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Abstract: The rational design process for biomaterials is time-consuming. Machine learning (ML) is an 
efficient approach for reducing material synthesis and experimentation in terms of cost and time. Among the 
emerging biopolymers for tissue engineering applications, methacrylic anhydride (MA)-functionalized gelatin 
(GelMA), which was chosen as the model biomaterial for this study, has assumed a promising role owing to 
its excellent tunable properties and biocompatibility. The ML approach was used to determine the efficiency 
of the MA amounts selected for GelMA synthesis. In addition, the effect of different methacrylation amounts 

on the molecular structure of GelMA was indicated in terms of its physical properties. This modeling was 
performed to generate predictions based on 20 mL of MA. The prediction output was obtained as a result of 
four data models from the 20 mL MA column. First, data were collected with experimental applications for 
swelling and degradation ratios, and then the data processing phase was applied. The most suitable ML 
model, decision tree regression, was selected, and the results were interpreted graphically. The experimental 
results were compared with the ML results, and the efficiency of ML is shown in detail. The Mean Squared 
Error (MSE) value for degradation was calculated as 10.16, with a Root Mean Squared Error (RMSE) of 

3.1885, Mean Absolute Error (MAE) of 2.6667, and Mean Absolute Percentage Error (MAPE) of 14.66%. For 

swelling, the MSE value was calculated to be 1821.25, with an RMSE of 3.1885, MAE of 2.6667, and MAPE of 
14.66%. In future studies, it is anticipated that the performance of the model will improve with the expansion 
of the experimental dataset for swelling measurements. 
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1. INTRODUCTION 

 
A rational design process for biomaterials can be 
time-consuming. The prepared biomaterial needs to 
have the desired functionality while mimicking 
human physiology. Biomaterials are used for 
biomedical applications; therefore, all details are 

important (1,2). In particular, the development of 
biocompatible biomaterials requires rational designs. 
The development of biomaterials using the traditional 
approach involves a long, trial-and-error cycle. It is 
becoming increasingly important to improve this 
process in terms of time and cost (3). The purpose 
of machine learning (ML) in biomaterial production 

and design is to accelerate the process and obtain 
accurate models. 
 

Machine learning emulates human learning. ML is an 

important field of science that operates through the 
development of various algorithms and techniques 
(1). The primary objective of machine learning is to 
derive inferences and obtain predictions from data. 
ML aims to save time in data analysis and 
engineering. The most efficient form of the material 

can be achieved using ML (4). In recent years, the 
field of data science has seen numerous 
advancements in data analysis owing to the 
proliferation of data. Interest in this field has 
increased significantly to save time in concluding 
data as quickly as possible. The basic logic of 
machine learning is to learn the pattern and 

statistical correlation of data (5). The expected 
results and interpretations differ depending on the 
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data type. Applying an incorrect model resulted in 
inaccurate results and poor performance. 
 

One machine-learning algorithm is called supervised 
learning. It teaches a computer to understand the 
relationship between input data, which are the 
variables provided, and output, which is the desired 

result (6). This approach is used in many 
applications, particularly for data collection and 
image processing (7). They can be used in language 
processing, medicine, finance, and many other fields. 
Some supervised learning methods are classified into 
linear regression, decision trees, random forests, and 

artificial neural networks. Another important ML 
algorithm is unsupervised learning, which is used to 
understand a dataset. It describes the pattern of the 
data in the dataset and the correlation between the 
data. Unsupervised learning can be classified into 
data collection, clustering (7,8), dimensionality 

reduction (9,10), and feature engineering. In 

particular, these two ML algorithms are most 
commonly used in the biological and material fields. 
 
The input and output data are important for 
supervised machine learning. The model was divided 
into training and testing sets using the input data. It 
learns with the training dataset and checks it with the 

inputs, which it divides into a test set (11). In 
addition to the importance of the input and output 
information in supervised learning, it is 
recommended for situations where known data are 
available for the output of the data to be predicted. 
Supervised learning uses classification and 

regression techniques (12). In decision trees, a 
dataset can be divided into a smaller training set with 

a feature selected from the training data. The results 
are formed in this way to create branches. At this 
point, the results were divided into questions asked 
at the root nodes of the separation. Branches were 
created as a pure subset of the training dataset. 

Decision tree methods can be classified using 
regression analysis (13,14). It is preferable to 
interpret the dataset in regression according to the 
results of the data in the new clusters created in the 
regression analysis because the dataset is numerical, 
and the results are analyzed according to variable 
parameters. In the present study, the variables were 

the time and degree of methacrylation of the GelMA 
biomaterial. A dataset was created from the results 
of the degradation and swelling measurements based 
on these two variables. The model was applied using 

decision trees, and branching under small clusters 
was examined using regression analysis. In general, 

the aim is to use decision trees with regression 
analysis on the dataset. 
 
Hydrogels are polymer materials that can absorb and 
retain large amounts of water without degrading 
their structure (15). Hydrogels are used in various 
applications, such as tissue engineering and 

environmental engineering. Many physical properties 
of hydrogel biomaterials, such as swelling and 
degradation ratios, can be experimentally 
determined. Gelatin methacryloyl (GelMA), often 
abbreviated as GelMA, is a derivative of gelatin 
containing primarily methacrylamide and minor 
methacrylate groups (2,16,17). Methacrylic groups 

were introduced from methacrylic anhydride (MA) 
onto the active amine and hydroxyl groups of GelMA. 
GelMA is called very high GelMA, high/medium 

GelMA, or low GelMA based on the addition of MA. 
The amount of methacrylamide-functionalization is 
an important parameter that affects the 
polymerization and crosslinking processes of GelMA 

hydrogel structures (16-18). The incorporation of 
methacrylate groups into the amine-containing side 
chains of gelatin enabled photopolymerization, 
resulting in a stable hydrogel that remained intact at 
37 °C. The variation in the degree of methacrylation 
allows precise control over the physical properties of 

GelMA, offering a customizable spectrum of swelling 
characteristics tailored to various applications (18). 
 
Researchers have explored hydrogel stiffness 
through the application of machine-learning 
techniques. It has been established that the stiffness 

of hydrogels is intricately related to their physical 

properties. Altering the reaction conditions induces 
changes in the physical, chemical, and morphological 
attributes of hydrogels (19,20). Researchers have 
mostly investigated the effect of photocrosslinking 
conditions on hydrogel stiffness based on the 
mechanical properties (21). Photocrosslinking 
conditions are directly related to photoinitiators. 

Therefore, researchers have applied artificial 
intelligence (AI) to overcome the limitations 
associated with experimental optimization. For 
instance, a group developed an artificial neural 
network (ANN) model to predict the effects of Eosin 
Y, triethanolamine (TEA), and N-vinyl-2-pyrrolidone 

(NVP) concentrations on stiffness and gelation time 
(22). In a previous study, GelMA hydrogels were 

fabricated with different DS values (49.8%, 63.8%, 
and 73.2%) using 1, 5, and 10 molar ratios of MA, 
respectively. It was observed that the average 
porosity of the dried hydrogels, as determined by 
scanning electron microscopy (SEM), decreased with 

higher substitutions (23,24). Considering these 
approaches, the present study is the first of its kind 
in this context. Investigating the effects of different 
degrees of methacrylation on GelMA biomaterials will 
provide researchers with different perspectives. 
 
Our study focused on the importance of the amount 

of methacrylate in GelMA preparations and its 
physical properties, such as swelling and 
degradation. This is important for the application of 
GelMA hydrogels in tissue engineering applications. 

To date, 8 mL of MA has been experimentally 
investigated for different organs in tissue 

engineering applications of GelMA (2,16-18). We 
aimed to obtain physical property data according to 
varying amounts of methacrylation during the 
synthesis of GelMA using a machine-learning 
approach. The dataset was created by considering 
changes in the parameters as a result of the 
synthesis. This parameter determines the physical 

properties of the hydrogel structure based on the 
swelling and degradation ratios. In this study, there 
were multiple independent variables (features) in the 
dataset because GelMA was synthesized with 
different amounts of methacrylation (4, 8, 12, and 
20 mL MA). Swelling and degradation data were 
experimentally collected for each degree of 
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methacrylation. For four different degrees of 
methacrylation (four distinct variables), 10 data 
points were used in the swelling studies, whereas 

nine data points were used in the degradation 
studies. Experimental results were initially obtained 
using a 20 mL methacrylation degree as a sample. 
Subsequently, the results were presented by 

comparing the experimental data with machine 
learning data for the 20 mL methacrylation degree. 
 
Decision tree regression was chosen as the 
method. This model is based on the principle of 
continuously partitioning data fields and creating a 

prediction model for each partition. This partitioning 
creates decision trees graphically. The decision tree 
machine learning method was employed to perform 
a regression analysis on two distinct datasets and 
establish more specific relationships between the 
data. Decision tree regression analysis allows the 

dataset to be interpreted in smaller groups using 

branches. Another reason for choosing decision-tree 
methods is their inherent simplicity and ease of 
understanding. 
 
2. EXPERIMENTAL SECTION 
 
2.1. Materials and Instruments 

Type A porcine gelatin (300 g Bloom), methacrylic 
anhydride (MA purity >94%), triethanolamine (TEA 
purity >99%), N-vinyl caprolactam (VC purity 
>98%), Eosin Y disodium salt, cellulose dialysis 
membranes (12–14 kDa molecular weight cutoff), 
and phosphate-buffered saline (PBS) tablets were 

purchased from Sigma-Aldrich. Dulbecco’s 
phosphate-buffered saline (DPBS) was purchased 

from Gibco (Life Technologies). Attenuated total 
reflectance-Fourier transform infrared (ATR-FTIR) 
spectra of all studied samples were recorded 
between 4000 and 500 cm-1 using a Jasco FT/IR 6700 
spectrophotometer. A JEOL ECZ500R (11.75 Tesla) 

spectrometer and high-performance Ultrashield TM 
500 MHz superconducting magnet were used for NMR 
analysis. Scanning electron microscopy (SEM) 
micrographs were acquired at different 
magnifications using an SEM (JEOL JSM 5600). 
 
2.2. GelMA Synthesis and Characterization 

Gelatin was methacrylated based on previous 
literature (16,17). Different amounts of MA (4, 8, 12, 
and 20 mL) were used to prepare GelMA 
biomaterials. Briefly, 10 g of gelatin was dissolved in 

DPBS at 50 °C under constant stirring. After the 
gelatin was completely dissolved, MA was added 

dropwise to the gelatin solution. The reaction was 
allowed to continue for 2 h. Subsequently, a cellulose 
dialysis membrane was used to remove unreacted 
chemicals from the GelMA solution. After dialysis, the 
solution was placed in a glass container, frozen, and 
freeze-dried using a TeknoSEM brand lyophilizer 
device. ATR-FTIR spectroscopy and 1H-NMR 

characterization were used to identify pristine gelatin 
and the prepared GelMA materials. 
 
2.3. Hydrogel Preparation and Characterization 
Hydrogels were prepared using a visible-light 
photoinitiator system. Visible light crosslinker 
solutions (PIs) were prepared using Eosin Y disodium 

salt (0.5 mM), VC (1.25 w/v%), and TEA (1.875 
w/v%) (2,16). To determine the physical properties, 
10% w/v GelMA was dissolved in a PI solution to 

prepare the hydrogels. A small LED light source 
(VALO Light Curing Device, Ultradent, USA) was used 
to crosslink hydrogels. Visible light was applied for 
120 s to the GelMA solutions, which were then placed 

in a polydimethylsiloxane (PDMS) mold (diameter:9 
mm and depth: 7 mm) to fabricate crosslinked 
hydrogel discs of the same size. The resulting GelMA 
hydrogel discs were frozen overnight and dried using 
a lyophilizer. Dry hydrogel discs were then used to 
determine the physical properties of GelMA. 

 
2.4. Morphological Characterization 
The SEM surface morphologies of the methacrylate-
modified samples and hydrogels after crosslinking 
were examined using scanning electron microscopy. 
The samples and scaffolds were placed on a double-

sided graphite tape, attached to a metal surface, and 

sputter-coated with gold for 10 s. 
 
2.5. Physical Properties of GelMA Hydrogels 
After preparing the hydrogel discs via visible-light 
crosslinking, the physical properties of the GelMA 
hydrogels were characterized based on their swelling 
and degradation ratios. The physical properties of 

GelMA were obtained by adding 4, 8, 12, and 20 mL 
of methacrylic anhydride in four different GelMA 
syntheses, which were tested using appropriate 
methods. The obtained data were used to create the 
dataset. 
 

2.5.1. Swelling Ratio 
The swelling capacity of the prepared GelMA 

hydrogels was evaluated in DPBS at 37 °C following 
previously reported procedures (2). The hydrogel 
discs were prepared using a freeze-drying method. 
Dry hydrogel discs were weighed and recorded to 
obtain their initial dry weight (Wi). Then, all weighed 

hydrogel samples were soaked in DPBS and placed in 
an incubator. They were then weighed after 
removing excess water at specific time points to 
determine the wet weight at each interval (Ws). The 
time intervals were set to 1 h, 3 h, 5 h, 7 h, 24 h, 
168 h, and 336 h. The swelling ratios were calculated 
using the ratio of the increase in mass to the mass of 

the swollen samples. A minimum of six samples were 
tested for each case. 
 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 (%)  =  (𝑊𝑠  − 𝑊𝑖)/𝑊𝑖 ∗ 100   (1) 

 
Wi = initial weight before swelling. 
Ws = swollen weight of the materials. 

 
2.5.2. Degradation Ratio 
The in vitro degradation behavior of the scaffolds was 
analyzed using collagenase type II solution at 37 °C 
(2). The freeze-dried hydrogel discs were weighed to 
determine their initial weights. The dried samples 
were then immersed in collagenase II solution. 

Samples were removed from the solution at 
checkpoints of 1 h, 3 h, 5 h, 7 h, 24 h, and 168 h of 
incubation. The hydrogel discs were then frozen and 
lyophilized. The dry weights were recorded at each 
time point. The degradation ratios of the hydrogel 
discs were calculated using the following equation: 
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𝐿𝑜𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (%)  =  (𝑊𝑖 − 𝑊𝑑)/𝑊𝑖  ×  100  (2) 

 
Wi = initial dry weight before degradation, and Wd = 

final dry weight after the operation. 
 
2.6. Machine Learning (ML) Study 
Visual Studio Code is a stand-alone source code 

editor compatible with Windows, macOS, and Linux 
operating systems. It is freely accessible and 
provides seamless internet connectivity. For our 
study, we utilized the Conda virtual environment, 
which is both free and easily integrated with the 
Visual Studio Code editor alongside the Python 
programming language. The Decision Tree 

Regression model was employed to demonstrate 
data prediction within the supervised learning 
domain of machine learning. Through data pre-
processing, the dataset was rendered suitable and 
subsequently partitioned into training and testing 

subsets. Prior to the model implementation, 
normalization was applied to standardize the data, 

followed by the application of the model to the data 
frame. Hyperparameter tuning was conducted to 
optimize the model fit and enhance performance. 
Mean square error (MSE) values were computed to 
evaluate error performance. Finally, the predicted 
data were compared with the actual data displayed 

on the screen, and the results were analyzed. 
 

3. RESULTS AND DISCUSSION 
 
The bands based on methacrylation of the GelMA 

structures were used for characterization, as shown 
in Figure 1. FTIR spectra were used to identify the 
chemical composition of the fabricated samples. To 
conduct this analysis, pristine gelatin and GelMA 

were directly used. They were exposed to infrared 
waves in the range 4000–400 cm−1 using a Jasco 
FT/IR-6700 spectrometer. The band at 1210 cm−1 
was assigned to the secondary (amide) group, v(C-
N), in the spectra of Gelatin and GelMA. The spectra 
of GelMA with different methacrylated ratios showed 

peak shifts. For GelMA containing 8 mL MA, a shift in 
the C-N band occurred. The bands at 1640 cm−1 and 
1540 cm−1 correspond to C=0 and N-H bending, 
respectively. While there is C=O stretching (amide I) 
in the gelatin structure, C=C groups are formed in 
the GelMA structure owing to the methacrylated 

anhydride (25,26). The peaks of both groups were 

very close to each other. The -NH2 groups in the 
gelatin structure exist as -NH groups in GelMA after 
methacrylation. The broad amide A band observed at 
approximately 3300 cm-1 as a characteristic medium 
absorption peak can be attributed to the stretching 
vibrations of O–H and N–H. The -NH2 bands in the 
gelatin structure are shadowed by the -OH band. A 

widespread peak was observed (2,26). 

 

 
Figure 1: The ATR-FTIR spectra of pristine Gelatin and GelMA samples. 



Çakıcı S and Tutar R. JOTCSA. 2024; 11(3): 1275-1286 RESEARCH ARTICLE 

1279 

In 1H-NMR spectra of pristine gelatin and four 
different methacrylated GelMA samples are shown in 
Figure 2. Deuterium oxide (D2O) was used to prepare 

solutions for the measurements at room 
temperature. Because of the methacrylation 
reaction, two main peaks (belonging to the 
magnetically different protons at vinyl groups, 

CH2=C) were observed at 5.4-5.6 ppm in the GelMA 

spectrum (2,27). This indicated that the methacrylic 
group was successfully connected to the gelatin. 
GelMA hydrogels were fabricated with different 

degrees of methacrylation (DM), which were 
calculated based on Equation 3 (14.3%, 28.6%, 
71.4%, and 86%) by employing 4, 8, 12, and 20 mL 
of MA, respectively (16,27). 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑚𝑒𝑡ℎ𝑎𝑐𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 (𝐷𝑀) % =  
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 𝑜𝑓 𝐺𝑒𝑙𝑀𝐴 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑡 2.9 𝑝𝑝𝑚

𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 𝑜𝑓 𝐺𝑒𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑡 2.9 𝑝𝑝𝑚
∗ 100                         (3) 

 

 
Figure 2: 1H-NMR Analysis of pristine Gelatin and GelMA samples. 

 
The morphological characterization, distribution, and 

variations in the porosities of the four hydrogels and 
samples are shown in Figure 3. 
 

 
Figure 3: The SEM images of different amounts of methacrylated modified gelatin hydrogels (GelMA) (A-4 

mL, B-8 mL, C-12 mL, D-20 mL) and samples (Gelatin, A-4 mL, B-8 mL, C-12 mL, D-20 mL). 
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The microstructure and porosity of the synthesized 
GelMA hydrogels and samples at four different MA 
concentrations (4 mL, 8 mL, 12 mL, and 20 mL) were 

investigated using SEM, as shown in Figure 3. The 
porosity of GelMA hydrogels is inversely correlated 
with GelMA concentration and cooling rate (23), and 
the hydrogel porosity can be controlled by adjusting 

the substitution amount of MA (24,28). According to 
the images in Figure 3, an increase in DM% does not 
result in any increase in porosity and uniformity. 
 
The data collection is also explained in detail. Two 
datasets are obtained. Data were obtained at 

different methacrylation degrees and at different 

times for the physical properties, which were 
separated by the swelling and degradation ratios of 
the GelMA biomaterials. For each specific time point, 

the average of six measurements was obtained and 
processed as one data point. 
 
First, data processing was applied to model the 

degradation properties of the GelMA hydrogels. A 
panda library was imported to create a data frame 
(Figure 4). Subsequently, the degradation results 
were entered according to the time of the experiment 
and transferred to Python. Data processing was 
started to load the data into the Python environment. 

 

 
Figure 4: Train test data split. 

 
The dataset was divided into variable data and 
columns to be predicted. Independent variables and 
allocated columns were divided into test and training 

data. 
 
Actual and Predicted values are indicated. The data 
obtained from the application of the machine learning 
model are compared with the real values in Figure 5. 
 
The graph for the degradation properties of the 

GelMA hydrogels was written in Python and was the 
result of the machine learning model. This helped us 
interpret the results of the model. Residuals were 
defined as the difference between observed and 
predicted values. A symmetric bell-shaped 
histogram, which was evenly distributed around 

zero, indicates that the normality assumption was 
likely to be true. Positive values on the y-axis 
indicate that the estimates were too low. Negative 
values indicated that the estimate was too high. A 
value of zero indicated that the prediction was 
correct. 
 

The data obtained from the laboratory are presented 
in a table according to hours in Figure 5 (A). These 
values are written in Python. All Python codes used 

in this study are provided in detail in the 
Supplementary Information (EIS). 
 
import pandas as pd 

data = { 
    'Hour': [1, 2, 3, 4, 5, 6, 7, 24, 168], 
    '4ml': [19, 23, 22, 20, 19, 25, 20, 20, 23], 
    '8ml': [23, 24, 24, 19, 26, 23, 23, 22, 23], 
    '12ml': [20, 22, 20, 20, 16, 24, 22, 20, 22], 
    '20ml': [15, 21, 17, 19, 15, 20, 22, 18, 15] 

} 
df = pd.DataFrame(data) 
 
The train_test_split operation was used to split the 
data from the scikit-learn (sklearn) library. By 

assigning “x” and “y” variables, train and test sets 
were separated for each variable. Our “X” variable 
must be an independent variables. Our “y” variable 

was the set of variables from which wanted to obtain 
results and from which predictions to be used in 
machine learning were created. When the dependent 
variable was separated from the independent 
variables while separating the data, it was called the 
"y" column because the prediction was made on 
target 20 (mL) data. 

 
X_train: This was part of the learning of the values 
predicted by the model. This was used to understand 
the relationship between the data during the learning 
process of the model. 
 

X_test: This allows data trained with independent 
variables to be tested to evaluate the performance of 
the model. 
 
Y_train was used to measure the performance of the 
model. In the x_train section, the learned 
relationship was compared with y_train, and the 

success of the model was determined. 
 
Y_test: Used together with "X_test" data to measure 

how well the model works and the success of its 
predictions. The model's success was calculated by 
comparing its predictions with "y_test" data (such as 
the mean square error (MSE)). 

 
Test _size=0.4 means 60% train and 40% reserved 
for test. 
 
When Random_state is not defined in the code for 
each run, the results may vary. When the 

random_state = "constant integer" was entered, the 
training data were constant for each run. 
 
from sklearn.model_selection import train_test_split 
X = df.drop(['Hour', '20ml'], axis=1) 
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y = df['20ml'] 
X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.4, random_state=42) 

 
Scaling was used to scale the features in the dataset 
and to improve the performance of the model. The 
main purpose was to transfer data to a specific 

range, such as between 0 and 1 or between -1 and 1 
(29). 
 
from sklearn.pre-processing import MinMaxScaler 
scaler = MinMaxScaler() 
X_normalized = scaler.fit_transform(X) 

X_normalized = pd.DataFrame(X_normalized, 
columns= X columns). 
 
In decision tree modeling, specifically the chosen 
empirical tree model, data are partitioned using a 
repeated division method (30). A regression model 

was selected because of its ability to explore the 

relationships between the dependent variable and a 
series of independent variables. The code sequence 
used to implement the model is outlined below: 
 
from sklearn.tree import DecisionTreeRegressor 
model = DecisionTreeRegressor() 
 

One of the factors that enhanced the model's 
performance was the hyperparameter setting (1). A 
key reason for using this method is its efficiency in 
handling large numbers of hyperparameters, 
particularly in complex datasets, thereby reducing 
time loss. Hyperparameter tuning has been 

employed in tree-based machine learning models 
and deep neural network modeling. The grid search 
method, a common approach in hyperparameter 

tuning, involves creating hyperparameter values on 
a preset grid and then using and validating the model 
for each combination. Consequently, combinations of 
hyperparameters that yielded the highest model 

performance were identified (31). This process was 
automated using Scikit-learn's GridSearchCV, which 
facilitated selection and implementation of the best 
model. 
 
from sklearn.model_selection import GridSearchCV 

param_grid = {'max_depth': [None, 5, 10, 15, 20, 
25], 
'min_samples_split': [2, 5, 10], 
'min_samples_leaf': [1, 2, 4]} 
grid_search = GridSearchCV(model, param_grid, 
cv=5, scoring='neg_mean_squared_error') 

grid_search.fit(X_train_normalized, y_train) 

best_model = grid_search.best_estimator_ 
 
Values were printed on the screen in this way to 
observe the actual and estimated values at 20 mL 
according to the hours in: 
Output: 
Hours: 24, Actual 20ml: 18, Predicted 20ml: 

18.666666666666668 
Hours: 2, Actual 20ml: 21, Predicted 20ml: 16.0 
Hours: 6, Actual 20ml: 20, Predicted 20ml: 
18.666666666666668 
Hours: 1, Actual 20ml: 15, Predicted 20ml: 
18.666666666666668 

 

 
Figure 5: Degradation data (A) and ratios (%) (B) were obtained according to time. Actual and Predicted 

Values (C). QQ Plot of Residuals (D). 

 
A Q-Q Plot of residuals was used to assess whether 
the residuals were normally distributed. Ideally, 
these points should be close to the line. In the QQ 
Plot of Residuals, the percentiles of the theoretical 
normal distribution are on the x-axis, and the 

percentiles of the model's errors are on the y-axis. 
The histogram (Figure 5 (D)) shows the spread and 
evaluation of its success. 
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Second, data processing was applied to model the 
swelling properties of the GelMA hydrogels. The 
results of the swelling physical measurements were 

modeled by making inferences from the machine 
learning performed in the degradation physical 
measurement. Physical measurement of swelling 
was based on the results of the two methacrylation 

degrees and hours. 
 
Actual and Predicted values are indicated. After 
machine learning modeling was performed to 
observe the results, the y_test set was estimated. 
The results were compared with real values, as 

shown in Figure 6. 
 
Data Pre-processing began by importing the pandas 
library. The data obtained from the experiment were 
written in the form of a data frame according to the 
given time (Figure 6 (A)). 

 

import pandas as pd 
data = { 
    'Hour': [1, 2, 3, 4, 5, 6, 7, 24, 168, 336], 

    '4ml': [225, 230, 234, 319, 250, 288, 274, 242, 
276, 274], 
    '8ml': [199, 219, 229, 253, 202, 243, 193, 224, 

228, 238], 
    '12ml': [199, 190, 227, 180, 220, 182, 202, 279, 
299, 325], 
    '20ml': [255, 304, 293, 307, 261, 381, 276, 208, 

250, 225] 
} 
df = pd.DataFrame(data) 
 
After applying the model, the results were printed on 
the screen to compare the predicted values for 20 mL 

with the actual values according to the given hours. 
In addition, these values are listed in the table for 
comparison and observation. 
 
Output: Actual vs Predicted 20 mL Values: 
Hours: 168, Actual 20ml: 250, Predicted 20ml: 208.0 

Hours: 2, Actual 20ml: 304, Predicted 20ml: 307.0 

Hours: 6, Actual 20ml: 381, Predicted 20ml: 307.0 
Hours: 1, Actual 20ml: 255, Predicted 20ml: 261.0 

 

 
Figure 6: Swelling data (A) and ratios (%) (B) were obtained according to time. Actual and Predicted 

Values (C). QQ Plot of Residuals (D). 
 
While designing this study, we asked the following 
questions. 

• How does the variation in methacrylation 
amount during GelMA synthesis affect the physical 
changes in the GelMA molecule structure? 
• Can hydrogel-based materials be designed 
using machine learning? 
• Can a machine learning algorithm be created 
by creating a GelMA synthesis dataset? 

 
We hypothesized that increasing and/or decreasing 
the amount of methacrylamide in the GelMA hydrogel 
would alter the physical properties of the prepared 
hydrogel. A model developed using machine learning 

methods can predict the physical properties of a 
hydrogel by taking the amount of methacrylic 

anhydride in the GelMA hydrogel as input. 
 
In this study, multiple independent variables 
(features) were obtained from different degrees of 
methacrylation in the dataset. Different datasets for 
the physical properties, swelling, and degradation 
were created and evaluated using different models. 

When many machine learning models were 
compared for degradation measurements, their 
performance was determined using the Mean 
Squared Error (MSE) (32). All details are included in 
the Supplementary Information (ESI). The MSE is the 
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difference between the actual and predicted values, 
and the square of the errors is calculated; thus, the 
performance of the regression model is calculated. 

Many methods can be used to measure model 
performance; examples of these methods include 
Mean Square Error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), and Mean 

Absolute Percentage Error (MAPE). In this study, the 
calculations were performed using the MSE value. 
MSE is the mean of the squares of the errors, that is, 
the difference between the actual and predicted 
values (4). It is expected that the resulting amount 
of data will not be very high. It is understood that 

performance is good when the result is close to zero. 
For the RMSE and MAPE performance results, z' was 
the predicted value. z is the measured value, and N 
is the total number of observations. The lowest RMSE 
value indicated the highest performance (33,34). For 
the MAPE calculation, the performance result is 

obtained as a percentage, and a low percentage is a 

measure of good performance (35,36). MAE 
properties are commonly referred to as absolute 
errors (5). 
 
When the data structure was observed, there were 
four different variables, and each variable had nine 
data points for the degradation results. In addition, 

there were four different variables, and each variable 
had 10 data points for the swelling results. The most 
suitable model for this dataset is the decision tree 
regressor (31,37). This modeling was performed to 
create predictions of 20 mL. The prediction output 
was obtained as a result of four data modeling from 

column 20 mL. After the modeling was applied, the 
MSE values were checked to evaluate the 

performance. 
 
It should be noted that this dataset was small. The 
present research aims to demonstrate how the 
applications aimed in this study can be carried out. 

As this was a small dataset, it was anticipated that 
the margin of error would be high. This study aimed 
to demonstrate the applicability of modeling and 
obtain prediction results. 
 
Scaling and hyperparameter adjustments were 
performed in Python to minimize the errors made by 

the model and avoid overfitting. The MSE, RMSE, 
MAE, and MAPE were evaluated based on a 
hyperparameter application to test the performance 
of the model. 

 
4. CONCLUSION 

 
This study aimed to measure the physical properties 
according to different degrees of methacrylation, 
create a dataset with the results, and interpret them 
by modeling them using machine learning. Swelling 
and degradation data were experimentally collected 
for each degree of methacrylation. For four different 

degrees of methacrylation (four distinct variables), 
10 data points were used in the swelling studies, 
whereas nine data points were used in the 
degradation studies. Experimental results were 
initially obtained using a 20 mL methacrylation 
degree as a sample. Subsequently, the results were 
presented by comparing the experimental data with 

machine learning data for the 20 mL methacrylation 
degree. After determining the predicted values, a 
decision tree regressor was applied, which was 

selected as the appropriate model. Performance 
metrics were calculated to assess the accuracy of the 
results. To visualize the model's outcomes, the 
predicted values were observed, and graphs were 

generated. Following data processing and 
partitioning, a machine-learning model was applied. 
The performance metrics were computed after the 
implementation of the model. To visually interpret 
the results, a graph displaying the actual versus the 
predicted values was generated. Numerically, 

predicted and actual values were documented in 
code, facilitating result analysis. 
 
As a result, the degradation and swelling physical 
properties of the GelMA biomaterial for different 
degrees of methacrylation were experimentally 

studied, and data were obtained. The obtained data 

were compared with experimental results using 
machine learning and decision tree regression for a 
20 mL methacrylation degree. The Mean Squared 
Error (MSE) value for degradation was calculated as 
10.16, with a Root Mean Squared Error (RMSE) of 
3.1885, Mean Absolute Error (MAE) of 2.6667, and 
Mean Absolute Percentage Error (MAPE) of 14.66%. 

For swelling, the MSE value was calculated to be 
1821.25, with an RMSE of 3.1885, MAE of 2.6667, 
and MAPE of 14.66%. In future studies, it is 
anticipated that the performance of the model will 
improve with the expansion of the experimental 
dataset for swelling measurements. When the results 

were compared, it was determined that the accuracy 
of the study increased as the experimental dataset 

increased. As the number of data points increases, 
the resulting performance increases. In addition, it is 
important to avoid overfitting in machine learning, 
that is, the situation in which machine learning 
imitates the data exactly. 

 
5. CONFLICT OF INTEREST 
 
The authors declare that they have no affiliations 
with or involvement in any organization or entity with 
any financial interest in the subject matter or 
materials discussed in this manuscript. 

 
6. ACKNOWLEDGMENTS 
 
The TUBITAK 2209-A University Student Research 

Project Support Program supported this study. 
Project number: 1919B012307651. 

 
7. DATA ACCESS STATEMENT 
 
Research data supporting this publication are 
available from the Visual Studio Code, Python, and 
Conda repositories located at 
https://code.visualstudio.com/download. 

 
8. REFERENCES 
 
1. Meyer TA, Ramirez C, Tamasi MJ, Gormley AJ. A 
user’s guide to machine learning for polymeric 
biomaterials. ACS Polym Au [Internet]. 2023 Apr 
12;3(2):141–57. Available from: <URL>. 

https://pubs.acs.org/doi/10.1021/acspolymersau.2c00037


Çakıcı S and Tutar R. JOTCSA. 2024; 11(3): 1275-1286 RESEARCH ARTICLE 

1284 

2. Tutar R, Koken SY, Tuncaboylu DC, Çelebi-Saltik 
B, Özeroğlu C. In situ formation of biocompatible and 
ductile protein-based hydrogels via Michael addition 

reaction and visible light crosslinking. New J Chem 
[Internet]. 2023;47(22):10759–69. Available from: 
<URL>. 

3. Basu B, Gowtham NH, Xiao Y, Kalidindi SR, Leong 

KW. Biomaterialomics: Data science-driven 
pathways to develop fourth-generation biomaterials. 
Acta Biomater [Internet]. 2022 Apr;143:1–25. 
Available from: <URL>. 

4. Greener JG, Kandathil SM, Moffat L, Jones DT. A 
guide to machine learning for biologists. Nat Rev Mol 

Cell Biol [Internet]. 2022 Jan 13;23(1):40–55. 
Available from: <URL>. 

5. Inza I, Calvo B, Armañanzas R, Bengoetxea E, 

Larrañaga P, Lozano JA. Machine learning: An 
indispensable tool in bioinformatics. In 2010. p. 25–
48. Available from: <URL>. 

6. Peng GCY, Alber M, Buganza Tepole A, Cannon 

WR, De S, Dura-Bernal S, et al. Multiscale modeling 
meets machine learning: What can we learn? Arch 
Comput Methods Eng [Internet]. 2021 May 
17;28(3):1017–37. Available from: <URL>. 

7. Castelli V, Cover TM. On the exponential value of 
labeled samples. Pattern Recognit Lett [Internet]. 
1995 Jan 1;16(1):105–11. Available from: <URL>. 

8. Reddy YCAP, Viswanath P, Reddy BE. Semi-
supervised learning: a brief review. Int J Eng 
&Technology [Internet]. 2018;7(1):81–5. Available 

from: <URL>. 

9. Li Y. Deep Reinforcement Learning: An Overview 
[Internet]. 2017. 85 p. Available from: <URL>. 

10. Ayodele TO. Types of Machine Learning 
Algorithms. In: New Advances in Machine Learning 
[Internet]. InTech; 2010. Available from: <URL>. 

11. Mahesh B. Machine learning algorithms - A 
review. Int J Sci Res [Internet]. 2020 Jan 
5;9(1):381–6. Available from: <URL>. 

12. Aery MK, Ram C. A review on machine learning: 

Trends and future prospects. An Int J Eng Sci 
[Internet]. 2017;25:89–96. Available from: <URL>. 

13. Pathak S, Mishra I, Swetapadma A. An 
assessment of decision tree based classification and 
regression algorithms. In: Proceedings of the 
International Conference on Inventive Computation 
Technologies (ICICT-2018) [Internet]. 2018. p. 92–

5. Available from: <URL>. 

14. Myles AJ, Feudale RN, Liu Y, Woody NA, Brown 
SD. An introduction to decision tree modeling. J 
Chemom [Internet]. 2004 Jun 4;18(6):275–85. 
Available from: <URL>. 

15. Süren SM, Tutar R, Özeroğlu C, Karakuş S. 

Versatile multi-network hydrogel of acrylamide, 
sodium vinyl sulfonate, and N,N′-methylene 
bisacrylamide: A sustainable solution for 

paracetamol removal and swelling behavior. J Polym 
Environ [Internet]. 2024 Jan 20;32(1):164–81. 
Available from: <URL>. 

16. Tavafoghi M, Sheikhi A, Tutar R, Jahangiry J, 
Baidya A, Haghniaz R, et al. Engineering tough, 
injectable, naturally derived, bioadhesive composite 
hydrogels. Adv Healthc Mater [Internet]. 2020 May 

24;9(10):1901722. Available from: <URL>. 

17. Van Den Bulcke AI, Bogdanov B, De Rooze N, 
Schacht EH, Cornelissen M, Berghmans H. Structural 
and rheological properties of methacrylamide 
modified gelatin hydrogels. Biomacromolecules 
[Internet]. 2000 Mar 14;1(1):31–8. Available from: 

<URL>. 

18. Nichol JW, Koshy ST, Bae H, Hwang CM, 
Yamanlar S, Khademhosseini A. Cell-laden 

microengineered gelatin methacrylate hydrogels. 
Biomaterials [Internet]. 2010 Jul;31(21):5536–44. 
Available from: <URL>. 

19. He J, Sun Y, Gao Q, He C, Yao K, Wang T, et al. 

Gelatin methacryloyl hydrogel, from standardization, 
performance, to biomedical application. Adv Healthc 
Mater [Internet]. 2023 Sep 15;12(23):2300395. 
Available from: <URL>. 

20. Noshadi I, Hong S, Sullivan KE, Shirzaei Sani E, 
Portillo-Lara R, Tamayol A, et al. In vitro and in vivo 
analysis of visible light crosslinkable gelatin 

methacryloyl (GelMA) hydrogels. Biomater Sci 
[Internet]. 2017;5(10):2093–105. Available from: 
<URL>. 

21. O’Connell CD, Zhang B, Onofrillo C, Duchi S, 
Blanchard R, Quigley A, et al. Tailoring the 
mechanical properties of gelatin methacryloyl 

hydrogels through manipulation of the 
photocrosslinking conditions. Soft Matter [Internet]. 
2018;14(11):2142–51. Available from: <URL>. 

22. Karaoglu IC, Kebabci AO, Kizilel S. Optimization 
of gelatin methacryloyl hydrogel properties through 
an artificial neural network model. ACS Appl Mater 
Interfaces [Internet]. 2023 Sep 27;15(38):44796–

808. Available from: <URL>. 

23. Van Vlierberghe S, Dubruel P, Schacht E. Effect 
of cryogenic treatment on the rheological properties 
of gelatin hydrogels. J Bioact Compat Polym 
[Internet]. 2010 Sep 4;25(5):498–512. Available 

from: <URL>. 

24. Chen Y, Lin R, Qi H, Yang Y, Bae H, Melero‐Martin 

JM, et al. Functional human vascular network 
generated in photocrosslinkable gelatin methacrylate 
hydrogels. Adv Funct Mater [Internet]. 2012 May 
23;22(10):2027–39. Available from: <URL>. 

25. Tutar R, Yüce-Erarslan E, İzbudak B, Bal-Öztürk 
A. Photocurable silk fibroin-based tissue sealants 
with enhanced adhesive properties for the treatment 

of corneal perforations. J Mater Chem B [Internet]. 
2022;10(15):2912–25. Available from: <URL>. 

26. Rahali K, Ben Messaoud G, Kahn C, Sanchez-
Gonzalez L, Kaci M, Cleymand F, et al. Synthesis and 

https://xlink.rsc.org/?DOI=D3NJ01230A
https://linkinghub.elsevier.com/retrieve/pii/S1742706122001039
https://www.nature.com/articles/s41580-021-00407-0
http://link.springer.com/10.1007/978-1-60327-194-3_2
https://link.springer.com/10.1007/s11831-020-09405-5
https://linkinghub.elsevier.com/retrieve/pii/016786559400074D
http://www.sciencepubco.com/index.php/IJET
http://arxiv.org/abs/1701.07274
https://books.google.com.tr/books?hl=tr&lr=&id=XAqhDwAAQBAJ&oi=fnd&pg=PA19&dq=10.%09Ayodele+T.O.+Types+of+Machine+Learning+Algorithms.+New+advances+in+machine+learning+2010%3B3:19-48.+DOI:+10.5772/9385&ots=r3HjaTxdOt&sig=UvyePK-PVBOzW2ZjsjkeqQGFVIo&redir_esc=y#v=onepage&q&f=false
https://www.ijsr.net/archive/v9i1/ART20203995.pdf
http://ijoes.vidyapublications.com/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9034296
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.873
https://link.springer.com/10.1007/s10924-023-02988-7
https://onlinelibrary.wiley.com/doi/10.1002/adhm.201901722
https://pubs.acs.org/doi/10.1021/bm990017d
https://linkinghub.elsevier.com/retrieve/pii/S0142961210004485
https://onlinelibrary.wiley.com/doi/10.1002/adhm.202300395
https://xlink.rsc.org/?DOI=C7BM00110J
https://xlink.rsc.org/?DOI=C7SM02187A
https://pubs.acs.org/doi/10.1021/acsami.3c12207
http://journals.sagepub.com/doi/10.1177/0883911510377254
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201101662
https://xlink.rsc.org/?DOI=D1TB02502C


Çakıcı S and Tutar R. JOTCSA. 2024; 11(3): 1275-1286 RESEARCH ARTICLE 

1285 

characterization of nanofunctionalized gelatin 
methacrylate hydrogels. Int J Mol Sci [Internet]. 
2017 Dec 10;18(12):2675. Available from: <URL>. 

27. Claaßen C, Claaßen MH, Truffault V, Sewald L, 
Tovar GEM, Borchers K, et al. Quantification of 
substitution of gelatin methacryloyl: Best practice 
and current pitfalls. Biomacromolecules [Internet]. 

2018 Jan 8;19(1):42–52. Available from: <URL>. 

28. Lee Y, Lee JM, Bae P, Chung IY, Chung BH, Chung 
BG. Photo‐crosslinkable hydrogel‐based 3D 

microfluidic culture device. Electrophoresis 
[Internet]. 2015 Apr 24;36(7–8):994–1001. 
Available from: <URL>. 

29. Jamal P, Ali M, Faraj RH, Ali PJM, Faraj RH. Data 

normalization and standardization: A technical 
report. Mach Learn Tech Reports [Internet]. 

2014;1(1):1–6. Available from: <URL>. 

30. Tso GKF, Yau KKW. Predicting electricity energy 
consumption: A comparison of regression analysis, 
decision tree and neural networks. Energy [Internet]. 
2007 Sep;32(9):1761–8. Available from: <URL>. 

31. Yang L, Shami A. On hyperparameter 
optimization of machine learning algorithms: Theory 
and practice. Neurocomputing [Internet]. 2020 
Nov;415:295–316. Available from: <URL>. 

32. Hodson TO. Root-mean-square error (RMSE) or 
mean absolute error (MAE): when to use them or not. 

Geosci Model Dev [Internet]. 2022 Jul 
19;15(14):5481–7. Available from: <URL>. 

33. Polat K, Güneş S. Automatic determination of 
diseases related to lymph system from 
lymphography data using principles component 
analysis (PCA), fuzzy weighting pre-processing and 
ANFIS. Expert Syst Appl [Internet]. 2007 

Oct;33(3):636–41. Available from: <URL>. 

34. İnal M. Determination of dielectric properties of 
insulator materials by means of ANFIS: A 
comparative study. J Mater Process Technol 
[Internet]. 2008 Jan;195(1–3):34–43. Available 
from: <URL>. 

35. Amid S, Mesri Gundoshmian T. Prediction of 
output energies for broiler production using linear 
regression, ANN (MLP, RBF), and ANFIS models. 

Environ Prog Sustain Energy [Internet]. 2017 Mar 
7;36(2):577–85. Available from: <URL>. 

36. Willmott CJ, Matsuura K. Advantages of the mean 
absolute error (MAE) over the root mean square error 

(RMSE) in assessing average model performance. 
Clim Res [Internet]. 2005 Dec 19;30(1):79–82. 
Available from: <URL>. 

37. Loh W. Classification and regression trees. WIREs 
Data Min Knowl Discov [Internet]. 2011 Jan 
6;1(1):14–23. Available from: <URL>. 

 
  

https://www.mdpi.com/1422-0067/18/12/2675
https://pubs.acs.org/doi/10.1021/acs.biomac.7b01221
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/elps.201400465
https://docs.google.com/document/d/1x0A1nUz1WWtMCZb5oVzF0SVMY7a_58KQulqQVT8LaVA/edit
https://linkinghub.elsevier.com/retrieve/pii/S0360544206003288
https://linkinghub.elsevier.com/retrieve/pii/S0925231220311693
https://gmd.copernicus.org/articles/15/5481/2022/
https://linkinghub.elsevier.com/retrieve/pii/S0957417406001898
https://linkinghub.elsevier.com/retrieve/pii/S0924013607004657
https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.12448
https://www.int-res.com/abstracts/cr/v30/n1/p79-82/
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.8


Çakıcı S and Tutar R. JOTCSA. 2024; 11(3): 1275-1286 RESEARCH ARTICLE 

1286 

 


