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Özet. Bu makalede, sürekli zaman dinamik sistemleri için eşzamanlama kavramı bir
gözlemci bakış açısından incelenmiştir. Bu kavramın eşzamanlama kavramının bir genel-
lemesi olduğu ispatlanmıştır. İçinde iki dinamik sistemin bağıl olasılık eşzamanlandığı
kümenin noktalarının geleceğinin bir bağıl olasılık senkronizasyonu tarafından belirlenen
homeomorfizme göre aynı olduğu ispatlanmıştır. Bağıl olasılık eşzamanlamasının topolojik
eşlenim bağıntısı altında kararlı olduğu sonucuna varılmıştır.†

Anahtar Kelimeler. Eşzamanlama, bağıl olasılık ölçümü, gözlemci, bağıl eşlenim.

Abstract. In this paper the concept of synchronization for continuous time dynamical
systems from the viewpoint of an observer is considered. It is proved that: this concept is a
generalization of the notion of synchronization. It is proved that the future of the points of
the set in which two dynamical systems are relative probability synchronized is the same
up to the homeomorphism determined by a relative probability synchronization. The
persistence of relative probability synchronization under a topological conjugate relation
is deduced.
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1. Introduction

The intersection between dynamical systems [1], differential equations [2, 3] and

measure theory [4, 5] has been one of the interesting research topics raised in the

last decade. The concept of synchronization is placed in this intersection. Synchro-

nization is one of the main tools for considering chaotic systems. Recently this topic

has been considered via fuzzy theory [6]. In this paper we present a new approach

to this concept. One of the main objects in physical phenomena is the “observer”.
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A modeling for an observer of a set X is a fuzzy set µ : X → [0, 1] [7, 8]. In fact

these kinds of fuzzy sets are called “one dimensional observers”. Although math-

ematically in the definition of fuzzy sets we can replace the interval [0, 1] with the

other kinds of latices, physically these are not the same. One must pay attention to

the point that an observer is not a stochastic observer, because we do not have any

probability measure on the space.

In this paper we would like to use of the notion of observer to define the relative

probability synchronization for topological dynamical systems.

A similarity for the omega limit sets of the points of a set in which two dynamical

systems are relative probability synchronized is deduced (see Theorem 2.3). We will

prove that: relative probability synchronization is an equivalence relation up to the

suitable observers and the semi-dynamics of the spaces. We will also show that

topological conjugacy preserves this notion.

2. Relative Probability Synchronization

We assume that X and Y are two metric spaces, and µ is a one dimensional ob-

server of X [7, 8], that is, µ : X → [0, 1] is a fuzzy set [9]. We also assume that

{ϕt : X → X | t ∈ R} is a topological dynamical system on X, with continuous

time, that is,

(i) ϕ0 is the identity map;

(ii) ϕt ◦ ϕs = ϕt+s, for all t, s ∈ R;

(iii) ϕt : X → X is a continuous map, for all t ∈ R.

Moreover we assume that f : X → X is a continuous map. This map creates the

new observers for X. In fact if E ⊆ X, then mf
µ(E) : X −→ [0, 1] is a fuzzy set

defined by

mf
µ(E)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χE(f i(x))µ(f i(x)),

where χE is the characteristic function of E. The observer mf
µ(E) is called the

relative probability measure of E with respect to an observer µ and the topological

semi-dynamics f [5].

If we restrict ourself to a probability space (X,B,m) and we take the characteristic

function χX as an observer, and if we assume that f : X −→ X is a measure
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preserving map, then for given x ∈ X, and E ∈ B the Birkhoff ergodic theorem [10]

implies that

mf
µ(E)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χE(f i(x)) = m(E) almost every where.

So relative probability measure is an extension of the notion of probability measure.

Definition 2.1. A topological dynamical system {ϕt : X → X
∣∣ t ∈ R} is relative

probability synchronized to a topological dynamical system {ψt : Y → Y
∣∣ t ∈ R}

up to a topological semi-dynamical system f : X → X and an observer µ if there

exists a homeomorphism r : X → Y such that mf
µ(Z) = mf

µ(X), where Z = {x ∈
X
∣∣ limt→∞ dX(ϕt(x), (r−1 ◦ ψt ◦ r)(x)) = 0}. In this case we use of the notation

(X,ϕ)µf,r ' (Y, ψ).

Now we show that: the notion of relative probability synchronization is a general-

ization of the notion of synchronization. For this purpose we assume that (X, β,m)

and (Y, η, n) are two probability spaces with the probability measures m and n and

sigma algebras β and η respectively. Moreover we assume that X and Y are two

metric spaces.

Theorem 2.1. Suppose (X,ϕ)χX

f,r ' (Y, ψ) and f : X → X is a measure preserving

homeomorphism. Moreover assume that Z ∈ β where

Z =
{
x ∈ X

∣∣ lim
t→∞

dX(ϕt(x), (r−1 ◦ ψt ◦ r)(x)) = 0
}
,

then m(Z) = m(X) for almost all points of X.

Proof. The Birkhoff ergodic theorem [11] implies that mf
χX

(Z)(x) = m(Z) almost

everywhere and mf
χX

(Z)(x) = m(X) almost everywhere, where x ∈ X. Since

mf
χX

(Z)(x) = mf
χX

(X)(x) for all x ∈ X, then m(Z) = m(X) almost everywhere. �

Theorem 2.2. If A and B are two disjoint subsets of X, then

mf
µ(A ∪B) = mf

µ(A) +mf
µ(B).
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Proof. Let x ∈ X be given. Then

mf
µ(A ∪B)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χA∪B(f i(x))µ(f i(x))

= lim sup
n→∞

1

n

n−1∑
i=0

(χA + χB)(f i(x))µ(f i(x))

= lim sup
n→∞

1

n

n−1∑
i=0

χA(f i(x))µ(f i(x)) + lim sup
n→∞

1

n

n−1∑
i=0

χB(f i(x))µ(f i(x))

= mf
µ(A)(x) +mf

µ(B)(x).

�

We denote the omega limit set of a point x ∈ X for a dynamical system

{ϕt : X → X
∣∣ t ∈ R} by ωϕ(x).

Theorem 2.3. Let (X,ϕ)µf,r ' (Y, ψ). Moreover let x ∈ Z. Then ωϕ(x) =

r−1(ωψ(r(x))).

Proof. If q ∈ ωϕ(x), then there is a sequence {tn} with tn → ∞ such that

limtn→∞ ϕ
tn(x) = q. Since x ∈ Z, then

lim
tn→∞

dX(q, (r−1 ◦ ψtn ◦ r)(x))

≤ lim
tn→∞

dX(ϕtn(x), (r−1 ◦ ψtn ◦ r)(x)) + lim
tn→∞

dX(ϕtn(x), q) = 0.

So

dX(q, (r−1 ◦ ψtn ◦ r)(x)) = 0.

Since r is a homeomorphism, then

dX(r(q), (ψtn ◦ r)(x)) = 0.

Thus r(q) ∈ ωψ(r(x))). So ωϕ(x) ⊆ r−1(ωψ(r(x))). By the similar calculations we

can deduce r−1(ωψ(r(x))) ⊆ ωϕ(x). Thus ωϕ(x) = r−1(ωψ(r(x))). �

Theorem 2.4. Let (X,ϕ)µf,r ' (Y, ψ), and ωϕ(p) ∩ Z = (r−1(ωψ(r(p)))) ∩ Z, for a

given p ∈ X. Then mf
µ(ωϕ(p)) = mf

µ(r−1(ωψ(r(p)))).

Proof. Since (X,ϕ)µf,r ' (Y, ψ), then

mf
µ(Z) = mf

µ(X) = mf
µ(X ∩ Z) +mf

µ(X ∩ Zc) = mf
µ(Z) +mf

µ(Zc).
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So mf
µ(Zc) = 0. We have

mf
µ(ωϕ(p)) = mf

µ(ωϕ(p) ∩ Z) +mf
µ(ωϕ(p) ∩ Zc)

= mf
µ(ωϕ(p) ∩ Z) + 0

= mf
µ(r−1(ωψ(r(p))) ∩ Z) +mf

µ(r−1(ωψ(r(p))) ∩ Zc)

= mf
µ(r−1(ωψ(r(p)))).

�

3. Equivalence Relation and Conjugacy

Now we prove that the relative probability synchronization is an equivalence relation.

Theorem 3.1. (i) Let (X,ϕ)µf,r ' (Y, ψ). Then the dynamical system

(Y, {ψt
∣∣ t ∈ R}) is relative probability synchronized to (X, {ϕt

∣∣ t ∈ R}) up to

the topological semi-dynamical system r ◦ f ◦ r−1 and the observer µ ◦ r−1.
(ii) Let (X,ϕ)µf,r ' (Y, ψ) and (Y, ψ)µ◦r

−1

r◦f◦r−1,s ' (T, ρ). Then

(X,ϕ)µ◦r
−1◦s−1

s◦r◦f◦r−1◦s−1,s◦r ' (T, ρ).

Proof. (i) The set {y ∈ Y
∣∣ lim
t→∞

dY (ψt(y), (r ◦ ϕt ◦ r−1)(y)) = 0} is equal to r(Z).

Let y ∈ r(Z) and y = r(x). Then

mr◦f◦r−1

µ◦r−1 (r(Z))(y) = lim sup
n→∞

1

n

n−1∑
i=0

χr(Z)(r ◦ f i ◦ r−1(y))µ ◦ r−1(r ◦ f i ◦ r−1(y))

= lim sup
n→∞

1

n

n−1∑
i=0

χr(Z)(r ◦ f i)(x))µ(r ◦ f i(x))

= lim sup
n→∞

1

n

n−1∑
i=0

χZ(f i(x))µ(f i(x)) = mf
µ(Z)(x).

Similarly we deduce

mr◦f◦r−1

µ◦r−1 (r(X))(y) = mf
µ(X)(x).

Thus

mr◦f◦r−1

µ◦r−1 (r(Z))(y) = mr◦f◦r−1

µ◦r−1 (Y )(y).

(ii) If Z = {x ∈ X
∣∣ lim
t→∞

dX(ϕt(x), r−1 ◦ ψt ◦ r(x)) = 0} then

s ◦ r(Z) =
{
t ∈ T

∣∣ lim
t→∞

dT (ρt(u), r−1 ◦ s−1 ◦ ρt ◦ s ◦ r(u)) = 0
}
.
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For u ∈ (s ◦ r)(Z) and x = r−1 ◦ s−1(u) we have

ms◦r◦f◦r−1◦s−1

µ◦r−1◦s−1 (s ◦ r)(Z)(u)

= lim sup
n→∞

1

n

n−1∑
i=0

χ(s◦r)(Z)(s ◦ r ◦ f i ◦ r−1 ◦ s−1(u))µ ◦ r−1 ◦ s−1(s ◦ r ◦ f i ◦ r−1 ◦ s−1)(u))

= lim sup
n→∞

1

n

n−1∑
i=0

χZ(f i(x))µ(f i(x)) = mf
µ(Z)(x).

We also have

ms◦r◦f◦r−1◦s−1

µ◦r−1◦s−1 (s ◦ r)(X)(u) = mf
µ(Z)(x).

Hence the equality

mf
µ(Z)(x) = mf

µ(X)(x)

implies that

ms◦r◦f◦r−1◦s−1

µ◦r−1◦s−1 (T )(u) = ms◦r◦f◦r−1◦s−1

µ◦r−1◦s−1 (s ◦ r)(Z)(u).

Thus

(X,ϕ)µ◦r
−1◦s−1

s◦r◦f◦r−1◦s−1,s◦r ' (T, ρ).

�

Two topological dynamical systems (X, {ϕt
∣∣ t ∈ R}) and (X, {ψt

∣∣ t ∈ R}) are

called topologically conjugate if there exists a homeomorphism u : X → X such

that u ◦ ϕt = ψt ◦ u. The next theorem implies that if two dynamical systems are

topologically conjugate then they are relative probability synchronized.

Theorem 3.2. Let X be a metric space and (X, {ϕt
∣∣ t ∈ R}) and (X, {ψt

∣∣ t ∈ R})
be two conjugate dynamical systems on X with the conjugacy u : X → X. Then

(X,ϕ)µf,u ' (X,ψ).

Proof. Let

Z =
{
x ∈ X

∣∣ lim
t→∞

dX(ϕt(x), u−1 ◦ ψt ◦ u(x)) = 0
}
.

Since ϕt = u−1 ◦ ψt ◦ u then Z = X. Thus mf
µ(Z) = mf

µ(X). �

Example 3.1. Two topological dynamical systems on S2 with the center (0, 0, 0)

where their orbits are illustrated in Figure 1, are not synchronized, and they are

not topologically conjugate but they are relative probability synchronized with the

identity map i : S2 → S2 and the observer µ : S2 → [0, 1] defined by

µ(x, y, z) =

{
z if z ≥ 0,

0 otherwise.
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Figure 1. This is an example of two relative probability synchronized
dynamical systems which are not topologically conjugate.

4. Conclusion

Constant observers appear in many sensitive systems for example in the unified

chaotic system [1, 3], which is the following system:
ẋ = (25 θ + 10)(y − x),

ẏ = (28− 35 θ)x− xz + (29 θ − 1)y,

ż = xy −
(

8 + θ

3

)
z.

The parameter θ has an essential role in this system for example θ = 0 implies

Lorenz system [1, 12], θ = 28/35 implies Lü and Chen system [13] and θ = 1 implies

Chen’s system [14]. In fact θ is a constant observer on R3 [15], that is, it is a

constant function from R3 to [0, 1]. The more complicated case will happen when

we assume that θ is a non-constant observer. The consideration of this system from

the viewpoint of relative probability synchronization when θ : R3 → [0, 1] is an

observer is a topic for further research.
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[10] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag 1987.

[11] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag 1982.

[12] E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20 (1963),

130–141.

[13] J. Lü and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and

Chaos 12 (2002), 659–661.
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