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Abstract
In this paper, a mode decomposition analysis-based adaptive approach is proposed to provide high
diagnostic performance for automated voice pathology detection systems. The aim of the study is
to develop a reliable and effective system using adaptive cepstral domain features derived from
the empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and
complete empirical mode decomposition with adaptive noise (CEEMDAN) methods. The descriptive
feature sets are obtained by applying mel-frequency cepstral coefficients (MFCCs) and their derivatives,
linear predictive coefficients (LPCs) and linear predictive cepstral coefficients (LPCCs) techniques to
each decomposition level. The class-balanced data are generated on the VOice ICar fEDerico II database
samples using the synthetic minority oversampling technique (SMOTE). The ReliefF algorithm is used
to select the most effective and distinctive features. A combination of selected features and a support
vector machine (SVM) classifier is used to identify pathological voices. In the pathology detection
approach, the results show that the cepstral features based on EMD and SVM-cubic achieves the
highest performance with 99.85% accuracy, 99.85% F1-score and 0.997 Matthews correlation coefficient
(MCC). In pathology-type classification, the cepstral features based on EEMD and SVM-quadratic
approach provided the highest performance with 96.49% accuracy, 96.46% F1 and 0.949 MCC values.
The comprehensive results of this study reveal that mode decomposition-based approaches are more
successful and effective than traditional methods for detection and classification of pathological voices.

Keywords: Voice pathology; SMOTE algorithm; mode decomposition; cepstral-domain coefficients;
ReliefF algorithm; support vector machine
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1 Introduction

Voice is considered as a subcomponent of speech, which is one of the most important daily
communication tools of humans. In voice-related fields, the health problems have always been
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seriously addressed. The social, professional, and interpersonal communication components can
all be profoundly impacted by pathological voice issues [1]. Voice pathology, a global public
health problem, has a high incidence and currently, it often includes vocal cysts, vocal fold
nodules, keratosis, vocal folds paralysis, laryngitis and dysphonia [2]. The most prevalent voice
issue, dysphonia, which affects 10% of the population, is frequently associated with changes in
voice quality, pitch, and intensity in the upper respiratory tract [3, 4]. Phonetic symptoms or
physiological irregularities serve as the basis for the pathological voice diagnostic in medicine.
The following are some of the standard medical diagnosis techniques: Laryngoscopy, stroboscopic,
and endoscopic procedures [5]. These diagnostic procedures are intrusive, time-consuming, and
expensive, which means that they call for specialized tools and qualified medical professionals.
Therefore, a non-invasive and efficient computer-aided automatic pathological voice identification
system that does not require a clinical setting or a specialist would greatly improve human
voice health. In addition, another important point is that it is possible to remotely evaluate the
voice health and treatment process with a computer-aided diagnosis system. The advanced
development of signal processing techniques and artificial intelligence (AI) has greatly contributed
to automated and smart healthcare applications such as voice pathology detection (VPD).
The feature extraction and classification procedures have been widely used in the majority of VPD
systems. In previous studies, feature extraction methods based on acoustic parameters include
pitch [6], jitter and shimmer [7], harmonics to noise ratio [8], and cepstrum-based features have
been introduced to assess the health status of voice. In VPD applications, mel-frequency cepstral
coefficients (MFCC), linear prediction coefficients (LPC) and linear prediction cepstral coefficients
(LPCC) techniques are frequently used as cepstrum-based acoustic parameters [9–12]. The exact
type of vocal pathology can frequently be detected by using a classifier algorithm to the obtained
acoustic distinctive features. The VPD framework has utilized a variety of classifiers. Gaussian
mixture model (GMM) [13], Artificial neural network (ANN) [14], k-nearest neighbor (k-NN) [15],
random forest (RF) [16], and support vector machine (SVM) [17] are effective and heavily used
classifiers. In [13], the author used MFCC and its derivatives (delta and acceleration) features
with hidden Markov model (HMM) and GMM classifiers to detect pathological voice. It has
been reported that 94.44% and 95.74% accuracy were obtained for HMM and GMM, respectively.
Chen et al. [15] proposed to use the LPCC features extracted from the voice signals separated
by Hilbert-Huang transform with the KNN classifier. Thus, they achieved 93.3% accuracy with
the LPCC-based HHT approach using optimal levels. A vocal disorders classification method
was developed by Akbari and Arjmandi [18] utilizing energy and entropy features obtained by
discrete wavelet packet transform (DWPT) combined with a multilayer neural network (ML-NN)
and multiclass linear discriminant analysis (MC-LDA). They achieved classification accuracies of
96.67% and 97.33% for MC-LDA and ML-NN, respectively. Similarly, in [19], the authors presented
a classification model using a combination of EMD and DWT decomposition based high order
statistics features and SVM algorithm. It was reported that the VPD system had a 94.82% accuracy
rate in the proposed study.
Recent studies have proposed deep learning algorithms as an alternative to traditional acoustic
parameter and machine learning techniques in the automated identification of abnormal voices.
In deep learning-based approaches, two-dimensional spectrogram images are used with convolu-
tional neural networks (CNN) [20] and one-dimensional acoustic features are used with long-short
term memory (LSTM) [21], which is one of the recurrent neural networks (RNN). In addition,
CNN-LSTM architecture can be used to learn complex features obtained from spectrogram images
[22]. The accuracy rate of these approaches in detecting pathological voice varies between 77% and
95.41%. In order for deep learning-based methods to achieve good performance, large amounts
of data must be used. However, this may not always be possible as limited data can be collected
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in the clinical conditions. These limitations encourage researchers to design more dynamic and
high-performance systems by feature extraction engineering in pathological voice detection.
Based on the above discussion, the aim of this paper is to obtain an effective feature set that
enables automatic detection and classification of pathological voices. The main contributions of
this study are summarized as follows:

• The study provided the development of a reliable and effective model for the detection of
pathological voice and the classification of three types of pathology: hyperkinetic dysphonia,
hypokinetic dysphonia, and reflux laryngitis.

• The proposed system extracts cepstral-domain acoustic features directly from the raw voice
signals and from each level of the decomposed signals by the EMD, EEMD and CEEMDAN
methods.

• The proposed system has been implemented with synthetic dataset obtained by the SMOTE
algorithm, and the performance gain of the synthetic dataset has been revealed.

• The proposed system has been compared with state-of-the-art studies by many performance
metrics and its contributions and achievements to the literature have been emphasized.

The rest of the paper is organized as follows. In Section 2, the proposed VPD system based
on EMD, EEMD and CEEMDAN techniques is introduced. In Section 3, numerical results are
presented to evaluate the detection and classification performance of the proposed VPD. In
Section 4, comparisons with state-of-the-art studies are made and the performance gain of the
proposed VPD is revealed. Finally, the paper is concluded in Section 5.

2 Materials and methods

In this study, a method for classifying healthy and diseased voices is given that is based on the
cepstral-domain acoustic features extracted by EMD, EEMD, and CEEMDAN which are Hilbert-
Huang transform-based algorithms. The block diagram of the proposed approach is illustrated
in Figure 1 and is organized the following steps: (1) The healthy and pathological voice signals
are obtained by the publicly available VOICED dataset. (2) The signals are normalized with the
z-score method and decomposed by the EMD, EEMD and CEEMDAN methods. (3) The intrinsic
mode functions (IMFs) of the decomposed signals as well as the raw signals are used to extract the
MFCCs, its derivatives (delta and acceleration), LPCs, and LPCCs cepstral-domain features. (4)
Then, a synthetic dataset is generated by increasing the amount of data with the SMOTE technique
and the ReliefF feature selection algorithm is utilized to get the more limited and effective feature
set. (5) The reduced selected feature set is supported as input to SVM classifier models. (6) The
results of classification models are evaluated with a large number of performance metrics and
verification is performed.

Database

The acoustic voice records of healthy and diseased individuals were acquired for this research
derived from the publicly available VOICED (VOice ICar fEDerico II) dataset [23] provided by
the PhysioNet organization. The VOICED dataset contains a total of 208 (150 pathological and
58 healthy) voice data recorded from 73 male and 135 female subjects. The pathological voices
include commonly encountered disorders of hyperkinetic dysphonia, hypokinetic dysphonia and
reflux laryngitis. Validation of healthy and pathological voices including vocal fold disorders was
performed by medical professionals. Table 1 gives the distribution of healthy and diseased voices
in the dataset by age and gender. In a room with a moderate amount of humidity and background
noise (less than 30 dB), the vowel /a/ was continuously recorded for five seconds by subjects
ranging in age from 18 to 70.
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Figure 1. Block diagram of the proposed voice pathology detection and classification framework

The voice data have been collected by 8000 Hz sampling rate and 32-bit resolution using a
microphone held at a 45-degree angle at a distance of about 20 cm.
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Table 1. Distribution of pathology and healthy voices in VOICED database

Age (years) Female Male Total
Pathologies # of hyperkinetic voices 18-34 12 7 19

35-49 16 7 23
≥50 21 9 30

# of hypokinetic voices 18-34 9 2 11
35-49 10 2 12
≥50 13 5 18

# of reflux laryngitis voices 18-34 1 2 3
35-49 9 8 17
≥50 9 9 18

Total 100 51 151
Healthy # of healthy voices 18-34 21 7 28

35-49 9 8 17
≥50 6 6 12

Total 36 21 57

Data pre-processing

The voice recordings were made by using the microphone of a mobile device It was done in a
quiet and not too dry room using a system that can obtain the voice signal in real time using its
microphone. However, each recording was filtered with a Hanning windowed low-pass FIR filter
to remove any noise accidentally added during the acquisition. The participants were instructed
to pronounce the audio sample with a constant sound intensity as they would during normal
conversation. Specific training tests were performed for each subject approximately two/three
times before enrollment, and then the collected data were stored anonymously.
Although the same environment and microphone were used in the acquisition of all sound
recordings, the sound amplitudes may differ between subjects. The amplitude of the features
extracted from the voice signals is greatly affected by these differences. Therefore, all voice signals
are normalized to ensure that the extracted features are not affected by the amplitude change
and are more meaningful. In this study, the amplitudes of the voice signals were normalized
using the z-normalization method. If the voice data is X, the z-normalized data Xnorm is expressed
as: Xnorm = X−µ

σ , where µ and σ denote the mean and standard deviation of all voice data,
respectively.

Mode decomposition methods

Empirical mode decomposition (EMD), a method used for analyzing of non-linear and non-
stationary signals, was proposed by Huang et al. [24] in the late 1990s. In contrast to signal
analysis methods such as wavelet and Fourier transform, EMD is an intuitive, direct, and adaptive
method that uses a data-driven and data-derived basis function. Due to its adaptive nature, the
EMD method is extensively used in sound/acoustic signal processing applications such as the
classification of heart valve disorder [25], and the detection of disease voice signals [26]. The
signal is divided into intrinsic mode functions (IMFs) by the EMD technique, each of which has
a different frequency component. The following two conditions must be ensured for obtaining
IMFs: (1) there can only be one difference or an equal number of extrema and zero crossings
in the dataset, and (2) the average value of the envelope generated by the local maximums and
minimums in the whole dataset is zero. Thus, the EMD process, also known as the sifting process,
consists of obtaining all functions classified as IMFs. The steps involving the basic operations of
EMD are given in Algorithm 1.
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Algorithm 1 Process steps for the EMD method

1: Input: Original signal x(t);
2: Identify all local maxima and minima extrema for x(t);
3: Calculate upper and lower envelope of x(t);
4: Calculate the mean of both envelopes, m1(t);
5: Subtracting the mean from the original signal, difference signal h1(t) = x(t)− m1(t);
6: It is evaluated whether h1(t) satisfies two IMF condition or SD < 0.3;
7: If h1(t) is not provide IMF conditions, update the signal and continue the steps 2 to 5;
8: The residue signal is obtained, r1(t) = x(t)− IMF1;
9: Iterate steps 2 to 8 on residue signal becomes a monotonic function;

10: Output: Find all the IMFs of the signal and residue signal sequence, IMFi and ri for i =

1, 2, . . . , k;

The original signal x(t) with IMFs and the residual signal can be defined as:

x(t) =
k∑

i=1

IMFi(t) + rk(t). (1)

The stopping criterion (SD) is calculated to complete the sifting process in T steps and can be
defined as:

SDi =
T∑

t=0

|IMFi+1(t)− IMFi(t)|2

IMFi(t)2 . (2)

A mode mixing problem can arise when many IMFs include signals of the same scale or multiple
IMFs contain signals of very different scales. In order to address the scale decomposition problem,
ensemble empirical mode decomposition (EEMD), a method of noise-assisted data analysis, has
been proposed [27]. The IMF components are described by the EEMD as the average of an
ensemble of white noise additive signals of limited amplitude. Thus, the ith trial version of the
signal x(t) with added white noise can be expressed as:

xi(t) = x(t) + a0wi(t), (3)

where wi(t) denotes the white noise in ith trial and a0 represents the amplitude. The IMFi
k is

calculated with different realizations of white noise, and the average k-th IMFk is expressed as:

IMFk =
1
L

L∑
i=1

IMFi
k. (4)

The EEMD method basically includes the following concepts: (1) The collection of white noise
added to the signal cancels each other out with the help of the ensemble average. Thus, there can
only be one signal component in the mixing of signal and white noise. (2) To search for all possible
solutions, finite-amplitude white noise needs to be summed with the signal. (3) It is necessary
to add noise to the signal to obtain real and physically meaningful IMFs compared to the EMD
method.
The EEMD adds white noise to the signal in order to address the mode mixing issue of the EMD
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algorithm. In this case, the noise cannot be completely separated from the signal, causing the
IMFs obtained by the EEMD to contain both noise and signal. Therefore, the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, which provides the
spectral separation of modes containing noisy signals, is proposed to solve this problem [28]. The
CEEMDAN algorithm provides a low-cost and efficient computation to reconstruct the original
signal. As a result of using the CEEMDAN approach, the first residual signal can be calculated as:

r1(t) = x(t)− IMF1, (5)

where IMF1 is the first average function calculated by EEMD, and the second average IMF is
obtained as:

IMF =
1
L

L∑
i=1

E1(r1(t) + a0E1(wi(t))). (6)

Finally, rk denotes the final residual signal, and the k + 1 average IMF can be calculated as:

IMFk+1 =
1
L

L∑
i=1

E1(rk(t) + akEk(wi(t))), for k = 2, 3, . . . , K, (7)

where Ek(·) represents the operator that enables the k-th IMF to be obtained by the EMD, and ak
denotes the amplitude that allows the selection of the SNR.
Figure 2 illustrates an instance of subtracting 5-level IMFs from the pathological and healthy
voice signal and the frequency components of these signals relative to the IMFs. As can be
seen from Figure 2, the frequency components for pathological and healthy voice signals differ
according to the modes. Mode #1 contains the dominant frequency for both pathological and
healthy voice signals, while the frequency bandwidth of pathological signals is greater than for
healthy signals. Thus, it is seen that the frequency difference in the modes can be used effectively
in the classification of voice signals.

Feature extraction

In traditional voice analysis and processing, two techniques are widely used for acoustic in-
formation extraction. The first technique uses a parametric modeling approach that has been
developed to closely resemble the resonance structure of the human vocal tract and is based
on linear predictive coding (LPC) and linear predictive cepstral coefficients (LPCC). The second
technique is approaches based on Mel-frequency cepstral coefficients (MFCC) and their derivatives
parameterized by the windows of the voice signal. The voice signal has to be preprocessed,framed,
and windowed in order to extract the cepstral domain-based parameters. Therefore, the following
steps are performed before the acoustic parameters are extracted.
1) Pre-emphasis: The digitized voice signal s(n) is flattened spectrally using a digital technique called
pre-emphasis, which also makes it less susceptible to finite precision effects. The pre-emphasis
system output ŝ(n) is calculated as:

ŝ(n) = s(n)− αs(n − 1), (8)

where α is the pre-emphasis coefficient, and the value of 0.95 is commonly used.
2) Frame-blocking: The voice signals are analyzed and examined in short-term frames due to their
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Figure 2. Intrinsic mode functions (IMFs) and Hilbert spectrum of healthy and pathological voice signals

time-varying nature. Thus, analysis frame-blocks are obtained that allow the parameters to be
modeled dynamically. The pre-emphasized voice signal framed is expressed as:

xl(n) = ŝ(Ml + n), n = 0, 1, . . . , N − 1, l = 0, 1, . . . , L − 1, (9)

where, M and N is the number of adjacent frame samples and frame blocks, respectively. Also, L
represents the total number of frames.
3) Windowing: A windowing operation is applied to each frame to minimize signal discontinuities
at the start and finish of the frames. The windowed signal x̂l(n) is defined as:

x̂l(n) = xl(n)w(n), 0 ≤ n ≤ N − 1, (10)

where w(n) denotes the window function. The Hamming window function is used for this study
and is expressed as:

w(n) = 0.54 − 0.46 cos(
2πn

N − 1
), 0 ≤ n ≤ N − 1. (11)

The block diagram representation of the calculation steps of the LPC and LPCC parameters is
illustrated in Figure 3. The LPC is obtained by autocorrelation of a frame with window function
applied. Then, LPCC is obtained by LPC parameter conversion.
As a linear combination of prior voice samples, a given voice signal s(n) can be estimated as
follows:

s(n) ≈ a1s(n − 1) + a2s(n − 2) + . . . + aps(n − p), (12)

where a1, a2, . . . , ap are constants used for the analysis frame of voice signals.
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Figure 3. Block diagram of the LPC and LPCC computation process

The mel-frequency cepstral coefficient (MFCC) parameters are frequently utilized in voice and
speech processing applications [29–31]. Figure 4 illustrates the process for MFCC feature extraction
from a voice signal. The MFCC technique is developed on the basis that the human auditory
system is more sensitive to low than high frequencies. In order to analyze non-stationary signals
such as voice, it is crucial to consider the energy of the frequency bands. Acoustic signals can be
easily and effectively analyzed in different frequency bands by using filter banks. In filter bank
analysis, the logarithm process is applied to the energy coefficients to increase the dynamic range.
After extracting the log-filterbank features, the MFCC coefficients of the signals are obtained using
the Discrete Cosine Transform (DCT).

Figure 4. Block diagram of MFCC feature extraction from voice signal

The mel is expressed as a unit of pitch period and perceptually equidistant sounds are divided
into equal numbers of mel’s. A set of filters that extract energy from each frequency band is used
to calculate the MFCC, and certain frequencies in Hz are calculated as follows:

Mel( f ) = 2595 ∗ log10(1 +
f

700
). (13)

Spectral coefficients are calculated using the fast Fourier transform (FFT) after applying pre-
emphasis, frame-blocking, and Hamming windowing. The calculation and derivation of the
cepstral coefficients are formulated as follows:

c(n) =
M−1∑
m=0

log10(s(m)) cos(
πn(m − 0.5)

M
), n = 0, 1, . . . , C − 1, (14)

where s(m), c(n) and M denote the mel spectrum, cepstral, and total number of filters, respectively.
C is the number of MFCCs, and the first 13 coefficients are generally used in voice/speech
processing applications.

In this study, raw voice signals are decomposed into IMF modes by the EMD, EEMD, and
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CEEMDAN methods. Considering the Hilbert spectrum given in Figure 2, in which the spectral
components are obtained according to the modes, the first 5 IMF modes are used for feature
extraction from voice signals, since they contain distinctive frequency components. The raw
signals are processed to extract the features that will be employed in the classification of the voice
signals, and the decomposed IMFs of each mode are also achieved. A feature vector of the MFCCs,
velocity (first-order derivative, ∆-MFCC), acceleration (second-order derivative, ∆∆-MFCC), LPC,
and LPCC is obtained from the raw signal and each IMFs. A total of 60 coefficients (13 MFCCs, 12
∆-MFCCs, 11 ∆∆-MFCCs, 12-LPCs, and 12-LPCCs) are obtained from signal and each mode. Thus,
the classification of voice signal is performed using both coefficients and derivatives, and mode
frequency component differences. The Hilbert spectrum shows that the pathological signal has a
wider frequency band than the healthy signal. Therefore, the cepstral coefficients obtained from
each filter bank are of great importance in distinguishing the signals. Table 2 shows a description
and number of the features that were derived by the raw signal, EMD, EEMD, and CEEMDAN.

Table 2. Description and number of obtained features.

Features Description Raw EMD EEMD CEEMDAN
MFCCs Cepstral coeffs of raw signal and all IMFs 13 65 65 65
∆-MFCCs First-order derivative (velocity) of MFCCs 12 60 60 60
∆∆-MFCCs Second-order derivative (acceleration) of MFCCs 11 55 55 55
LPCs Predictive coding coeffs for raw signal and all IMFs 12 60 60 60
LPCCs Cepstral coeffs of LPC for raw signal and all IMFs 12 60 60 60
Total 60 300 300 300

Synthetic data augmentation using SMOTE algorithm

In recent years, with the progress and developments in the field of artificial intelligence, big data
classification approaches have provided a great advantage for diagnostic research in medicine.
Medical data is often inconsistent due to different conditions and difficulties in collecting samples
in clinical conditions. The class imbalance in the dataset is a serious obstacle that negatively
affects the classification performance. Therefore, the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm based on the principle of generating random sample points can be used
to improve the imbalance rate [32]. The SMOTE algorithm provides new data by randomly
interpolating between a number of samples and their neighbors’ samples. The performance of the
classification is improved by increasing the rate of data imbalance by producing a given number
of artificial samples. The SMOTE algorithm realization procedure can be summarized as follows:
(1) For each minority sample xi(i = 1, 2, ..., n), the distance of the minority sample to the other
samples is calculated and its k nearest neighbors are obtained. (2) As a subset, the m nearest
neighbors are randomly selected from the set of k nearest neighbors of each sample xi and denoted
as xij(j = 1, 2, ..., m). Thus, artificially obtained minority samples pij are expressed as:

pij = xi + rand(0, 1)× (xij − xi), (15)

where rand(0, 1) is a random number generator that is uniformly distributed in the range of [0,1].
The SMOTE method is one of the most popular over-sampling methods and has been widely
adopted in many applications. Moreover, many SMOTE extensions have been developed for the
generation of synthetic data: k-NN SMOTE, Borderline SMOTE, and Adaptive Synthetic Sampling
(ADASYN). Figure 5 shows the distributions of the original dataset samples and the synthetically
resampled datasets created with SMOTE methods. Data samples expanded with the SMOTE
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technique have a higher degree of intra-class clustering, and the degree of intra-class clustering is
significantly improved compared to other over-sampling techniques.

Figure 5. Illustration of over-sampling methods for VOICED dataset, (a) original samples, (b) resampling with
SMOTE, (c) resampling with Borderline SMOTE, (d) resampling with ADASYN

In this study, the SMOTE algorithm was applied to features of voice signals to generate balanced-
data classes. The k nearest neighbor values for healthy and pathological voice data in class-
balanced were set as 5 and 1.265, respectively. Thus, the number of healthy and pathological voice
data was increased from 57 and 151 to 342, respectively. In addition, data numbers for each of
the hyperkinetic dysphonia, hypokinetic dysphonia, and reflux laryngitis pathology types were
increased from 72, 41, and 38 to 114, respectively. Hence, class-balanced data were produced by
equating the amount of data for the pathology types. The training and testing process for all
classifiers was carried out on the new minority artificial dataset.

Feature selection using ReliefF algorithm

Feature selection algorithms are crucial to the machine learning process since it is vital to choose
the most distinctive features in order to produce high-performance classification models. The
execution time required for the models can be shortened by using feature selection methods. In
this study, ReliefF feature selection algorithm proposed by Kira and Rendell [33] was utilized to
choose the most effective features. ReliefF is a feature selection technique that gives each feature
in the dataset a weight that may be adjusted gradually. This algorithm ensures that the significant
features have high weights [34]. Thus, in this study, the reduced selected feature set was obtained
with the ReliefF algorithm using the 10 nearest neighbors.
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Support vector machines

The voice/speech signals can be categorized using a variety of machine-learning techniques.
Among these techniques, it has been proven that the support vector machine (SVM) classification
algorithm provides high and effective performance in many studies. The SVM method developed
by Vapnik [35] is a supervised approach and is widely used in classification. This method operates
by creating the boundary at which the groups are divided by an ideal hyperplane [36]. An ideal
hyperplane that satisfies the maximum margin conditions is selected in order to maximize the
distance between the closest data points on either side of the plane. Hyperplanes, also called
support vectors, are determined for each class. The kernel of an SVM algorithm is an ensemble of
mathematical operations that accepts data as input and transforms it into the necessary forms.

The maximum margin and optimal hyperplane for a two-class SVM algorithm are shown in
Figure 6. In the SVM approach, data separation is usually performed with a linear kernel function.
Commonly used non-linear kernel functions for data that cannot be separated linearly are given
in Table 3. In the SVM model, penalty parameter C {1, 10, 100, and 1000}, kernel functions {linear,
cubic and quadratic} and gamma parameter {0.1 to 0.9 at intervals of 0.1} were selected by the
grid-search algorithm. The optimal values for C and gamma parameters were set to 10 and 0.1,
respectively. Also, the kernel scale and box constraint were set to 1.

Figure 6. General structure of SVM algorithm for kernel functions (a) linear, (b) quadratic, (c) cubic

Table 3. Linear and polynomial kernel functions for SVM classifier

Kernel Function Mathematical Expression Description
Linear k(x1, x2) = x1 · x2 Decision boundary is linear
Polynomial k(x1, x2) = (x1 · x2 + 1)d d is the degree of the polynomial
Quadratic Polynomial k(x1, x2) = (x1 · x2 + 1)2 Degree of the polynomial is 2
Cubic Polynomial k(x1, x2) = (x1 · x2 + 1)3 Degree of the polynomial is 3

Performance metrics

In this study, the accuracy, precision, recall, specificity, F1-score, and Matthews correlation coeffi-
cient (MCC) metrics were used to evaluate the performance of the classification models. These
metrics are defined as follows:

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
, (16)
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Precision(Pre) =
TP

TP + FP
, (17)

Recall(Rec) =
TP

TP + FN
, (18)

Speci f icity(Spe) =
TN

TN + FP
, (19)

F1 − score(F1) =
2TP

2TP + FN + FP
, (20)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (21)

There are four possible outcomes in the evaluation of classification results: It is considered true
positive (TP) if the sample is positive and classified as positive, and false negative (FN) if the
sample is classified as negative. The sample is considered true negative (TN) if negative and
classified as negative, and false positive (FP) if classified as positive. MCC is used to obtain the
Pearson product-moment correlation between actual and predicted values [37, 38]. MCC values
are in the range of [-1, +1], and extreme values of +1 and -1, respectively, are obtained in the
situations of perfect classification and perfect misclassification.
The data were divided into training and testing groups using the k-fold cross validation (CV)
method in order to obtain the most effective, reliable, and acceptable model. The k-fold CV
approach splits the data set into k parts, k − 1 of which is utilized for training while the other
remains for testing. Each fold’s result is acquired once this method is carried out on all datasets.
The overall performance of the classifier is then evaluated by averaging all folds. The 5-fold CV
was used to assess the performance of the classifiers in this study.

3 Experimental results

In this study, detection and classification models were obtained using the class-balanced synthetic
VOICED dataset, which includes 342 healthy and 342 pathological data, each of which consists
of three disorder types containing 114 data. The analysis of the voice signals was carried out
in two stages: the cepstral domain analysis of the direct raw signals and the analysis of the
IMFs obtained by the multivariate EMD, EEMD and CEEMDAN methods. The mode and IMFs
of the decomposition methods to be used in the extraction of features were performed over
temporal energy. Figure 7 shows temporal energy distribution according to IMFs for a healthy
and pathological voice. Thus, only IMFs in the modes with the highest energy value were selected.
In the pathological voice analysis shown in Figure 7a, the first 5 IMFs for EMD and EEMD, and
the first 6 IMFs for CEEMDAN have the highest energy. Similarly, the healthy voice energy
distribution shown in Figure 7b is similar to the pathological voice. Therefore, IMFs at the first 5
decomposition levels of EMD, EEMD and CEEMDAN methods were used for feature extraction.
In obtaining pathological voice detection and pathology type classification models, feature extrac-
tion was performed in two different ways. First, MFCC and its derivatives, LPC and LPCC cepstral
techniques were applied directly to the raw signals and a feature vector was obtained. In the
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Figure 7. Temporal energy distribution of IMFs from voice decomposed by EMD, EEMD and CEEMDAN (from
left to right) (a) for pathological, (b) for healthy

second way, cepstral techniques were applied to each IMFs in the first 5 modes obtained by EMD,
EEMD and CEEMDAN methods and a vector with more features was achieved. The cepstral-
domain features extracted from raw signals and EMD-based, EEMD-based and CEEMDAN-based
cepstral features obtained from decomposition methods were used with the SVM classifier al-
gorithm, and detection of pathological voice and classification of three pathology types were
performed. The linear, quadratic, and cubic were used as kernel functions for the SVM classifier to
obtain the detection and classification models.

The results of the pathological voice detection models for all features and the selected feature set
are given in Table 4. The use of cepstral features based on EMD as the input vector for SVM-cubic
provides the highest performance with 99.85% accuracy, 100% precision, 99.71% recall, 100%
specificity, 99.85% F1-score, and 0.997 Matthews correlation coefficients. The results showed that
features based on EEMD and CEEMDAN provide similar performance to EMD, while traditional
cepstral features can achieve lower performance with 94.30% accuracy, 94.12% F1-score, and
0.888 MCC. Thus, a comprehensive review shows that methods based on adaptive decomposition
outperform traditional methods in the detection of pathological voices.

In the pathological voice detection model based on EMD, the first three features with the highest
distinctiveness among the selected features are shown in Figure 8. These features are listed as the
8th ∆∆-MFCCs extracted from the IMFs in the 5th mode, the 3rd ∆∆-MFCCs in the 3rd mode, and
the 13th MFCCs in the 4th mode, respectively. It has been observed that MFCCs and its derivatives
acoustic parameters obtained by EMD are highly effective features in the detection of pathological
voice.

The confusion matrix obtained by traditional and adaptive decomposition-based approaches,
which provide the highest performance in the detection of healthy and pathological voices, is
illustrated in Figure 9. The confusion matrix shown in Figure 9a shows that 30 of the pathological
voices and 9 of the healthy voices were detected incorrectly when using traditional cepstral domain
features extracted from the raw signal. The confusion matrix that provides the best performance
in the approach where the cepstral domain features based on EMD are the input of an SVM-cubic
classifier is shown in Figure 9b. In this approach, it was concluded that all healthy voices were
detected correctly and 1 of the pathological voices was detected incorrectly.

Statistical significance analysis was performed using McNemar’s Chi-square test for EMD-based
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Figure 8. Statistical distribution representation of the top three features with the highest distinctiveness for the
healthy and pathological detection model

Figure 9. Confusion matrix of the highest-performing model in healthy and pathological voice detection (a) for
traditional cepstral domain features (b) for cepstral domain features based on EMD

MFCCs, ∆-MFCCs, ∆∆-MFCCs, LPCs and LPCCs cepstral domain features in pathological voice
detection. Table 5 gives the results of McNemar’s test using the Chi-square and p-values (α = 0.05)
for the features. All feature cases, with the exception of LPCs, are rejected by the test which was
performed. As seen in Table 5, feature vectors with p-values near zero can distinguish between
pathological and healthy voices and are statistically significant.

Table 5. McNemar’s Chi-square statistical test for pathological voice detection

Feature Set χ2 p-value SD (p<0.05)
MFCCs 6.857 0.0088 Yes
∆-MFCCs 12.96 0.0003 Yes
∆∆-MFCCs 7.578 0.0059 Yes
LPCs 1.928 0.1649 No
LPCCs 22.40 0.0001 Yes

χ2 : Chi-square value, SD : Significant difference

In the pathology type detection experiment, the VOICED dataset’s pathologies for reflux laryngitis,
hyperkinetic dysphonia, and hypokinetic dysphonia had been detected. Table 6 shows the
classification results for the three pathology types utilizing both traditional and decomposition-
based cepstral features. Comprehensive results demonstrate that the SVM-quadratic method
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combined with the cepstral features extracted from IMFs acquired by EEMD resulted in improved
classification performance. The EEMD-based classification model, which was more successful
than other approaches, yielded 96.49% accuracy, 96.74% precision, 96.49% recall, 98.25% specificity,
96.46% F1-score, and 0.949 MCC values. In addition, the maximum values of 85.09% accuracy,
84.84% F1-score, and 0.779 MCC were achieved when cepstral features were used with SVM-cubic.
The results revealed that decomposition-based approaches are more effective than traditional
cepstral features.
Figure 10 shows the top three distinctive features of the EEMD-based cepstral features for pathol-
ogy type detection. These features are the 3rd, 1st, and 6th LPCs coefficients obtained from IMF2,
IMF3, and IMF4, respectively. Thus, it was concluded that LPCs cepstral coefficients extracted
from IMFs obtained by EEMD are quite effective in detecting pathological voice types.

Figure 10. Statistical distribution representation of the top three features with the highest distinctiveness for the
healthy and pathological detection model

The confusion matrices of classification models that provide the highest performance, obtained
by traditional and EEMD-based cepstral domain approaches in the detection of hyperkinetic
dysphonia, hypokinetic dysphonia and reflux laryngitis voice pathology types, are illustrated
in Figure 11. The confusion matrix obtained with the traditional cepstral domain approach
(Figure 11a) showed that hyperkinetic, hypokinetic and reflux pathological voices were classified
with 71.93%, 89.47% and 93.86% accuracy rates, respectively. The confusion matrix of the model
based on EEMD (Figure 11b) showed that accuracy rates of 89.47% for hyperkinetic and 100% for
hypokinetic and reflux were achieved. Thus, it was concluded that the efficiency of traditional
cepstral features was increased with the EEMD approach.
The highest performance results from the binary classification of pathological voice types were
examined to demonstrate the ability of the proposed approach. The results showed that EEMD for
hyperkinetic dysphonia-hypokinetic dysphonia (99.08% accuracy and 99.03% F1-score), CEEM-
DAN for hyperkinetic dysphonia-reflux laryngitis (98.18% accuracy and 98.08% F1-score), EEMD
and CEEMDAN features for hypokinetic dysphonia-reflux laryngitis (100% accuracy and F1-score)
provide the highest performance for classification of pathological voice types.
The statistical significance analysis was performed using McNemar’s Chi-square test for the feature
sets used in these high-performance binary pathological voice type classification models. Table 7
gives the Chi-square and p-values (α = 0.05) obtained for the features. The test results show
that all features except LPCCs for hyperkinetic dysphonia-hypokinetic dysphonia, all features
for hyperkinetic dysphonia-reflux laryngitis and only LPCs for hypokinetic dysphonia-reflux
laryngitis classes reject the null hypothesis. As shown in Table 7, feature vectors with p-values
close to zero are statistically significant and highly effective in distinguishing pathological voice
types.
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Figure 11. Confusion matrix of the highest-performing model in pathology types classification (a) for traditional
cepstral domain features (b) for cepstral domain features based on EEMD

Table 7. McNemar’s Chi-square statistical test for classification of pathology types

Hyperkinetic Dysphonia
vs.

Hypokinetic Dysphonia

Hyperkinetic Dysphonia
vs.

Reflux Laryngitis

Hypokinetic Dysphonia
vs.

Reflux Laryngitis

Features Set χ2 p-value
SD
(p<0.05)

χ2 p-value
SD
(p<0.05)

χ2 p-value
SD
(p<0.05)

MFCC 6.500 0.0107 Yes 13.136 0.0002 Yes 1.125 0.2888 No
∆-MFCC 12.12 0.0005 Yes 19.862 0.0001 Yes 0.100 0.7518 No
∆∆-MFCC 14.81 0.0001 Yes 6.6657 0.0098 Yes 0.166 0.6830 No
LPC 19.36 0.0001 Yes 12.892 0.0003 Yes 8.000 0.0371 Yes
LPCC 6.500 0.0107 No 11.130 0.0008 Yes 4.442 0.0504 No

χ2 : Chi-square value, SD : Significant difference

4 Discussion

Voice disorders that cause deterioration of people’s communication skills are pathological events
caused by vocal cord paralysis, intensive drug abuse and inappropriate use of voice. Pathological
voices are difficult to identify and detect, and many researchers have proposed approaches based
on machine and deep learning to overcome this difficulty. The machine learning technique consists
of feature extraction and analysis in the identification of abnormal voices. It is very important to
choose distinctive and effective voice features and to decide on the best classification algorithm.
Pathological voices are discovered utilizing raw signals or images obtained by a transformation
process in deep learning algorithms that do not involve feature extraction techniques. However, in
order to achieve outstanding performance with deep learning applications, an extensive amount of
data is required. Therefore, machine learning-based algorithms that can provide high performance
with small dataset in pathological voice detection and classification studies stand out in the
literature. There are four datasets that are heavily used in state-of-the-art VPD studies, and they
are as follows: Massachusetts Eye and Ear Infirmary (MEEI) [39], Saarbruecken Voice Database
(SVD) [40], Hospital Universitario Príncipe de Asturias (HUPA) [41] and VOice ICar fEDerico II
(VOICED) [23]. All of these datasets are class-unbalanced in terms of the healthy and pathological
voice data included. The comparisons of studies in the field of VPD, which mostly use traditional
feature extraction techniques and machine learning approaches, are given in Table 8.

Chen et al. [15] obtained 93.30% accuracy and 94% F1 score by using EMD and LPCC features
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with KNN. Hammami et al. [19] used the SVD dataset in the training of the algorithm in the
proposed approach and the RABTA Hospital of Tunisia (30 healthy and 28 pathological data)
containing its own private data in the testing. The authors achieved 94.82% accuracy, 92.85%
sensitivity and 96.66% specificity rates by using higher-order statistics and EMD-DWT features
with SVM algorithm. In another study, Al-Dhief et al. [12] proposed an approach based on
MFCCs cepstral features and online sequential extraction learning machine (OSELM). The authors
reported that 91.17% accuracy, 94% precision and 91.00% recall performance values were achieved
in the proposed model. Omeroglu et al. [42] proposed a hybrid approach using cepstral features
and CNN-based Electroglottography (EGG) signal with SVM classifier. The authors achieved
90.10% accuracy, 92.9% sensitivity, 84.6% specificity and 92.57% F1-score performance values.
Zhou et al. [43] proposed a model based on Gammatone spectral latitude (GTSL) and RF classifier,
using containing 197 healthy and 169 pathological voice, and achieved an accuracy rate of 97.40%.
Abdulmajeed et al. [21], who proposed a model based on deep learning, used MFCCs, zero-
crossing rate (ZCR) and spectrogram images with long-short term memory (LSTM), which is a
type of recurrent neural networks. The authors reported that they achieved over 99% performance
for all metrics in pathological sound detection. In the study using synthetic data with SMOTE
technique, Lee and Lee [44] performed an approach based on LPCs features and CNN deep
learning model. It was reported that 98.89% accuracy, 100% recall, 97% specificity and 99% F1
values were achieved in the study.
In this study, an approach based on healthy and pathological voice detection and classification of
three pathology types such as hyperkinetic dysphonia, hypokinetic dysphonia and reflux laryngitis
is proposed. The traditional cepstral features and features based on mode decomposition (EMD,
EEMD and CEEMDAN) were used with the SVM classifier which has been proven effective in
voice/speech recognition, to obtain detection and classification models. The feature sets were
extracted using the raw signal (1x60), each IMFs (1x60) and IMFs of the first five levels (5x60). In
addition, class-balanced synthetic data were created by applying the SMOTE technique to these
features. All features and the selected features with the highest distinctiveness obtained with
the ReliefF algorithm were used with the SVM classifier, which includes linear, quadratic and
cubic kernel functions for the detection and classification models. Extensive results show that the
highest performance is achieved with selected cepstral features based on EMD and SVM-cubic
algorithms in pathological voice detection. The proposed detection model has 99.85% accuracy,
100% precision, 99.71% recall, 100% specificity, 99.85% F1-score and 0.997 MCC. In the other
approach in which three pathological voice types are classified, the highest performance model
with 96.49% accuracy, 96.74% precision, 98.25% specificity, 96.46% F1 and 0.949 MCC values was
achieved with selected cepstral features based on EEMD and SVM-quadratic classifier. It can be
clearly stated that the feature extraction approach based on mode decomposition has a higher
performance than traditional features obtained from the raw signal, both in pathology detection
and classification. In addition, MFCC and its derivatives stand out as the acoustic parameters that
provide the highest distinctiveness in the detection of pathological and healthy voice, and LPC
parameters in the detection of the pathology type.
The main points that distinguish the proposed approaches in this research apart from previous
studies are outlined in the following order: (1) Detection and classification of pathology based on
voice signals have been performed with cepstral feature extraction approaches based on mode
decomposition as an alternative to traditional cepstral feature extraction. (2) The efficiency of the
IMFs obtained by EMD, EEMD and CEEMDAN methods in feature extraction was analyzed. (3)
The class-imbalanced data problem was overcome with SMOTE technique and its effects on model
performance were examined. (4) High distinctiveness features were selected using the ReliefF
algorithm. (5) Two high-performance models based on the SVM classifier were obtained for
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pathology detection and classification. (6) A computer-aided decision system has been proposed
that can help experts as an alternative to existing approaches for pathological voice detection.
Despite promising results, limitations such as model generalizability require further investigation.
This study primarily focused on the VOICED dataset, which includes three types of vocal patholo-
gies. The generalizability of models for detecting voice pathologies depends on the diversity of
the datasets, the representational capacity of the extracted features, and the design of the model.
Factors such as imbalances in datasets, variations in language and accent, and environmental
noise can significantly influence the model’s performance under different conditions. Furthermore,
inconsistencies in data collection processes and the limited availability of pathological samples
constrain the generalizability of the models. Future research should aim to expand the dataset
to encompass a broader range of materials to further validate the generalization capabilities of
the proposed models. Additionally, while mode decomposition-based cepstral features and SVM
models have proven effective in detecting voice pathologies, there remains an opportunity to
further enhance detection performance by exploring more advanced architectures, such as CNN,
LSTM networks, and attention mechanism-based models.

5 Conclusion

In this study, it has been evaluated the performances of the proposed new adaptive cepstral
features extracted by mode decomposition to distinguish between pathological and normal voices.
The study utilized adaptive feature extraction derived from EMD, EEMD, and CEEMDAN as well
as the conventional cepstral feature extraction method applied directly to the raw signal. The class-
balanced data were obtained by applying the SMOTE technique to the acquired feature sets for
VPD model. ReliefF algorithm was applied to MFCCs and derivatives, LPCs and LPCCs cepstral
features extracted from voice signals and five-level IMFs, and the performance improvement was
achieved with reduced selected features. The selected features were used as input to the SVM
and, the VPD models that provided the best performance were implemented. Comprehensive
results showed that EMD-based features and SVM-cubic for VPD, and EEMD-based features
and SVM-quadratic approaches for multi-classification of pathology type provided the highest
accuracy performance. It can be said that this high-performance automatic decision support
system, developed as an alternative to traditional approaches, can be used as an auxiliary tool for
pre-diagnosis in VPD.
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