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ON A CLASS OF FOURTH-ORDER NEUTRAL DIFFERENTIAL

EQUATION WITH PIECEWISE CONSTANT ARGUMENTS

M. Emre KAVGACI

Ankara University, Department of Mathematics, 06100 Ankara, TÜRKİYE

Abstract. In this paper, we investigate a fourth-order neutral differential

equation characterized by piecewise constant arguments. Our study focuses
on establishing both the existence and uniqueness of solutions to this equa-

tion, incorporating a prescribed initial condition. In addition, we investigate

the stability analysis of the above-mentioned equation and show that the zero
solution of this equation cannot be asymptotically stable and indicate under

what conditions it is unstable. Through rigorous mathematical analysis and
theoretical exploration, this research contributes to the deeper understanding

of fourth-order neutral differential equations with piecewise constant argu-

ments, offering insights into their solution behavior and stability properties.

1. Introduction

In this work, we investigate the fourth-order neutral differential equation with
piecewise constant arguments (NDEPCA)

d4

dt4

(
x(t) + px(t− 1)

)
= qx([t− 1]), t ≥ 0, (1)

with the initial condition

x(t) = φ(t), −1 ≤ t ≤ 0, (2)

where p and q are real constants, [.] denotes the greatest integer function and
φ ∈ C([−1, 0],R) is an initial function.
Our aim is to show the existence and uniqueness of solutions for the initial value
problem (1)–(2) and to demonstrate that its zero solution cannot be asymptotically
stable. Obtaining the solutions of neutral differential equations with piecewise con-
stant arguments using difference equations offers numerous advantages. In this
study, we show that equation (1) exhibits the same asymptotic properties as the
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corresponding fifth-order difference equation. The paper is structured as follows:
In the first section, previous studies are presented to provide the necessary mo-
tivation for this paper. Additionally, important definitions and theorems related
to neutral differential equations and difference equations are provided. In the sec-
ond section, the existence and uniqueness of solutions for the initial value problem
(1)–(2) are demonstrated, and it is shown that the zero solution of a fourth-order
equation of type (1) cannot be asymptotically stable. Section 3 consists of a nu-
merical example.
Differential equations with piecewise constant arguments (DEPCA) were pioneered
by Busenberg, Cooke, Shah, and Wiener in their seminal works [12, 36]. These
equations bridge the realms of difference and differential equations, incorporating
both discrete and continuous dynamics at integer points. This connection is par-
ticularly evident in epidemic models, where the interplay between discrete events
and continuous processes naturally emerges. Following this research, numerous
significant problems spanning the vibration of spring-mass systems, biomedicine,
electronic processes, epidemic diseases, isolated mechanisms and some significant
properties of the solutions have been investigated through the utilization of DE-
PCA [1]- [3], [5]-[11], [13]-[20], [22, 23, 26, 29, 30, 35, 37].
However there are only a few articles that issued on neutral differential equations
with piecewise constant arguments (NDEPCA) (see [4, 24, 27, 28], [31]–[34],[38]).
Some stability and oscillation results for NDEPCA have been discussed in [34],
where the oscillatory behavior and stability of the trivial solution of first- and
second-order NDEPCA were analyzed:

d

dt

(
y(t) + py(t− 1)

)
= −qy([t− 1]),

and
d2

dt2

(
y(t) + py(t− 1)

)
= −qy([t− 1]). (3)

It was proved that the trivial solution of Eq. (3) is not asymptotically stable. Later,
in [33], Papaschinopoulos obtained a unique solution for the third-order NDEPCA

d3

dt3

(
y(t) + py(t− 1)

)
= −qy([t− 1]), (4)

and demonstrated that the zero solution of Eq. (4) is not asymptotically stable.
The gap in the literature, along with these earlier studies, motivates us to explore
the asymptotic behavior of Eq. (1).
Now, let us give definition:

Definition 1. A function x : [−1,∞) → R is a solution of the initial value problem
(1)-(2) if the following conditions are satisfied:

(i) x and
dx

dt
∈ C([−1,∞),R),
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(ii)
d2

dt2

(
x(t) + px(t − 1)

)
= β(t) and

d3

dt3

(
x(t) + px(t − 1)

)
= α(t) exist on

[0,∞) and β(t) and α(t) are continuous on [0,∞),

(iii)
d4

dt4

(
x(t)+px(t−1)

)
exist on [0,∞) with the possible exception at the point

[t] ∈ [0,∞) where one-sided derivatives exists;

(iv) x satisfies Eq. (1) on each interval [n, n+ 1) with n = 0, 1, 2, ... and initial
condition (2) on the interval [−1, 0].

Before giving the main theorems, consider the k − th order difference equation

xn+k + p1xn+k−1 + p2xn+k−2 + ...+ pkxn = 0, (5)

where pi, i = 1, 2, ..., k are real numbers. Also, we can write the corresponding
characteristic equation of (5) as follows:

p(λ) = λk + p1λ
k−1 + ...+ pk. (6)

Now, we should remember the following well-known some theorems for difference
equations:

Theorem 1. ([21], p246.) The zero solution of Eq. (5) is asymptotically stable if
and only if |λ| < 1 for all roots λ of Eq. (6).

Theorem 2. (Schur-Cohn Criterion or Jury Conditions, [25]) The roots of the Eq.
(6) lie inside the unit disk if and only if the following hold:
(i) p(1) > 0,
(ii) (−1)kp(−1) > 0,
(iii) consider the matrix A±

1 , A
±
2 , ... for i = 1, 2, ...k,

A±
i =


1 pk−1 pk−2 ... pk−i+1

0 1 pk−1 ... pk−i+2

...
...

...
...

0 0 0 ... 1

±


pi−1 pi−2 ... p1 p0
pi−2 pi−3 ... p0 0
...

...
...

...
p0 0 ... 0 0


and determinants |A±

1 | > 0, |A±
3 | > 0, ..., |A±

k−1| > 0 (for k is even) or |A±
2 | >

0, |A±
4 | > 0, ..., |A±

k−1| > 0 (for k is odd).

Theorem 3. ([21], Theorem 5.12) The zero solution of Eq. (5) is unstable if

|p1| −
k∑

i=2

|pi| > 1.

2. Main Results

Theorem 4. The initial value problem (1)-(2) has a unique solution x(t) with
x(−1) = c−1 and x(0) = c0.
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Proof. Let us consider,

d

dt

(
x(t) + px(t− 1)

)∣∣∣
t=0

= γ0,

d2

dt2

(
x(t) + px(t− 1)

)∣∣∣
t=0

= β0,

d3

dt3

(
x(t) + px(t− 1)

)∣∣∣
t=0

= α0,

and x(−1) = φ(−1) = c−1, x(0) = φ(0) = c0. We apply the method of steps to
show the existence and uniqueness of the solution of (1)-(2). Let x0(t) ≡ x(t) on
the interval 0 ≤ t < 1,

d4

dt4

(
x(t) + px(t− 1)

)
= qx(−1) = qφ(−1) = qc−1.

Integrating this equation from 0 to t, we obtain

d3

dt3

(
x(t) + px(t− 1)

)
= α0 + qc−1t,

and again, integrating from 0 to t, we get

d2

dt2

(
x(t) + px(t− 1)

)
= β0 + α0t+ qc−1

t2

2
,

and also integrating this equation from 0 to t, we obtain

d

dt

(
x(t) + px(t− 1)

)
= γ0 + β0t+ α0

t2

2
+ qc−1

t3

6
,

and finally, if we integrate this equation from 0 to t, we obtain

x(t) + px(t− 1) = x(0) + px(−1) + γ0t+ β0

t2

2
+ α0

t3

6
+ qc−1

t4

24
.

On the interval 0 ≤ t < 1, we can rewrite this equation as follows:

x0(t) ≡ x(t) = −pφ(t− 1) + c0 + pc−1 + γ0t+ β0

t2

2
+ α0

t3

6
+ qc−1

t4

24
,

where x(0) = c0, x(−1) = c−1. Let x1(t) ≡ x(t) be a solution of (1)-(2) for t ∈ [1, 2).
Let us consider,

d

dt

(
x(t) + px(t− 1)

)∣∣∣
t=1

= γ1,

d2

dt2

(
x(t) + px(t− 1)

)∣∣∣
t=1

= β1,

d3

dt3

(
x(t) + px(t− 1)

)∣∣∣
t=1

= α1,

with the path followed in the previous step, we obtain

x1(t) ≡ x(t) = −px0(t−1)+c1+pc0+γ1(t−1)+β1

(t− 1)2

2
+α1

(t− 1)3

6
+qc0

(t− 1)4

24
.

(7)
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By the continuity of x(t) at t = 1, one can write clearly

c1 = (1− p)c0 + (p+
q

24
)c−1 + γ0 +

β0

2
+

α0

6
, (8)

and 
α1 = α0 + qc−1,

β1 = β0 + α0 +
q
2c−1,

γ1 = γ0 + β0 +
α0

2 + q
6c−1.

(9)

If we put (9) and (8) into Eq. (7), we obtain for 1 ≤ t < 2,

x1(t) ≡ x(t) = −p
[
− pφ(t− 2) + c0 + pc−1 + γ0(t− 1) + β0

(t− 1)2

2

+α0
(t− 1)3

6
+ qc−1

(t− 1)4

24

]
+ c0 + (p+

q

24
)c−1 + γ0 +

β0

2
+

α0

6
.

We will do it for the general case. Now, let us assume that, respectively, xn(t) ≡ x(t)
be a solution of (1)-(2) on the interval n ≤ t < n+1 and xn+1(t) ≡ x(t) be a solution
of (1)-(2) on the interval n+ 1 ≤ t < n+ 2, let us consider

d

dt

(
x(t) + px(t− 1)

)∣∣∣
t=n

= γn and
d

dt

(
x(t) + px(t− 1)

)∣∣∣
t=n+1

= γn+1, (10)

d2

dt2

(
x(t) + px(t− 1)

)∣∣∣
t=n

= βn and
d2

dt2

(
x(t) + px(t− 1)

)∣∣∣
t=n+1

= βn+1, (11)

d3

dt3

(
x(t) + px(t− 1)

)∣∣∣
t=n

= αn and
d3

dt3

(
x(t) + px(t− 1)

)∣∣∣
t=n+1

= αn+1, (12)

in the same way, xn(t) = x(t) can be written as

xn(t) ≡ x(t) = −pxn−1(t− 1) + cn + pcn−1 + γn(t− n) + βn

(t− n)2

2

+αn
(t− n)3

6
+ qcn−1

(t− n)4

24
,

(13)

for t ∈ [n, n + 1), where cn = x(n) and cn−1 = x(n − 1). Finally, on the interval
n+ 1 ≤ t < n+ 2, we derive

xn+1(t) ≡ x(t) = −pxn−1(t− 1) + cn+1 + pcn + γn+1(t− n− 1)

+βn+1

(t− n− 1)2

2
+ αn+1

(t− n− 1)3

6
+

q

24
cn(t− n− 1)4.

(14)

Because of the continuity of x(t) at t = n+ 1, it must be the case that

lim
t→n+1

xn(t) = lim
t→n+1

xn+1(t) for n = 0, 1, 2, ...

Therefore from (13) and (14), we get

cn+1 + (p− 1)cn + (−p− q

24
)cn−1 = γn +

βn

2
+

αn

6
, n = 0, 1, 2, ... (15)
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By the continuity at t = n + 1 and for n = 0, 1, 2, ..., from (10), (11) and (12), we
can write following equations:

γn+1 = γn + βn + αn

2 + q
6cn−1,

βn+1 = βn + αn + q
2cn−1,

αn+1 = αn + qcn−1.

From these equations, we can write αn, βn, and γn as follows:
αn = αn+1 − qcn−1,

βn = βn+1 − αn+1 +
q
2cn−1,

γn = γn+1 − βn+1 +
1
2αn+1 − q

6cn−1.

(16)

Therefore, from (16) and (15), we obtain

cn+1 + (p− 1)cn + (−p+
q

24
)cn−1 = γn+1 −

βn+1

2
+

αn+1

6
, n = 0, 1, 2, ... (17)

If we replace n with n+ 1 in Eq. (15), we get

cn+2 + (p− 1)cn+1 + (−p− q

24
)cn = γn+1 +

βn+1

2
+

αn+1

6
(18)

From Eq. (17), Eq. (18) and by using (16), we can write

cn+2 + (p− 4)cn+1 + (6− 4p− q

24
)cn + (−4p+ 6p− 11q

24
)cn−1

+(1− 4p− 11q

24
)cn−2 + (p− q

24
)cn−3 = 0, n = 2, 3, ...

Therefore, we obtain the fifth-order difference equation for n = −1, 0, 1, ...

cn+5 + (p− 4)cn+4 + (6− 4p− q

24
)cn+3 + (−4 + 6p− 11q

24
)cn+2

+(1− 4p− 11q

24
)cn+1 + (p− q

24
)cn = 0,

(19)

with the initial conditions

c−1 = φ(−1), c0 = φ(0), c1 = (1− p)c0 + (p+
q

24
)c−1 + γ0 +

β0

2
+

α0

6
,

c2 = (p2 − p+ 1 +
q

24
)c0 + (−p2 + p+

q(15− p)

24
)c−1 + (2− p)γ0 + (

4− p

2
)β0

+(
8− p

6
)α0

c3 = (1− p)c2 + (p+
q

24
)c1 +

7q

12
c0 +

25q

12
c−1 + γ0 +

5β0

2
+

19α0

6
,

(20)

This initial value problem has a unique solution. Then the solution x(t) of (1)-
(2) defined by (13) is unique on the interval n ≤ t < n + 1. Thus, the proof is
completed. □
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Now, the solution methodology for (1)-(2) can be succinctly described by refer-
ring to Lemma 3 in [34], which offers a comprehensive approach.

x(t) + px(t− 1) = v(t), t ≥ 0,

with the initial function

x(t) = φ(t), −1 ≤ t ≤ 0,

is the continuous function given by

x(t) = (−p)n+1φ(θ − 1) +

n∑
k=0

(−p)n−kv(k + θ), t ≥ 0,

where v(k + θ) can be obtain from (13) as follows:

v(t) = cn + pcn−1 + γn(t− n) +
βn

2
(t− n)2 +

γn

6
(t− n)3 +

q

24
cn−1(t− n)4,

we get the solution of (1)-(2) as in the form

x(t) = (−p)n+1
[
φ(θ−1)+

n∑
k=0

(−p)−k−1[ck+(p+
q

24
θ4)ck−1+γkθ+

1

2
βkθ

2+
1

6
αkθ

3]
]
,

(21)
where φ ∈ C([−1, 0],R), t = n+ θ with 0 ≤ θ ≤ 1 and n = −1, 0, 1, ...
Now, we investigate the stability nature behaviour of solutions of the general fifth
order linear difference equation with constant coefficients of the form

cn+5 + a4cn+4 + a3cn+3 + a2cn+2 + a1cn+1 + a0cn = 0, n = −1, 0, 1, ... (22)

where a0, a1, a2, a3, a4 ∈ R. The characteristic equation of Eq. (22) is

p(λ) = λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 (23)

The following lemma gives necessary and sufficient conditions for the asymptotic
stability of the zero solution of Eq. (22).

Lemma 1. The zero solution of Eq. (22) is asymptotically stable if and only if the
following conditions hold:

(I) 1 + a3 + a1 > |a4 + a2 + a0|

(II) 1− a20 > |a1 − a4a0|,

(III) a40 + a30a2 + a30a4 − a20a1a3 − a20a1 − a20a
2
3 − a20a3 − a20a

2
4 − 2a20 + a0a

2
1a4 +

a0a1a2 + a0a1a3a4 +2a0a1a4 +2a0a2a3 − a0a2a
2
4 − a0a2 + a0a3a4 − a0a

3
4 −

a0a4 − a31 − a21a3 − a21 + a1a2a4 + a1a
2
4 + a1 − a22 − a2a4 + a3 + 1 > 0,

(IV ) a40−a30a2−a30a4+a20a1a3+a20a−1+2a20a2a4−a−02a23+a20a3−a20a
2
4−2a20−

a0a
2
1a4−3a0a1a2+a0a1a3a4+2a0a1a4+2a0a2a3−a0a2a

2
4+a0a2−3a0a3a4+

a0a
3
4+a0a4+a31−a21a3−a21+a1a2a4+2a1a3−a1a

2
4−a1−a22+a2a4−a3+1 > 0.
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Proof. By Theorem 1, the zero solution of Eq. (22) is asymptotically stable if and
only if each root of λ of Eq. (23) satisfies |λ| < 1. Using the condition (i) and (ii)
in Theorem 2, we can easily obtain

1 + a4 + a3 + a2 + a1 + a0 > 0 and 1− a4 + a3 − a2 + a1 − a0 > 0, (24)

it can be easily seen that the conditions (24) are equivalent to condition (I). Using
the condition (iii) in Theorem 2, we can write

A+
2 =

(
1 + a1 a4 + a0
a0 1

)
, A−

2 =

(
1− a1 a4 − a0
−a0 1

)
and

A+
4 =


1 + a3 a4 + a2 a3 + a1 a2 + a0
a2 1 + a1 a4 + a0 a3
a1 a0 1 a4
a0 0 0 1

,

A−
4 =


1− a3 a4 − a2 a3 − a1 a2 − a0
−a2 1− a1 a4 − a0 a3
−a1 −a0 1 a4
−a0 0 0 1

.

We can say that the determinants of A±
2 and A±

4 must be positive. If numerical
calculations are performed, the conditions (II), (III), and (IV ) are obtained. □

Theorem 5. The zero solution of Eq. (1) is not asymptotically stable.

Proof. Applying Lemma 1 to Eq. (19), we obtain that the zero solution of Eq. (19)
is asymptotically stable if and only if

(a) p < 1 and q < 0,

(b) 2− 4p− (p− 4)(p− q
24 )− (p− q

24 )
2 − 11q

24 > 0 and 4p+ (p− 4)(p− q
24 ) +

(p− q
24 )

2 + 11q
24 > 0,

(c) − q
864 (−3456p3−24p2(7q+432)+p(13q2−3504q+3456)−121q2+3672q+

10368) > 0 and q2

96 (−24p2 + p(q − 144)− 9(q + 24)) > 0.

However, these conditions are inconsistent. If we solve these inequalities, we can
approximately obtain p > 87.332 and

−12(
√
p2 − 90p+ 233 − 3p + 15) < q < 12(

√
p2 − 90p+ 233 + 3p − 15). This,

however, contradicts the condition that p < 1. As a result, the zero solution of
Eq. (19) is not asymptotically stable. It is clear that from the Eq. (21), the zero
solution of the Eq. (19) is not asymptotically stable then the zero solution of (1)
is not asymptotically stable. □

Theorem 6. The zero solution of (1) is unstable if the condition

|p− 4| − |p− q

24
| − |1− 4p− 11q

24
| − | − 4 + 6p− 11q

24
| − |6− 4p− q

24
| > 1 (25)

is hold.
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Proof. We will apply Theorem 3 to prove this result. In difference equation (19),
it’s clear that p1 = p−4, p2 = 6−4p− q

24 , p3 = −4+6p− 11q
24 , p4 = 1−4p− 11q

24 and
p5 = p− q

24 . So, under the condition of (25), the inequality (3) is satisfied and the
solution cn of the Eq. (19) is unstable. When the solution of Eq. (19) is unstable
it is observed that solution x(t) of (1) is unstable. □

3. Example

Example 1. Let us consider fourth-order neutral differential equation with piece-
wise argument

d4

dt4

(
x(t)− x(t− 1)

)
= −x([t− 1]), t ≥ 0, (26)

and initial function
φ(t) = t, −1 ≤ t ≤ 0. (27)

This initial value problem is a special case of (1)-(2) with p = −1, q = −1 and
φ(t) = t. We can obtain corresponding difference equation of Eq. (26) from (19) as
follows:

cn+5 − 5cn+4 +
241

24
cn+3 −

229

24
cn+2 +

131

24
cn+1 −

23

24
cn = 0, n = −1, 0, 1, ... (28)

and also, if α0 = β0 = γ0 = 0 is taken in the equations (20), we can write the initial
conditions: c−1 = −1, c0 = 0, c1 = 25

24 , c2 = 8
3 , c3 = 3647

576 . Thus, the difference
equation (28) has a unique solution cn. It can be clearly seen that the solution cn of
Eq. (28) is not asymptotically stable. Finally, if the cn solution is substituted into
equation (21) for n = −1, 0, 1, ... and the equations (16) are used, the x(t) solution
of equation (26) is found. This solution is not asymptotically stable (See Figure 1).

Figure 1. Solution x(t) of initial value problem (26)-(27).
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4. Conclusion

In this study, we have investigated a fourth-order neutral differential equation
with piecewise constant arguments. Our analysis has focused on demonstrating the
existence and uniqueness of solutions for the equation, along with a specified initial
condition. Through rigorous mathematical analysis, we have established the con-
ditions necessary for stability in the considered equation. Our findings contribute
to the understanding of differential equations with piecewise constant arguments
and provide valuable insights into their behavior and stability properties. This
work not only enhances theoretical understanding but also offers practical impli-
cations for various applications where such equations arise. In this study, we have
demonstrated that the zero solution of a fourth-order neutral differential equation
with piecewise constant arguments of type (1) is not asymptotically stable. Further
research could explore extensions of these results to more complex systems or inves-
tigate additional properties of similar equations. Also, these analyses can be made
more generalized. Moreover, the oscillation state of the solutions of the equations
(1) and (4) can be investigated. This is an open problem.
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