wave solutions of the sixth-order Ramani equation. By using this scheme, we found some
traveling wave solutions of the above-mentioned equation.

Keywords. Sixth-order Ramani equation, (G′/G)-expansion method, traveling wave so-
lutions, nonlinear equation.

1. Introduction

It has recently become more interesting to obtain exact solutions of nonlinear partial

differential equations through using symbolical computer programs such as Maple,

Matlab, and Mathematica, that facilitate complex and tedious algebraic computa-

tions. Calculating the exact and numerical solutions, in particular traveling wave

solutions, of nonlinear equations in mathematical physics plays an important role

in soliton theory [1,2]. Mathematical modeling of physical systems generally is ex-

plained with nonlinear equations. Hence, it is very important to find exact solutions

of nonlinear partial differential equations. The exact solution of a differential equa-

tion gives information about its construction. These equations are mathematical

models of complex physical phenomena that arise in engineering, chemistry, bi-

ology, mechanics and physics. Various effective methods have been developed to

understand the mechanisms of these physical models, and these help physicists and
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engineers to ensure they have the knowledge to solve physical problems and to find

the applications of the models.

Recently, interest has increased in traveling wave solutions of differential equations.

There are many methods to solve these equations in literature. Some of them are:

Hirota’s dependent variable transformation [3], Bäcklund transformation [4], Cole-

Hopf transformation [5], generalized Miura transformation [6], inverse scattering

transform [7], Darboux transformation [8], Painlevé method [9], homogeneous bal-

ance method [10], similarity reduction method [11], sine-cosine method [12], Jacobi

elliptic function method [13], and exp-function method [14].

The solutions of many nonlinear differential equations can be stated with tanh func-

tion terms [15,16]. The tanh function terms firstly were used on an ad hoc basis in

1990 and 1991 [17,18]. Then, Malfliet [19] formalized the tanh method in 1992 and

illustrated it with several examples, Parkes and Duffy presented the automatic tanh

method [20] in 1996, and after that, Fan defined the extended tanh method [21] in

2000, and Elwakil presented the modified extended tanh method [22] in 2002. The

generalized extended tanh method [23] was defined by Zheng in 2003, the improved

extended tanh method [24] by Yomba in 2004, and the tanh function method [25]

by Chen and Zhang in 2004.

In this work, we will consider the traveling wave solutions of the sixth-order Ramani

equation by using the (G′/G)-expansion method which is introduced by Mingliang

Wang, Xiangzheng Li and Jinliang Zhang [26].

2. An Analysis of the Method and Applications

Before starting to apply the (G′/G)-expansion method, we will give a simple de-

scription of the method. For doing this, one can consider in a two-variables general

form of nonlinear PDE

Q(u, ut, ux, uxx, ...) = 0, (1)

and transform (1) with u(x, t) = u (ξ), ξ = x − kt where k is a constant. After

transformation, we get a nonlinear ODE for u(ξ)

Q′(u′, u′′, u′′′, ...) = 0. (2)
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The solution of (2) we are looking for is expressed as

u(ξ) = am

(
G′

G

)m
+ · · · , (3)

where G = G(ξ) satisfies the second order LODE in the form

G′′ + λG′ + µG = 0, (4)

where am, . . . , λ and µ are constants to be determined later, am 6= 0, and the positive

integer m can be determined by balancing the highest order derivative with the

highest nonlinear terms into (2). Substituting (3) into (2) and using (4) yields a set

of algebraic equations in the same order as (G′/G), then all coefficients in the same

order as (G′/G) have to vanish. After this separated algebraic equation, we can find

the am, . . . , k, λ and µ constants. The general solutions of (4) are well known us,

then substituting am, . . . , k and the general solutions of (4) into (3) we have more

traveling wave solutions of (1).

Example. Consider sixth-order Ramani equation

uxxxxxx + 15uxuxxxx + 15uxxuxxx + 45u2xuxx

− 5uxxxt − 15uxuxt − 15utuxx − 5utt = 0. (5)

For this example, we can use transformation with (1) then (5) becomes

u(6) + 15u′u(4) + 15u′′u′′′ + 45(u′)2u′′ + 5ku(4)

+ 15ku′u′′ + 15ku′u′′ − 5k2u′′ = 0. (6)

Balancing u′′u′′′, u′u(4) with u(6) then gives m = 1. Therefore, we may choose

u(ξ) = a1

(
G′

G

)
+ a0. (7)

Substituting (7) into (6) yields a set of algebraic equations for a0, a1. These systems

are

− 5a1k
2λµ+ 5a1kλ

3µ+ a1λ
5µ+ 40a1kλµ

2 − 30a21kλµ
2 + 52a1λ

3µ2

− 30a21λ
3µ2 + 136a1λµ

3 − 150a21λµ
3 + 45a31λµ

3 = 0,
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− 5a1k
2λ2 + 5a1kλ

4 + a1λ
6 − 10a1k

2µ+ 110a1kλ
2µ− 60a21kλ

2µ

+ 114a1λ
4µ− 60a21λ

4µ+ 80a1kµ
2 − 60a21kµ

2 + 720a1λ
2µ2 − 630a21λ

2µ2

+ 135a31λ
2µ2 + 272a1µ

3 − 300a21µ
3 + 90a31µ

3 = 0,

− 15a1k
2λ+ 75a1kλ

3 − 30a21kλ
3 + 63a1λ

5 − 30a21λ
5 + 300a1kλµ

− 180a21kλµ+ 1176a1λ
3µ− 870a21λ

3µ+ 135a31λ
3µ

+ 1848a1λµ
2 − 1710a21λµ

2 + 405a31λµ
2 = 0,

− 10a1k
2 + 250a1kλ

2 − 120a21kλ
2 + 602a1λ

4 − 390a21kλ
4 + 45a31λ

4

+ 200a1kµ− 120a21kµ− 3584a1λ
2µ− 2880a21λ

2µ

+ 540a31λ
2µ+ 1232a1µ

2 − 1140a21µ
2 + 270a31µ

2 = 0,

300a1kλ− 150a21kλ+ 2100a1λ
3 − 1500a21λ

3

+ 225a31λ
3 + 4200a1λµ− 3450a21λµ+ 675a31λµ = 0,

120a1k−60a21k+3360a1λ
2−2490a21λ

2+405a31λ
2+1680a1µ−1380a21µ+270a31µ = 0,

2520a1λ− 1890a21λ+ 315a31λ = 0,

720a1 − 540a21 + 90a31 = 0.

From the solutions system, we obtain the following with the aid of Mathematica.

Case 1.

a0 = a0, a1 = 2, k =
5λ2 − 20µ+ 3

√
5
√
λ4 − 8λ2µ+ 16µ2

10
.

Case 2.

a0 = a0, a1 = 2, λ = 0, k = ±2

5
(∓5µ+ 3

√
5µ). (8)

Substituting (8) into (7) we have three types of traveling wave solutions of (5)

For Case 1.
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(i) When λ2− 4µ > 0, we obtain the hyperbolic function traveling wave solutions

u1(ξ) = 2


√
λ2 − 4µ

2

C1 sinh

(√
λ2−4µ
2

ξ

)
+ C2 cosh

(√
λ2−4µ
2

ξ

)
C1 cosh

(√
λ2−4µ
2

ξ

)
+ C2 sinh

(√
λ2−4µ
2

ξ

)

+ a0 − λ,

where

ξ = x−

(
5λ2 − 20µ+ 3

√
5
√
λ4 − 8λ2µ+ 16µ2

10

)
t,

C1 and C2 are arbitrary constants.

(ii) When λ2 − 4µ < 0, we obtain the trigonometric function traveling wave solu-

tions

u2(ξ) = 2


√

4µ− λ2
2

−C1 sin

(√
4µ−λ2
2

ξ

)
+ C2 cos

(√
4µ−λ2
2

ξ

)
C1 cos

(√
4µ−λ2
2

ξ

)
+ C2 sin

(√
4µ−λ2
2

ξ

)

+ a0 − λ,

where

ξ = x−

(
5λ2 − 20µ+ 3

√
5
√
λ4 − 8λ2µ+ 16µ2

10

)
t,

C1 and C2 are arbitrary constants.

(iii) When λ2 − 4µ = 0, we obtain the rational function solutions

u3(ξ) = 2

(
C2

C1 + C2x

)
+ a0 − λ,

where C1 and C2 are arbitrary constants.

For Case 2.

(i) When µ < 0, we obtain the hyperbolic function traveling wave solutions

u1(ξ) = 2

√−4µ

2

C1 sinh
(√
−4µ
2
ξ
)

+ C2 cosh
(√
−4µ
2
ξ
)

C1 cosh
(√
−4µ
2
ξ
)

+ C2 sinh
(√
−4µ
2
ξ
)
+ a0,

where

ξ = x−
[
±2

5
(∓5µ+ 3

√
5µ)

]
t,

C1 and C2 are arbitrary constants.
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(ii) When µ > 0, we obtain the trigonometric function traveling wave solutions

u2(ξ) = 2

√4µ

2

−C1 sin
(√

4µ
2
ξ
)

+ C2 cos
(√

4µ
2
ξ
)

C1 cos
(√

4µ
2
ξ
)

+ C2 sin
(√

4µ
2
ξ
)
+ a0,

where

ξ = x−
[
±2

5
(∓5µ+ 3

√
5µ)

]
t,

C1 and C2 are arbitrary constants.

(iii) When µ = 0, we obtain the rational function solutions,

u3(ξ) = 2

(
C2

C1 + C2x

)
+ a0,

where C1 and C2 are arbitrary constants.

3. Conclusion

In this study, we considered the sixth-order Ramani equation. We implemented

the (G′/G)-expansion method for the exact solution of this nonlinear equation. Of

course this method can be implemented in more complicated nonlinear equations by

using symbolic computations.
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[4] M. L. Wang and Y. M. Wang, A new Bäcklund transformation and multi-soliton solutions to

the KdV equation with general variable coefficients, Phys. Lett. A 287 (2001), 211–216.

[5] A. M. Abourabia and M. M. El Horbaty, On solitary wave solutions for the two-dimensional

nonlinear modified Kortweg-de Vries-Burger equation, Chaos, Solitons and Fractals 29 (2006),

354–364.

[6] T. L. Bock and M. D. Kruskal, A two-parameter Miura transformation of the Benjamin-Ono

equation, Phys. Lett. A 74 (1979), 173–176.

[7] P. G. Drazin and R. S. Jhonson, Solitons: An Introduction, Cambridge University Press,

Cambridge, 1989.

[8] V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer, Berlin, 1991.



CUJSE 7 (2010), No. 1 57
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