Cankaya University Journal of Science and Engineering C\ 1 H
Volume 8 (2011), No. 2, 205-223 .:U\_j

Generalized Jacobi Elliptic Function Method for
Periodic Wave Solutions of SRLW Equation and
(141)-Dimensional Dispersive Long Wave
Equation

Yavuz Ugurlu'*, Dogan Kaya? and Ibrahim E. Inan?

L Furat University, Department of Mathematics, 23119 Elazj, Turkey
2 Jstanbul Ticaret University, Department of Mathematics, fstanbul, Turkey
3 Furat University, Faculty of Education, 23119 Elazg, Turkey
* Corresponding author: matematikci_23Qyahoo.com.tr

Ozet. Biz bu galigmada SRLW ve (141)-boyutlu dispersive uzun dalga denkleminin peri-
yodik dalga ¢éztimlerini elde etmek igin genellegtirilmis Jacobi eliptik fonksiyon metodunu
sunariz.

Anahtar Kelimeler. SRLW denklemi, (1+1)-boyutlu dispersive uzun dalga denklemi,
genellegtirilmis Jakobi eliptik fonksiyon metot, periyodik ¢oziimler, hareket eden dalga
goziimler.

Abstract. We implement the generalized Jacobi elliptic function method with sym-
bolic computation to construct periodic solutions for the symmetric regularized long wave
(SRLW) equation and (1+1)-dimensional dispersive long wave equation.

Keywords. SRLW equation, (1+1)-dimensional dispersive long wave equation, general-
ized Jacobi elliptic function method, periodic solutions, traveling wave solutions.

1. Introduction

The mathematical modeling of events in nature can be explained by differential
equations. These equations are mathematical models of complex physical occur-
rences that arise in engineering, chemistry, biology, mechanics and physics. The
theory of nonlinear dispersive wave motion has recently been the subject of much
study. The solutions of nonlinear equations play a crucial role in applied mathemat-
ics and physics, because; solutions of nonlinear partial differential equations make a
very significant contribution to people’s knowledge about the nature of physical phe-

nomenon. Furthermore, when an original nonlinear equation is directly calculated,
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the solution will preserve the actual physical characters of solutions. Therefore, in-
terest in the solution of nonlinear partial differential equations has never decreased.

Because of this interest, many techniques and methods have been developed [1-10].

Recently, there has been intensive study to obtain analytical solutions of nonlin-
ear partial differential equations. Interest has focused on obtaining exact solutions
of nonlinear partial differential equations through using symbolical computer pro-
grams, such as Maple, Matlab, and Mathematica that facilitate complex and tedious
algebraic computations. Various methods are presented which are used by scientists
to obtain exact and analytic solutions of nonlinear partial differential equations with
help of symbolical computer programs. Most of these methods are based on finding
the balance term with balancing of the highest order linear and nonlinear term.

These methods can be only applied to nonlinear partial differential equations.

In this study, we analyze the generalized Jacobi elliptic function method [11] and
we obtain periodic wave solutions of SRLW equations [12] and (1+1)-dimensional
dispersive long wave equations [13] by using the generalized Jacobi elliptic func-
tion method. Then, we show three-dimensional and two-dimensional periodic wave
graphics for the SRLW equation and (141)-dimensional dispersive long wave equa-

tion by using a solution of these equations.

A symmetric regularized long wave equation (SRLWE)
Ut + U+ Wlkipy + Uy Uy + Uy = 0, (1)

had been investigated in [14-16]. Eq. (1) is used to describe nonlinear ion-acoustic
wave and space-charge waves. This equation is symmetrical with respect to x,
and t. It arises in many nonlinear problems of mathematical physics and applied
mathematics. Periodic wave solutions of SRLW have been given by using the Exp
function method [17] and (G’/G)-expansion method [18].

The (1+41)-dimensional dispersive long wave equation
Uy +uty +v, =0

1
Uy + UV + uvy + guzm =0 (2)
has been studied in [4]. Eq. (2) is one of the basic equations of fluid dynamics. v—1
shows the height of water wave and u denotes the velocity water’s surface along the

x axis. This equation is used to model in the coastal edge waves.
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2. An Analysis of the Method and Applications

Before starting to give a generalized Jacobi elliptic function method [11], we will
give a simple description of the generalized Jacobi elliptic function method. For

doing this, it is considered in a two variables general form of nonlinear PDE

Q(u, Ug, Uy, Uy - . .) = 0, (3)
with u(z,t) = u(§), £ = kx + wt. Eq. (3) converts to nonlinear ODE for u(§) as
follows, where k, w are constants.

Q' (v, u" u",...)=0. (4)

The solution of the Eq. (4) is supposed in the form
u(€) =ao+ Y [a:F'(§) + b F ()], (5)
i=1

where n is a positive integer that can be determined by balancing the highest order
derivate and the highest nonlinear terms in equation, k,w, ag, a;,b; and & can be
determined. Substituting solution (5) into Eq. (4) yields a set of algebraic equations
for F* (VA+ BF?+ CF4)j, (j =0,1) and (i = 0,1,2,...) then, all coefficients of
F'(VA+ BF?*+CF 4)j have to vanish. After this separated algebraic equation, we

can find coefficients and k, w, ag, a;, b; and &.

In this work, we study the solution of the SRLW equation and (1+1)-dimensional dis-
persive long wave equation by using the generalized Jacobi elliptic function method
which is introduced by [11]. The fundamental idea of their method is to take full ad-
vantage of the elliptic equation and use its solutions F'. The desired elliptic equation
is given as

F? = A+ BF?* +CF*, (6)
where F' = a and A, B, C are constants. Some solutions of Eq. (6) are given in

paper [11].
Example 1. Let’s consider SRLW equation,
Upt + Ugy + Uz + UpUp + Uy = 07 (7>

with u(x,t) = u(§), £ = kx+wt, and then Eq. (7) converts to an ordinary differential

equation as follows

wi” + kP + kwud” + kw(d')? + wkPu® =0, (8)
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and integrating (8) yields, we find the following equation
w?u' + k2 + kwud + Bw*u” =0, 9)

where the integration constant is taken as zero. The balance term is obtained as
n = 2 by balancing uu’ with u” in Eq. (9). Therefore, we may choose to give the
solution of Eq. (9) as follows

by by
= F FPr =4 = 1
u=ap+aF +af’+ =+ (10)

Substituting (10) into Eq. (9) yields a set of algebraic equations for ag, ay, as, by, ba, k, w.
The algebraic equation system is obtained as
ar1k* + apa kw + agbikw + ajw? + a1 BE*w? = 0,
—203k B — 24 Abok*w? = 0,
—3b1bykw — 6Ab k*w? — 2bok? — bikw — 2agbokw — 2byw? — 8 Bbok*w? = 0,
—bik? — agbikw — aybokw — byw? — Bbik*w® =0, (11)
2ask? + a%k:w + 2apaskw + 2asw? + 8ay Bk*w? = 0,
3ajaskw + 6a,Ck*w? = 0,
2a2kw + 24a,Ck*w? = 0,

If the system of algebraic equations is solved with the help of Mathematica, we have

k
ag = —— — w_ 4Bkw, a1 =0, ay = —12Ckw,
w ok
by =0, by = —124kw, k #£0, w % 0. (12)

Substituting (12) into (10), we have obtained analytic solutions of equation (7) as
follows

(i) A=1, B=—(1+m?), C=m?

E o w 1
= —— — — —4Bkw — 12Ck 2(k t) — 12Akw | ——— | . 1
Uy =TT w Ckw sn*(kx + wt) w(srﬂ(lm—kwt)) (13)

k k )\ 2 dn(k ) 2
= = g 120ke ((EEEWONT o g (AREEEWDNT
w ok dn(kx + wt) cn(kz + wt)
(i) A=1-m? B=2m?>—-1,C = -m?
Ew

1
= —— — — —4Bkw — 12Ck 2(k t) — 12Akw | ——— | . (1
u3 i w Ckw cn®(kx 4+ wt) w(CHQ(kx+wt)> (15)
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(iii) A=m? -1, B=2-m? C = —1,

kw 1
= —— — — —4Bkw — 12Ckw dn®(k t) — 124kw [ ———]. (1
Uy =TT w Ckw dn®(kz + wt) w(dnz(kx+wt)) (16)
(iv) A= —-m?*(1—m?), B=2m?—-1,C =1,
ko w dn(kz +wt)\> sn(kz +wt) |

=LY ABkw—12Ckw [ ot TN qopf | SNEE TR (g
s v ¢ w(sn(k:x+wt)> w(dn(lm—l—wt) (17)
(v) A=1-m? B=2-m? C =1,

2 2
ws= Bk — 120k [ ETEWDNT o g (ST WO (18)
k sn(kx + wt) cn(kz + wt)

2
= % _ 4Bkw — 12Ckw < sn(kz + wt) ))

w 1 £+ dn(kx + wt
1+ dn(kz +wt)”
_ 12Ak;w( n(ke + w )) (19)
sn(kx + wt)
. m? m? —2 m?
(VII)A—I,B— 5 ’C_T’
ko w : 2
ug =~ 4Bkw — 12Ckw(sn(kz + wt) £ i en(kx + wt))
w
1 2
— 12Ak . (20
v (sn(kx +wt) £icn(kx + wt)) (20)
2
wo =2~ 4Bkw — 12Ckw ( dn(ka + wi) )
w ok iv1—m?sn(kx +wt) + en(kz + wt)
2
/1 —m? +
19 Akw iv1—m?sn(kx + wt) £ en(kz + wt) @)
dn(kx + wt)
1 1 —2m? 1
(Vm)A_Z’B_ 5 ’O_Z’
ko w , 9
T 4Bkw — 12Ckw(msn(kx + wt) + i dn(kz + wt))
w
1 2
— 12Ak . (22
v (m sn(kz + wt) £ idn(kx + wt)) (22)
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2
=2 Y 4Bk — 12Cku ( dnka + wi) >
w ok men(kx + wt) £ i1 — m?
e\ 2
9 Akw men(kr + wt) £ivV1 —m (23)
dn(kz + wt)
ko w sn(kz +wt) \°
— Y 4BRkw-—12
e w ok fw Chu (1 + en(kz + wt))
2
19 Akw 1 + en(kz + wt) (24)
sn(kx + wt)
2
ws =2 Y 4Bkw — 12Cku ( enlhe + wi) )
w ok 1 —m?sn(kx + wt) £ dn(kx + wt)
2 2
 19Akw 1 —m2sn(kx + wt) + dn(kx + wt) (25)
en(kx + wt)
_ m? —1 m? + 1 m? —1
(ix) A= 1 , B = 5 ,C = T
Ew dn(kx + wt) 2
= —— — — —4Bkw — 12Ck
Hh w ok v ¢ w(limsn(kx—l—wt))
2
19 Akw 1 + msn(kz + wt) (26)
dn(kz + wt)
1—m? m?+1 1—m?
(x) A= 1 , B = 5 , C = T
Ew en(kz +wt) 1\’
= —— — — —4Bkw — 12Ck
s w ok v v (1 + sn(kx + wt))
2
19 Akw 1 + sn(kx + wt) (27)
en(kz + wt)
N, (1=m2?2 o omP41l 1
(xi) A= 1 , B = 5 , O = 7
ko w 9
e == 4Bkw — 12Ckw(m cn(kx + wt) £ dn(kz + wt))
w
1 2
— 12Ak . (2
v <m en(kx + wt) £ dn(kz + wt)) (28)
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1 m? + 1 (1 —m?)?
i) A= -, B= -
(xii) 7 5 C 1 :
ko w sn(kx + wt) 2
= —— — — —4Bkw — 12Ck
r w ok v v (dn(k:c + wt) + en(kx + wt))
2
19 Akw dn(kx + wt) £+ en(kz + wt) (29)
sn(kx + wt)
1 2 2
(xiii) A = 7, B =" 2,02%,
ko w cn(kz + wt) )2
g = —— — — — 4Bkw — 12Ckw
BT w ok (\/1 —m? + dn(kz + wt)
2 2
 19Akw V1 —m? £ dn(kx + wt) (30
cn(kz + wt)

Remark. Here sn(&,m), cn(§,m), dn(&, m) are Jacobi elliptic functions and m

shows the modulus of the Jacobi elliptic functions.

If m — 1, then sn¢ — tanh&, cné — sech&, dné — sech&. If m — 0, then
sné — siné, cné — cosé, dné — 1.

We can obtain the following periodic solutions of (7) by using solutions (13-30) for

m — 0,
u(z,t) = —g - % + 4kw — 12kwsin?(kazl+wt)’ (31)
u(z,t) = —g - % + dkw — 12kwc082(k;+wt)’ (32)
u(z,t) = —g - % — 8kw — 12kw(cot? (kx + wt) + tan®(kx 4 wt)), (33)
b () (zseat)
u(z,t) = —5 - %= 2kw — 3k ( (Siﬁ?,ii(ixwt)wi)w (Siﬁﬁ'jf(;ij)j)”z) . (35)

In Figure 1 and Figure 2 are shown graphics of periodic wave solutions of the SRLW
equation in three and two dimensions, respectively. In Figure 2, the periodic waves

move to the left with time. If £ = kx — wt, the periodic waves move to the right.
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F1GURE 1. Periodic wave graphic of the SRLW equation for solution
(32) in three dimensions, k = 1, w = 0.5.
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FIGURE 2. Periodic wave graphic of the SRLW equation for solution
(32) in two dimensions (a) t = 0, (b) t = 0.5, (¢) t =1, (d) t = 2,
(k=1 w=05).
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Example 2. Let’s consider (1+1)-dimensional dispersive long wave equation
U + uuy, + v, =0,

1
Vg + UV + uvy + 3 lows = 0, (36)

with u(z,t) = u(€), £ = kx + wt, and then Eq. (36) converts to an ordinary

differential equation as follows
wu' + kuu' + kv’ =0,
wv' + k(uv) + %k:?’u"' =0, (37)
and integrating (37) yields, we find the following equation
wu+§u2+kv:0,

1
wv + kuv + gk?’u” =0, (38)

where the integration constant is taken as zero. Balance terms are found as ny = 1,
ny = 2 respectively, by balancing v with y? and uv with v” in Eq. (38). Therefore,

we may choose

b
u=ap+a F+ Fl,
(39)

d d
v:co+ch+f1+02F2+F—22.

Substituting (39) into Eq. (38) yields a set of algebraic equations for ag, aj, by, co,

c1, C2, dy, do, k, and w. The algebraic equation system is obtained as

2Ab. k3
bl dz]f + ! —

O, (loCok? + blclk + aldlk + cow = 0,

Bb k3
bldlk‘ + aodgk‘ + dQ’LU = O, blcok’ + aodlk + aldzk? +

+d1w = 0,

1
alclk + CloCQk + cow = O, alcok + aoclk + blcgk + galBkS +cw = 0,

2 5 atk
alcgk; + gale = O, T + alblk + Cok’ + agw = 07
b2k
T‘Fdzkzo, a0b1k+d1k+b1w20,
1
apark + c1k + aqw = 0, —alk + k=0, (40)

2
where C' # 0, k # 0.
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From the solutions of the above system, we can find

2
ap = 1/—% —4WAVCE?, a = _2Ck by = 2V Ak

V3 V3
1 2 2
co = g(—Bk:2 — 2VAVCE?), ¢ =0, o= — C;k : (41)
2 2
dy =0, d2_—2/;k , w_k\/—¥—4\/2\/5k2.

Substituting (41) into (39), we have obtained analytic solutions of equation (36) as

follows

2
(i) A=1,B=—(14m?,C=m? &= kx+k\/—% — AV AVCk2,

B 2Bk? , 2VCk . AR (1
Ul—_\/—T—ZL\/Z\/Ek’ \/§ S (£)+—\/§ (SH(S))

; (42)
o =5 (~BK —2/AVER) - Qif’ sn2<f>—2§k (sri@)
B 2Bk , 2VCk (en(9) | 2VAKk [(dn(¢)
uz——J—T—‘M vor - =7 (oha(f))+ V3 CH@) (43)
2 2 ? (en() Ak? n(¢) 2
_%< Bk —2\/_\/_kr> QC;)k (dné)>_23k (in—(€€)>

2Bk?
(i) A= (1—m?), B=2m>—1,C = —m? ¢ = kx + k\/—Tk — 4WAVCE2,

= =255 —avavar - 2 g+ 2O (L)

/3 V3 \en(§) (44)
1 2 2 2CK? 2 24k 1 :
o= (—Bk — 2VAVCk ) O (cn(f))

(i) A= (m2—1), B=(2—m?2),C = -1, =ka + lg\/—%k2 — 4 AVCk2,
2Bk . 2VCk 2\/Zk 1

2 2
vy = % (—Bk2 - 2\/2\/51@’2) - % dn?(¢) QAk (

(45)
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2
(iv) A=—-m?(1—m?),B=2m*>—-1,C=1,{ =kx + k\/—% — 4AVCE,

u5:—\/—ﬁ—4\/—\/—k2 2\/_k( (5)) 2\/_k(d())
1 46

Vi \=©) " v \me
=g (- avivee) - 55 (G) - 250 (56)

(v) A= (1—m?), B=(2—m?), 0:1,5:km+k\/—%—4ﬁ\/ﬁk2t,

P (220 (2

sn( 2 2 (47)
1 2Ck?* (cen(€) 2AK* (sn(€)
=5 (-8R - 2VAVER) - = (sn@)) E (cn@)
(vi) A = }l, B= m22— 2, C = %27 € =kx+ k:\/—%’“2 — 4V AVCE2,

u7:—\/—2ik2—4x/2@k2 Q\F’f( sn(¢ >+2\Fk<1idng>

V3 \1=xdn(¢)
1 ) ) 2Cl<:2 sn(€) \? 2Ak2 1j:dn 2
v7—3(—Bk —2\/2\7(1/@) 1idn
§ m? m? —2 2Bk?
(vii) A=C =" B=——>— & =hv+k —T—MZ\/EM,

ug = —\/— 23;162 — 4VAVCE? — 2\/\/§k (sn(§) £ien(§))

2V Ak 1
BV (<sn<s>iicn<5>>> (49)
2
= L (B - 2AVOR?) - 2T (an(e) 2 i en(©)?

w\H

\ ‘2?2 (<sn<s> il i cn<5>>)2
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Ugurlu et al.

([ 2B 2/Ck dn(¢)
1= _\/_3 ~ 4V AVOR? - V3 (z'\/l —m2sn(€) + cn(f))

L 2VAk (VT = m?sn(€) + en(g)
\/g dn(¢) (50)
, N 20K dn(¢) i
(Bk 2f\ﬁk> 3 (imsn(f)icn(§)>

_2Al<:2 i@sn(&)icn(f) ?
3 dn(¢)

wh—'

A=C=

1
4

_ 2 2
B! ;m ,§:kx+k\/—%—4ﬂ\/@s2t,

ulp = —\/—25;)]{2 — 4WAVCE? — 2\?€( sn(§) £idn(§))

2v/Ak 1
3 <(msn(£):|:idn(§))> (51)

(~B# —2vAVER) - 20 (i sn(e) & 1an(e) ?

B 2Ak?

Wl

V10 =

;

3 <(msn(£)iidn(£))>2

B 2Bk? _ 2V/Ck dn(¢)
= _\/_ 3 WAVOK V3 (mcn(ﬁ) +iv1— m2>

2\/>k <mcn( )ii\/l—m2>
(52)

BYE dn(¢)

V11 =

2 n 2
(_Bk2 B 2\/2\/5]{2) B 26?;]{ <mcn(§)d:|:(f\)/m>

_24K* [ men(§) £iv1 —m? ’
3 dn(¢)

Wl

ulgz—\/—zB;Q_zl\/Z\kaz 2\/\/;7‘5 <1in£i)€)> 2\/;145 <licn§)

2 2 2 2
mgzé(—BkQ—m/Z\Fckz) 2Ck < sn(¢ ) 2Ak (1:|:cn )

1icn
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[ 2BR2 ~ 2V/Ck cn(€)
uig = \/ 3~ VAVOR - =% (msn(@ T dn(e ))
| 2VAk (msn@ + dn(¢ ))
2 V3 (€) (54)
1 20k
v13:§(_Bk2_2ﬂ\@k2> 3 ( 1—m25n :I:dn >
24K ﬁ () £ dn(§)
3 cen(§)
(ix) A=C = m24‘ L p_ m2+1,§:kx+k\/—%k2 — AVCE,
[ 2Brz _2V/Ck dn(¢) 2V Ak (1+msn(€)
U4 = \/ 3 AVAVCR? V3 (1 imsn({)) * V3 ( dn(¢) >
1 20'k? dn(§) 2 24K /1 + msn(§) 2
v14_§(—Bk2—2\/Z\@k2)— ; <1imsn(£)> -5 ( an(@) )
(55)
(x) A=C = 1_47”2, B- 1+2m2,§:kx+k\/—%k2 — WAVCE,

2V/Ck

cen(€) 2v/ Ak

2Bk?
Uiy = —\/—3 — 4\/2\/5k‘2

(

V3

mﬂ@) w (a)

CIl

V15

_ % (—Bk2 - 2\/2\@/8) QCk (

B 14+ m?

(xi) A 5

2/ Ck

2Bk?2
=/ ——— —AVAVCEK?
= avaver - 2E

W =

V16 =

1£sn(¢

)2 2Ak2<1isn )2

2
O = _%1’ €=k + k\/——Qik — 4V AVCE,

(men(§) £ dn(¢))

2V Ak
A

1
+dn(¢))

)
@)

((m cn(§) (57)

(B8~ 2VAVOR) — 27 (men(e) = dn(e)?

B 2Ak?
3

1
+dn

<(m en(§)



218 Ugurlu et al.

(xii) A= %7 B-- +2m2’ c-t _4m2)2’ §=kat k\/_%m — 4VAVOR,
- _&]{52 B _ 2\/5]43 sn(&)
U1y = \/ 3 4\/2\@1# \/g <dn(f) + CD(f))
2v/Ak (dn(¢) + cn(€)
3 ( sn (&) > (58)
B 20k? sn(§) ?
vir =3 (‘Bk2 - 2\/2\@#) -3 <dn(§) + Cn(§)>
24K (dn(§) £en(§)\?
3 ( sn () )
([ 2Bk? 2v/Ck cn(€)
wig = —\/—3 —WAVOR - =5 (midn@))
2V (VT m? & du(¢)
V3 cn(§) (59)
B 20k2 cn(§) ’
vis =3 (_Bk2 B 2\/2\@’“2) 3 <mi dn(£)>
24K (V1 —m? £ dn(¢) ’
3 cen(§)

We can obtain the following periodic solutions of Eq. (36) by using solutions (42-59)
for m — 0,

oy 22 !
3 \/gsin (kx—l—k %t)
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(
[ 16k2 2k [ 16k2
2k 16k2
+—=tan | kz + k\/———1

(2,t) = 1(—4k:2) Ly + k\/—16k2t o
v(x,t) = 3 3 co x 3
2%2 16k2
— = tan? (k:m + ky/ —3t>
\
e I sin (kx + k —4’§2t>
u(z,t) ==\ —— — —
3 V3 lztcos(kx—i-k —‘”3“215)
i 1+ cos (kx—i—k —4]§2t)
_A'_i
V3 sin <k:v +k —4’3“2t>
2 (62)
1 12 sin <k:c +k —4’§2t>
v(z,1) —g(kz) %

1icos<kx+k —4]§2t)
2
2 lj:cos(k:x—i-k —4’§2t>
sin(ka:—i—k —4]§2t>

.
- 152 I cos(ka:—i—k —4]§2t>
w(x,t) = —A/—— — —&=

3V3 1isin<kx+k —4’§Zt>

. [1Esin <ka:+k: —4’§2t>
_i_i
V3 cos <kx +k —4k2t)

- 2 (63)
cos <kx + k —4]§t>

1+ sin <kaf + k —4’§2t>

2
12 1j:sin<l<::c+k: —4]§2t>

6 cos (kx + k —4]§2t>
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FIGURE 3. Periodic wave graphics of the (1+1)-dimensional disper-
sive long wave equation for u(x,t) and v(z, t) solutions of (60) in three
dimensions, respectively (k = 1).
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FIGURE 4. Periodic wave graphic of the (1+1)-dimensional dispersive
long wave equation for u(zx,t) of solution (60) in two dimensions (a)
t=0,(Db)t=05(c)t=1,(d)t=2, (k=1).
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(c) (d)

FIGURE 5. Periodic wave graphic of the (141)-dimensional dispersive
long wave equation for v(x,t) of solution (60) in two dimensions (a)

t=0,(b)t=05 (c)t=1(d)t=2 (k=1).

In Figure 3, Figure 4 and Figure 5, are shown graphics of periodic wave solutions of
the (141)-dimensional dispersive long wave equation in three and two dimensions,
respectively. In Figure 5, the periodic waves move to the left with time. If £ =

kx — wt, the periodic waves move to the right.

3. Conclusions

In this paper, we present the generalized Jacobi elliptic function method [11] by using
ansatz (5) and, with aid of Mathematica, implement it in a computer algebraic
system. An implementation of the method is given by applying it to the SRLW
equation and (1+1)-dimensional dispersive long wave equation. We obtain some
periodic solutions of these equations at the same time. The method can be used
for many other nonlinear equations or coupled ones. In addition, this method is
also computerizable, which allows us to perform complicated and tedious algebraic

calculations on a computer.
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