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Abstract: Vegetation covers is a significant component of biogeochemical cycles. Derived savannah of Ogun State has been 

affected by vegetation loss and climate change in recent times. There is lack of information on the rate/extent of vegetation loss 

in the last two decades.  This study assessed changes in vegetation cover in derived savanna ecosystem of Ogun State from 2002 

to 2023. Landsat images were downloaded from the repository of the United States Geological Survey (USGS).  Composites of 

red, green, blue and near-infra-red spectral bands of study period were obtained and classified using Maximum Likelihood (ML) 

algorithm into Land Use Land Cover (LULC) categories as follows: bare soil; built-up areas; forest; and grassland. Change in 

area extent and rate of change of area of classified images were determined for the study period. Confusion matrix of classified 

images were generated and compared with Google Earth satellite image with accuracy assessed using kappa coefficients. Overall 

accuracy of the classified images ranged between 79% and 88% with kappa coefficients of between 0.71 and 0.83.  Results 

showed that built-up area increased from 10.3% cover in 2002 to 35.9% cover in 2023.  However, there was a significant decline 

in forest cover from 31.5% to 13.7% for the same period. Significant increase at 4.2 km2 per year in area extent was observed for 

built-up LULC class while a decline of 2.0 km2 per year in forest cover was recorded for Forest LULC category from 2002 to 

2023.  The study revealed that urbanization increased as extent of initial forest cover were degraded and replaced with physical 

infrastructure.  Therefore, there is urgent need for policies that promote conservation and sustainable management of forests and 

grasslands, as well as measures to promote green infrastructure and urban greening initiatives to address the decline in vegetation 

cover in the derived savanna ecosystem of Ogun State. 
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Bitki örtüsü dinamiklerinin 2002-2023 yılları arasında Ogun Eyaleti Nijerya'da 

seçilen savanada zamansal-mekansal analizi 
 

Öz: Bitki örtüsü biyojeokimyasal döngülerin önemli bir bileşenidir. Ogun Eyaleti'nin savanları, son zamanlarda bitki örtüsü 

kaybından ve iklim değişikliğinden etkilenmiştir. Son yirmi yılda bitki örtüsü kaybının oranı/derecesi hakkında bilgi eksikliği 

bulunmaktadır. Bu çalışma, 2002'den 2023'e kadar Ogun Eyaleti'nin savan ekosistemindeki bitki örtüsündeki değişiklikleri 

değerlendirmiştir. Landsat görüntüleri Amerika Birleşik Devletleri Jeolojik Araştırma Kurumu'nun (USGS) web sitesinden 

indirilmiştir. Çalışma dönemine ait kırmızı, yeşil, mavi ve kızıl ötesi spektral bantların kompozitleri elde edilmiş ve Maksimum 

Olasılık (ML) algoritması kullanılarak Arazi Kullanımı/Arazi Örtüsü (LULC) kategorilerine göre şu şekilde sınıflandırılmıştır: 

çıplak toprak, yerleşim alanları, orman ve otlak. Çalışma dönemi için sınıflandırılmış görüntülerin alan büyüklüğündeki değişim 

ve alan değişim oranları belirlenmiştir. Sınıflandırılmış görüntülerin hata matrisi oluşturulmuş ve kappa katsayıları kullanılarak 

değerlendirilen doğrulukla Google Earth uydu görüntüsüyle karşılaştırılmıştır. Sınıflandırılan görüntülerin genel doğruluğu, 0,71 

ile 0,83 arasında, kappa katsayıları ise %79 ile %88 arasında değişmektedir. Sonuçlar, yerleşim alanının 2002'deki %10,3 

kapalılıktan 2023'te %35,9'a yükseldiğini göstermiştir. Ancak aynı dönemde orman örtüsünde %31,5'ten %13,7'ye önemli bir 

düşüş göze çarpmaktadır. 2002'den 2023'e kadar, yerleşim LULC sınıfı için alan büyüklüğünde yılda 4,2 km2'lik önemli bir artış 

gözlemlenirken, orman LULC kategorisi için yılda 2,0 km2'lik bir azalma kaydedilmiştir. Çalışma, başlangıçtaki orman örtüsü 

azaldıkça ve yerini fiziksel altyapıya bıraktıkça kentleşmenin arttığını ortaya çıkarmıştır. Bu nedenle, ormanların ve otlakların 

korunmasını ve sürdürülebilir yönetimini destekleyen politikaların yanı sıra, Ogun Eyaleti'nin savan ekosistemindeki bitki 

örtüsündeki azalmayı ele almak için yeşil altyapıyı ve kentsel yeşillendirme girişimlerini teşvik edecek önlemlerin alınmasına acil 

ihtiyaç bulunmaktadır. 

Anahtar kelimeler: Arazi kullanımı/arazi örtüsü (LULC), Savana ekosistemi, Bitki örtüsü kaybı, Maksimum olasılık 

sınıflandırması 

 

 

1. Introduction 

 

Nigeria's total land area is covered by forests to the tune 

of about 12.18%, supporting a range of ecosystem services 

and livelihood opportunities (Ogundele et al., 2016). From 

1976 to 1990, the country experienced an annual 

deforestation rate of 40,000 hectares across both protected 

and unprotected forest areas (Roby, 1991). Specifically, 

during the periods of 1981 to 1985 and 1986 to 1990, 

deforestation rates in Nigeria's savannah regions were 

http://dx.doi.org/10.18182/tjf.1473757
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recorded at 3.48% and 3.57%, respectively (FAO, 2020) due 

to increased anthropogenic activities such as clearing of 

forests for arable farming (Okorondu et al., 2022) and 

infrastructural development that leads to irreversible loss of 

biodiversity (Ola et al., 2020). Furthermore, between 2000 

and 2005, Nigeria saw a dramatic loss of 55.7% of its 

primary forests, with the annual rate of forest loss 

accelerating by 31.2%, reaching 3.12% (Odekunle et al., 

2019). Over the two decades from 1990 to 2010, the forest 

cover in Nigeria significantly reduced, falling from 17,234 

hectares to 9,041 hectares (FAO, 2020; FORMECU, 1996).   

Nigeria’s derived savannah ecosystem holds critical 

ecological significance and the area's vegetation provides 

essential ecosystem services (Yang et al., 2021), including 

carbon sequestration, soil stability, and water regulation, 

which are vital for both local communities and the larger 

environment (Adetola and Solanke, 2013).  It serves as a 

habitat for various plant and animal species that have 

adapted to the specific conditions of this transitional zone 

(Afolayan et al., 2021).  Moreover, the derived savanna 

ecosystem plays a pivotal role in the intricate balance 

between natural processes and human activities. Traditional 

land use practices, such as agriculture, grazing, and resource 

extraction, intersect with conservation efforts and 

development aspirations within this transitional derived 

savannah ecosystem (Ying, 2019). The exploration of 

vegetation dynamics in derived savannah ecosystem holds 

immense potential for shedding light on the impacts of land 

use practices, climate variability, and conservation 

initiatives (Gomez-Brandon et al., 2018). 

In the derived savanna, urban expansion, land 

conversion and infrastructural development are precipitated 

by population increase that result in clearing of remnant 

forest patches in the rural and the peri-urban for road 

construction, residential, commercial and industrial 

purposes, thus reducing biodiversity and disrupting 

ecological balance (Seifollahi-Aghmiuni et al., 2022). There 

is substantial increase in energy demand to meet the need of 

the emerging cities from encroachment into forested land, 

forcing unsustainable harvest of trees for firewood and 

charcoal (affordable and accessible primary energy sources 

for cooking and heating) that contribute to forest 

degradation (Hido et al., 2023). Human-induced activity 

such as overgrazing by cattle and other livestock are further 

exacerbated by climate change from evidence of reduced 

rainfall and prolonged dry seasons leading to soil 

compaction and slow vegetation regeneration, and eventual 

forest degradation (Cao et al., 2023; Cao et al., 2013; 

Quaranta et al., 2020).   

The application of time series remote sensing datasets 

alongside Geographic Information Systems (GIS) is 

becoming more prevalent in analyzing the spatial and 

temporal trends of vegetation dynamics from regional to 

global extents (Cao et al., 2018; Son et al., 2012). Remote 

sensing offers a reliable, consistent, and cost-efficient means 

of gathering data across vast areas for the purpose of 

monitoring changes in vegetation (Hou et al., 2013). 

Furthermore, remote sensing techniques are indispensable in 

examining the spatial and temporal fluctuations of 

vegetation and identifying the root causes of droughts, 

especially when on-the-ground drought data is scarce or 

inconsistent (Naumann et al., 2014; Rojas et al., 2011). 

Temporal remote sensing data has been widely utilized 

to generate vegetation indices that identify periods of 

vegetative stress (Skakum et al., 2016). The Normalized 

Difference Vegetation Index (NDVI) is particularly 

prevalent across numerous applications, serving to examine 

and track the spatial and temporal distribution of vegetation 

at both regional and continental levels (Son et al., 2012). 

The scarcity and inadequacy of data on Land Use Land 

Cover (LULC) classes within ecosystems have raised 

significant concerns regarding how vegetation responds to 

anthropogenic activities and climate change (Afuye et al., 

2021). However, these concerns have been mainly restricted 

to analysis of climate and time series NDVI data (Zhe and 

Zhang, 2021; Ying, 2019).  

Following the lack of data on the rate/extent of 

vegetation loss in the last three decades in the derived 

savannah ecosystem of Ogun State, there is the need to 

provide information on deforestation and forest degradation 

in the derived savannah ecosystem of Ogun State to support 

government’s program in providing updated information 

about the spatial and temporal patterns of LULC categories. 

Therefore, this study sets out to determine the LULC 

features, extent and change pattern of derived savanna 

ecosystem of Ogun State from 2002 to 2023 with the view 

to providing interventions to control land degradation and 

restore degraded ecosystem. 

 

2. Materials and method 

 

2.1. Study area 

 

The study area (Figure 1) encompasses derived savanna 

ecosystem situated within Ogun State, Nigeria. This unique 

ecological zone is characterized by a distinctive blend of 

open grasslands and scattered trees, representing an eco-

zone between grassland and forest ecosystems. 

Geographically, the study area covers approximately 

938251.28 ha, located on the following coordinates 6.3°N to 

7.8°N latitude and 2.5°E to 4.1°E longitude, encapsulating a 

diverse range of microclimates and landforms. The region 

experiences a tropical climate with pronounced wet and dry 

seasons, profoundly influencing vegetation dynamics and 

land use practices. 
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Figure 1. Map of derived savannah zone, Ogun State (Inset: Nigeria, Ogun State shown in red boundary) 

 

 

2.2. Data collection and image processing 

 

Satellite image data of the study area were obtained 

from United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov). Cloud coverage of the 

study area was usually minimal during the dry season 

periods between December and February.  An image of the 

study area was available in December 2002 on Landsat 7 

Enhanced Thematic Mapper Plus (ETM+). Scan line 

corrector failure rendered the image of the study area un-

usable for year 2012. Therefore, an imagery of January 2013 

was used instead of the 2012 image. Imagery for the year 

2023 was only available in image archive on Landsat 8 

Operational Land Imager (OLI) sensor which became 

operational in February 2013.  Image data with more than 

5% cloud cover were not used for the assessment. 

Therefore, cloud-free Landsat 7 ETM+ imageries 

(December 2002 and January 2013) and Landsat 8 OLI 

(January 2023) were downloaded and used for the LULC 

assessment. Four spectral bands that included Red, Green, 

Blue and Near Infra-Red as presented in Table 1 were 

combined to provide RGB composite of the respective 

epoch in order to enhance the visual classification of the 

land use and land cover features. Sample combination of 

bands is presented in Figure 2. Healthy vegetation is 

represented by deep red hue, while lighter red depicts 

sparsely vegetated areas, and densely populated urban areas 

represented by light blue. 

 

Table 1. Spectral description of satellite imagery 

Band name 
Landsat 7 

TEM+ 

Landsat 8 

OLI 

Resolution 

(m) 

Blue B1(0.45-0.52) B2(0.45-0.51) 30 

Green B2(0.52-0.60) B3(0.53-0.59) 30 

Red B3(0.63-0.69) B4(0.64-0.67) 30 
Near Infra-Red B4(0.77-0.90) B5(0.85-0.88) 30 

 

 

 
Figure 2. Sample combination of spectral bands  
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Following the reliability of Maximum Likelihood (ML) 

statistical procedures in allocating classes for image 

classification over other techniques, it has become very 

useful in LULC categorization (Mather and Tso, 2010).  

Maximum Likelihood (ML) supervised classification 

algorithm (Rawat and Kumar, 2015) was used to categorize 

images into the following LULC classes: bare soil, built-up 

areas, forest and grassland (Anderson, 1976; Srivastava et 

al., 2012). Training sample data were acquired from Google 

Earth (http://earth.google.com) to conduct ground-truthing 

exercise and validate the accuracy of the classified images. 

The workflow procedure used for the study is shown in 

Figure 3. 

 

2.3. Data analysis 

 

Change in area extent over the years and average rate of 

change in area of each LULC class were determined as 

expressed in Equations 1 and 2 respectively (Li et al., 2016; 

Xu et al., 2011). Data were processed and analyzed using 

ArcGIS 10.3 and Microsoft Excel software. Confusion 

matrix was generated to ascertain the accuracy of the 

classified images. Accuracy assessment of the classified 

images were measured by kappa coefficient which relates 

the level of agreement between pixel value of classified 

image from ML classification algorithm and the ground 

truth value from Google Earth image.  Kappa coefficient is 

expressed by Equation 3 (Twumasi et al., 2019) whereby 

Kappa value 1 indicates accurate map result, while value 0 

represents inaccurate map output.     

 

Change in Area extent (%) = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐿𝑈𝐿𝐶 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎𝑙𝑙 𝐿𝑈𝐿𝐶 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
  X 100 (1) 

 

Average Rate of Change (Δ/year) = 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐿𝑈𝐿𝐶 𝑐𝑙𝑎𝑠𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑌𝑒𝑎𝑟𝑠
   (2) 

 

Kappa coefficient, K = 
𝛾𝑎− 𝛽

𝛾^2−𝛽
  (3) 

 

where: γ – Total number of points  

a – sum of correctly classified points 

β – sum of the products of classes between the ground truth 

points and the classified points 

 

 

 

 

 
Figure 3. Diagram of workflow for the study  
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3. Results and discussion 

 

Accuracy assessment results, showing the producer, 

user, overall accuracy levels and kappa coefficients of the 

classified images are presented in Table 2. The overall 

accuracy of the classified images ranged between 79% and 

88% while kappa coefficients was between 0.7129 and 

0.8326. These values show substantial level of agreement 

between the classified image (ML classification) and the 

ground truth reference data from Google Earth. The 

classified images appeared to have relatively high level of 

accuracy, comparable to findings of Dash et al. 2023.  

The LULC classes included bare soil, built-up (urban 

areas), forest, and grassland. Figure 4 shows the fluctuations 

in areal extent of LULC classes in the derived savannah 

region of Ogun State from 2002 to 2023. Significant 

fluctuation was observed in extent of “built-up” LULC class 

when compared to other classes. However, there were no 

significant fluctuations among the LULC classes that 

included the bare soil, forest and grassland. The spike 

observed in “built-up” LULC class between 2002 and 2013 

could be attributed to substantial urban sprawl during that 

period as reported in research carried out by Olayiwola et al. 

2018. Sharp decline in built-up area between 2013 and 2023 

was probably due to strict enforcement of urban planning 

rules to regulate uncontrolled land clearing for 

infrastructural development (Odekunle et al., 2019).  

Built-up area covers almost 60% of the study area by 

2023. This is an indication of increase in urbanization which 

significantly contributes to adverse environmental impacts 

such as increased air pollution, water runoff, and heat island 

effects (Ohwo and Abotutu, 2015). Table 3 shows the land 

use/cover classes and their respective areas (in square 

kilometers and percentages) for three different years: 2002, 

2013, and 2023. As at 2002, bare soil was (31.9%), followed 

by forest (31.5%), grassland (26.3%), and built-up (10.3%) 

of the study area. By 2013, the area covered by bare soil 

decreased significantly to 15.5%, while built-up areas 

increased significantly to 57.0%. The area covered by forest 

also decreased to 16.2%, while the area covered by 

grassland decreased to 11.3%. The sizes of LULC features 

were as follows by 2023: bare soil (29.8%); built-up areas 

35.9%; forest (13.7%); grassland (20.6%). Significant 

increase in built-up area was observed between 2002 and 

2023.  However, significant decline in green space of forest 

cover and grassland was observed between 2002 and 2023. 

These observations appeared to support the assertion by 

Areola and Ikporukpo, 2020 about green spaces being 

cleared for the construction of urban infrastructure. 

 

 

Table 2. Accuracy levels and kappa coefficients of the LULC images   
Year LULC Class PA (%) UA (%) OA (%) Kappa 

2002 

Bare Soil 68.00 94.44 

79.00 0.7144 
Built-Up 66.67 92.31 

Forest 82.76 75.00 

Grassland 92.86 70.27 

2013 

Bare Soil 84.62 84.62 

88.00 0.8326 
Built-Up 94.60 87.50 

Forest 82.14 92.00 

Grassland 86.36 86.36 

2023 

Bare Soil 82.76 82.76 

79.00 0.7129 
Built-Up 78.13 78.13 

Forest 67.86 86.36 

Grassland 99.00 68.75 
PA – Producer’s Accuracy; UA – User’s Accuracy; OA – Overall Accuracy 

 

 

 
Figure 4.  Pattern of changes in LULC features from 2002 to 2023 
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Table 4 represents the rate of change in sizes of LULC 

classes.  Forest cover class from 2002 to 2023 decreased at 

the rate of 2.0 km2/year resulting into an annual 0,02 km2 

loss of forest cover.  However, substantial increase in built-

up area at an annual rate of 4.2 km2, indicating 0.04 km2 of 

land space yearly converted for infrastructural development, 

was observed between 2002 and 2023. In between the study 

periods from 2002 and 2013, a decrease in annual rate of 

change in area of bare soil (-0.021 km2/year) may attest to 

the various factors such as afforestation efforts, reforestation 

projects, or natural regeneration processes (Lambin and 

Meyfroidt, 2011).  However, during the period of 2012-

2023, there was an increase in area for built-up (+0.042 

km2/year) and a decrease in area for forest (-0.020 

km2/year). This assertion appears to support the notion of 

rapid urban expansion that often leads to habitat 

fragmentation, loss of biodiversity, and increased pressure 

on natural resources that underscore continued threat of 

deforestation, driven by factors such as infrastructure 

development, agricultural expansion and human settlement 

(Seto et al., 2012).  The rate of change for built-up between 

2013 and 2023 declined at 3.65 km2 per year, indicating a 

slow-down in urbanization during this period. As reported 

by Foley et al. 2005, stability in land cover dynamics and 

slow-down in urbanisation could be due to prohibitive land 

use policy, harsh economic and environmental conditions.  

As shown in Figure 5, LULC composition of derived 

savanna ecosystem of Ogun State has undergone significant 

changes between 2002 and 2023. The results indicate a 

decline in vegetation cover, with forest and grassland areas 

experiencing significant decrease in area, while urbanization 

has largely increased. The decline in forest cover is 

particularly concerning, as forests play a crucial role in 

regulating the environment, providing habitat for wildlife, 

and mitigating the impacts of climate change. However, the 

rate of forest loss has slowed down during the more recent 

period, but it is still a cause for concern given the projected 

further decline in forest cover. The slowing down of the rate 

of forest loss in the more recent period may offer some 

glimmer of hope, suggesting that conservation efforts or 

policy interventions might be having some impact. 

However, the persistence of forest loss, albeit at a reduced 

rate, remains alarming, especially considering the projected 

further decline. This underscores the need for continued and 

intensified efforts to address the drivers of deforestation, 

such as agricultural expansion, logging, infrastructure 

development, and urbanization (Hansen et al., 2013). 

The significant decrease in grassland areas also raises 

concerns, as grasslands support diverse plant and animal 

species and provide essential ecosystem services, including 

soil stabilization, carbon sequestration, and support for 

livestock grazing. The conversion of grasslands to other 

land uses, such as agriculture or urban development, can 

lead to habitat fragmentation, loss of biodiversity, and 

disruption of ecological processes (Foley et al., 2005).  The 

observed increase in urbanization reflects ongoing global 

trends of rapid urban growth, driven by factors such as 

population growth, rural-to-urban migration, and economic 

development. While urbanization can offer socioeconomic 

opportunities, it also brings about environmental challenges, 

including habitat loss, air and water pollution, increased 

energy consumption, and greenhouse gas emissions. 

Managing urban expansion sustainably is crucial to mitigate 

its adverse environmental impacts while maximizing its 

potential benefits (Seto et al., 2012). 

 

 

Table 3. Sizes of LULC categories  
2002 2013 2023 

 Area(km2) Area (%) Area(km2) Area (%) Area(km2) Area (%) 

Bare soil 0.0402 31.9 0.0196 15.5 0.0376 29.8 

Built-Up 0.0130 10.3 0.0718 57.0 0.0453 35.9 
Forest 0.0398 31.5 0.0205 16.2 0.0170 13.7 

Grassland 0.0330 26.3 0.0141 11.3 0.0261 20.6 

Total 0.1260 100.0 0.1260 100.0 0.1260 100.0 
Source: Fieldwork, 2023 

 

 

Table 4.  Rate of change in sizes or extent of LULC classes 
 2002-2013 2013-2023 2002-2023 

LULC 
Δ in Area 

(km2) 

Rate Δ Area 

(km2/year) 

Δ in Area 

(km2) 

Rate Δ in Area 

(km2/year) 

Δ in Area 

(km2) 

Rate Δ in Area 

(km2/year) 

Bare soil -0.021 -2.069 0.018 1.805 -0.003 -0.264 

Built-Up 0.079 7.876 -0.037 -3.652 0.042 4.224 

Forest -0.018 -1.829 -0.002 -0.218 -0.020 -2.048 

Grassland -0.009 -0.947 0.008 0.779 -0.002 -0.168 
Source: Fieldwork, 2023 
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Figure 5.  Changes in LULC classes from 2002 through 

2013 to 2023 

 

The reported decline in grassland cover over the 

specified periods is indeed significant and warrants attention 

due to the vital ecological functions that grasslands provide. 

Grasslands are diverse ecosystems that support a wide array 

of plant and animal species and play crucial roles in nutrient 

cycling, soil formation, carbon sequestration, and water 

regulation.  Grassland cover decline could have several 

implications for biodiversity conservation, ecosystem 

services, and human well-being. Furthermore, grasslands 

contribute to carbon storage and sequestration, helping to 

mitigate climate change. Their loss may result in increased 

carbon emissions and reduced resilience to climate 

variability (Milchunas and Lauenroth, 1993). 

 

4. Conclusion 

 

Derived savannah ecosystem serves as habitat for 

various plant and animal species. The ecosystem also 

provides essential ecosystem services that help to maintain 

the balance between natural processes and human activities. 

Over the years, increased anthropogenic activities have 

resulted in changes of biodiversity structure and 

composition of derived savannah ecosystem.  Thus, LULC 

features have been significantly altered.  

The study examined the extent and rate of change in 

LULC within the derived savanna ecosystem of Ogun State 

over three decades. Specifically, decline was most 

pronounced in forested and grassland areas, indicating 

substantial ecosystem degradation. The escalation of 

urbanization emerges as the predominant driver behind this 

concerning trend. The discernible increase in built-up areas 

underscores the rapid urban expansion witnessed in Ogun 

State. As urban centers expand, they encroach upon and 

fragment natural habitats, leading to the displacement and 

degradation of native vegetation. 

Loss of vegetation cover diminishes the capacity of 

ecosystems to provide essential services, such as carbon 

sequestration, biodiversity conservation, and regulation of 

hydrological cycles. Furthermore, it exacerbates 

vulnerabilities to environmental hazards such as soil 

erosion, flooding, and heat island effects.  In light of these 

findings, urgent and concerted efforts are imperative to 

address the drivers of vegetation loss and promote 

sustainable land management practices. By way of policy 

intervention through strict regulation of logging activities, 

prompt resolution of land tenure and ownership conflicts 

and provision of incentives for sustainable land management 

would significantly reduce the degradation of forested land 

in the derived savanna zone. Comprehensive strategies that 

encompass land-use planning, conservation initiatives and 

community engagement are essential to mitigate further 

degradation and foster resilience within the derived savanna 

ecosystem of Ogun State.  
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