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Abstract: The aim of the study is to examine the effect of polytomous item ratio 

on ability estimation in different conditions in multistage tests (MST) using mixed 

tests. The study is simulation-based research. In the PISA 2018 application, the 

ability parameters of the individuals and the item pool were created by using the 

item parameters estimated from the dichotomous and polytomous items obtained 

in the field of reading skills. MST conditions; panel design, test lengths, routing 
methods, and polytomous item ratio. Simulation data, MST pattern and analysis 

were obtained with the help of WinGen, CPLEX, and the “mstR” package in the R 

Studio program. A total of 108 conditions and 100 replications were examined in 

the study. As a result of the simulations, RMSE, mean absolute bias and correlation 

values were calculated. As a result of the research, it is seen that when the ratio of 

polytomous items in the tests increases from 10% to 50%, the mean absolute bias 

and RMSE values decrease while the correlation values increase. As the test length 

increases, RMSE and mean absolute bias values decrease while correlation values 

increase. In terms of routing methods, MFI performed better than the NC routing 

method. In general, three-stage panel designs gave significantly better results than 

two-stage panel designs. In 1-2 and 1-4 panel designs, it does not matter which 

routing method is used. 

1. INTRODUCTION 

Computer-based measurement and assessment applications in education have been utilized 

since the 1980s (Weiss, 1982; Weiss & Kingsbury, 1984). Over time, advancements in tech-

nology and the integration of artificial intelligence have significantly increased the importance 

of technology in educational measurement and assessment. Among these innovations, comput-

erized adaptive testing (CAT) and multistage testing (MST) have gained global prominence. 

The first large-scale application of CAT was conducted in the United States with the Graduate 

Record Examination (GRE) in 1993. Some of the exams that have been computerized adaptive 

include The Law School Admission Test (LSAT), the Test of English as a Foreign Language 

(TOEFL), the National Council of Architectural Registration Boards (NCARB), the National 

Assessment of Educational Progress (NAEP), and the U.S. Medical Licensure Examination 

(USMLE) (Hendrickson, 2007). In recent years, CAT has been replaced by MST in national 

and international large-scale exams. GRE was implemented as MST in 2011, the Programme 

for International Student Assessment (PISA) in 2018, and the Programme for the International 
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Assessment of Adult Competencies (PIAAC) in 2012 (Yamamoto et al., 2019). Notably, in 

2023, the Scholastic Aptitude Test (SAT), a standardized large-scale international test taken by 

students who want to attend university in the United States, was administered in digital format 

as MST. Finally, in 2024, the SAT administered throughout the U.S. had fully transitioned to 

MST.  

The most significant advantage provided by CAT is the establishment of a relationship between 

the individual's ability and item difficulty. Unlike fixed test lengths in traditional paper-and-

pencil test applications, personalized test lengths are available in CAT applications (Wang, 

2017; Weiss, 1983). However, criticisms of CAT include varying test lengths, the inability to 

revisit previous questions, and differences in questions presented to test-takers. MST emerged 

as a solution to address some limitations of CAT while maintaining its adaptive nature. MST 

organizes tests into modules, stages, and panels. Test-takers are directed to subsequent modules 

based on their performance, creating a dynamic yet structured pathway for assessment (Zheng 

et al., 2012). MST applications increase in popularity due to their ability to tailor to individuals, 

allow test developers to preview test forms in advance, and enable individuals taking the test to 

review their answers. In MST, control over content and other features provides increased test 

security and content management (Hendrickson, 2007). While CAT adapts to individuals at the 

item level, MST adapts at the module level. MST encourage individuals with lower ability 

levels while preventing boredom in individuals with higher ability levels. These features have 

made MST increasingly popular for large-scale assessments, particularly those requiring 

precise and efficient measurement across broad ability ranges. 

Tests composed of both dichotomously and polytomously scored items are called mixed-format 

tests. Mixed-format tests are crucial both due to their increasing prevalence in international 

large-scale tests and because they offer higher levels of test information compared to dichoto-

mous items (Rosa et al., 2001). In recent years, many large-scale assessments, such as PIAAC 

and PISA, now employ mixed-format tests combining dichotomous (e.g., multiple-choice) and 

polytomous (e.g., open-ended) items (Yamamoto et al., 2019). In addition to mixed-format 

tests, the proportions of polytomous items used also play a significant role in the accuracy of 

ability estimation (Kim & Dodd, 2014). Kim et al. (2013) examined various routing methods 

and panel designs within the context of classification testing in MST applications based on the 

partial credit model. Their findings indicated that longer tests yielded higher accuracy, whereas 

a 50% pass rate resulted in the lowest accuracy levels. Park et al. (2014) explored a new item 

pool usage method for mixed-format tests in MST. Three designs were implemented using the 

linear programming (LP) test assembly method, with item change rates of 0.22, 0.44, and 0.66 

for each test combination. The findings demonstrated that the applied MST recombination con-

ditions enhanced item pool utilization while maintaining the desired MST structure.  

1.1. Purpose and Importance of Research 

The aim of this study is to examine the impact of varying polytomous item ratios in individually 

adapted multistage tests on the accuracy of ability estimation under different testing conditions. 

A review of the literature reveals numerous studies on tests comprising both dichotomous and 

polytomous items, where MST is analyzed under various conditions, including test assembly 

methods, routing strategies, and test lengths (Dogruoz, 2018; Kim et al., 2010; Luecht & 

Nungester, 1998; Luo & Kim, 2018; Yahsi Sari & Kelecioglu, 2023; Wang, 2017). While the 

importance of mixed-format tests is well-recognized, research on their application within MST 

frameworks remains limited (Kim et al., 2012; Kim et al., 2013). This study seeks to bridge 

this gap by investigating the interaction between polytomous item ratios and other critical 

testing variables, thereby making a substantial contribution to the literature. 

The item ratio in MST with mixed-format tests is anticipated to exhibit significant variability 

under different conditions, highlighting the theoretical and practical importance of this study. 

In the international context, simulation data based on the item parameters of dichotomous and 
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polytomous items from real-world MST applications in the reading domain of PISA 2018 have 

been utilized, ensuring ecological validity. This approach offers valuable insights for future 

applications of PISA and other large-scale assessments. The statistical properties of the routing 

module are especially crucial, as they significantly affect the overall measurement accuracy of 

the test (Kim & Plake, 1993). In the national context, there is a clear gap in research addressing 

mixed-format tests within MST applications. While real-world CAT studies have been 

conducted at the research level (Cikrikci et al., 2020; Senel & Kutlu, 2018), studies focusing 

on MST applications are still emerging. This research will not only contribute to the 

international literature but also advance MST applications within the national context. 

Furthermore, there is limited research on the performance of test assembly methods under 

varying conditions with mixed-format tests, particularly those based on the linear programming 

approach-one of the automatic test assembly methods (Park et al., 2014; Park, 2015). To address 

these gaps, future studies should explore the application of linear programming test assembly 

methods to mixed-format tests, examining the effects of different panel designs, routing 

methods, and proportions of polytomous items. Such research would contribute significantly to 

advancing both the theory and practice of MST, supporting its widespread adoption in 

educational assessment. This study seeks to address the following research questions: 

1- Primary Research Question: 

 How does the ratio of polytomous items in a test (10%, 30%, and 50%) affect individuals' 

ability estimations? 

2- Secondary Research Questions: 

 How do test length (20, 40, and 60 items) and panel design (“1-2”, “1-3”, “1-4”, “1-2-2”, 

“1-2-3”, and “1-3-3”) influence the relationship between the ratio of polytomous items and 

ability estimations? 

 How do routing methods (Maximum Fisher Information vs. Number-Correct) interact with 

the ratio of polytomous items in affecting ability estimations? 

By exploring these questions, the study aims to provide practical recommendations for 

optimizing MST design and improving the precision of ability estimates across diverse testing 

conditions. 

2. METHOD 

2.1. Research Method 

The aim of the research is to examine the effect of polytomous item ratios in individually 

adapted multistage mixed tests on ability estimation under different conditions. Systematic 

research aimed at generating new products or new processes, or significantly improving 

existing ones, by utilizing existing knowledge gained from research or experience is 

experimental development research (OECD, 2002). In the research, new conditions were 

determined that will improve the systems produced by simulation. In this aspect, the research 

is experimental development research based on simulation. 

2.2. Sample of Research 

In PISA 2018, a multistage computer-based test was administered in the domain of reading 

skills. For this research, data were generated through simulation based on the parameters of 

dichotomous and polytomous items from individuals who participated in the PISA 2018 

assessment in the reading skills domain. According to the PISA 2018 Technical Report Final 

Annex A, 244 items-72 trend items and 172 new items-were utilized in the computerized 

multistage reading skills test. The data were obtained from the website of the Organization for 

Economic Co-operation and Development (OECD). 

2.3. Research Design 

In this section, the manipulated and fixed conditions in the simulation study are explained. The 

fixed conditions in the study include the sample size (10,000 individuals), the distribution of 
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individuals' ability levels (normal distribution, N (0,1)), and the method used for ability 

estimation for the ability levels calculated at the end of MST (Expected a Priori-EAP). EAP 

(Bock & Mislevy, 1982) is one of the popular methods that belong to the Bayesian ability 

estimations. There are several studies in the literature that use normal ability distribution and 

the EAP ability estimation method (Park, 2015; Sahin & Ozturk, 2019). Therefore, the EAP 

ability estimation method was used in this study. The manipulated conditions in the study are 

panel design, total test length, routing method, and the ratio of polytomous items in the total 

test length. These conditions were determined considering the most frequently used conditions 

in both simulation studies and real MST applications according to the existing literature.  

In the panel design, six different panel designs were used: "1-2", "1-3", "1-4", "1-2-2", "1-2-3", 

and "1-3-3", based on Patsula (1999) "1-3" and "1-3-3", Zenisky (2004) "1–3–3", "1–2–3", "1–

3–2", and Sarı and Raborn (2018) "1-3", "1-2-2", "1-2-3", and "1-3-3". For test lengths, Wang 

(2017) 45 and 60; Sarı and Raborn (2018) used test lengths of 30 and 60. Based on the existing 

literature, three different test lengths were determined as 20, 40 and 60, representing short, 

medium and long test lengths. 

When we examine the literature in terms of routing method: Approximate Maximum Infor-

mation (AMI), Defined Population Intervals (DPI), Modified Approximate Maximum Infor-

mation (M-AMI), Stage-Level DPI (SL-DPI), and Module-Level DPI (ML-DPI) method are 

frequently used routing methods in the literature (Kim et al., 2010; Kim et al., 2013; Wang, 

2017; Zenisky, 2004). Also, there are some studies that provide the maximum amount of infor-

mation based on Maximum Likelihood Estimation (MLE) and M-AMI of ability (Kim et al., 

2012). Number of Correct Responses (NC) is another common routing method in MST (Weiss-

man et al., 2007; Zenisky et al., 2010). In recent years, using the mstR (Magis et al., 2018) 

package, Maximum Fisher Information (MFI), Maximum Likelihood Weighted Information 

(MLWI), Maximum Posterior Weighted Information (MPWI), Kullback–Leibler (KL), and 

Posterior Kullback–Leibler (KLP) routing methods have also begun to be used (Boztunc-

Ozturk, 2019; Sarı & Raborn, 2018). In this study, as routing methods, two directing methods 

were determined: MFI and NC. 

Park (2015) determined the polytomous item rates as (10%, 30%, 50% and 70%) in his study. 

In this study, the ratio of polytomous items to the total test length was determined as 10%, 30% 

and 50%. All conditions were crossed with each other, resulting in 108 (6x3x2x3) different 

conditions examined in the study. The simulation was repeated 100 times for all conditions. 

The manipulated conditions of the research are summarized in Table 1. 

Table 1. Research condition. 

Condition Number of Levels Lower Levels 

  1-2 

  1-3 

  1-4 

Panel Design 6 1-2-2 

  1-2-3 

  1-3-3 

  20 items 

Test Length 3 40 items 

  60 items 

  MFI 

Routing Methods 2 NC 

  %10 

Ratio of Polytomous Items 3 %30 

  %50 

Total 6x3x2x3=108  
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2.4. Data Collection Process  

In this stage, 200 polytomous and 400 dichotomous item parameters and ability levels (theta-

θ) of 10,000 individuals were generated using the WinGen3 program (Han, 2007). The three 

stages are explained in detail. 

2.4.1.  1. Stage: Generation of ability levels 

In the first stage, ability levels for a sample of 10,000 individuals were generated using the 

WinGen3 program according to a normal distribution (N (0,1)) with a mean of 0 and a standard 

deviation of 1. 100 iterations were performed to generate ability levels. The probability of re-

sponding to each item for individuals generated in the simulation was calculated according to 

the Generalized Partial Credit Model (GPCM). 

2.4.2.  2. Stage: Obtaining data and conducting item analyses 

A simulation study based on the characteristics of item parameters used in the MST application 

in reading skills in PISA 2018 was conducted in the research. Among these items, 223 were 

dichotomous and 21 were polytomous. In this context, MST was also applied in the research, 

and parameters of both dichotomous and polytomous items were used. Descriptive statistics of 

item parameters were calculated using the R program (R Development Core Team, 2018). De-

scriptive statistics of the original items are provided in Table 2.  

Table 2. Descriptive statistics of item parameters. 

 2 categories  3 categories 

 a b  a b1 b2 

Min. 0.15 -1.91  0.40 -0.40 -2.02 

Max. 1.83 2.66  1.25 2.07 2.02 

Mean 1.01 0.03  0.72 0.65 0.20 

The test information functions of the item pools consisting of items used in the MST application 

in the reading skills domain of PISA 2018 are shown in Figure 1. When comparing the test 

information functions in Figure 1, we observe that polytomous items provide more information, 

despite being fewer in number than dichotomous items. 

Figure 1. Test information functions for PISA data. 

 

Dichotomous items 

 

Polytomous items 

2.4.3. 3. Stage: Generation of Item Pool  

In this stage, item pools were generated using the estimated item parameters. Item parameters 

for dichotomous items were generated using the Two-Parameter Logistic (2PL) IRT model, 

while item parameters for polytomous items were generated using the GPCM. When generating 
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item parameters for the items in the item pool, the distribution of item parameters used in the 

reading skills domain of PISA 2018 was considered.  

In MST studies conducted in the literature, the item pool size generally varies between 200 and 

600 items (Lim, 2019; Xing & Hambleton, 2004; Zheng et al., 2012). In MST studies using 

mixed-item formats, 424 items have been used (Kim et al., 2012; Park et al., 2014).  In the 

study by Kim et al. (2012), out of the 424-item pool, 244 items (57.55%) were dichotomous, 

113 items (26.65%) were three-category, and 67 items (15.80%) were four-category items. In 

this study, a total of 600 items were generated for the item pool, with 400 being two-category 

and 200 being three-category items. During the panel construction stage, polytomous items 

were distributed into modules representing 10%, 30%, and 50% of the entire test. Descriptive 

statistics of the generated 400 and 200-item pools are provided in Table 3. 

Table 3. Descriptive statistics of item parameters in the 400 and 200 items pool. 

 400 items  200 items 

 a b  a b1 b2 

Min. 0.15 -1.90  0.40 -0.40 -0.34 

Max. 1.82 2.65  1.25 1.98 2.07 

Mean 0.97 0.44  0.85 0.42 1.21 

When examining the descriptive statistics of the PISA items and the simulated item parameters, 

slight differences were observed, which are likely due to the size of the item pool. The test 

information functions of the generated item pools consisting of 400 two-category and 200 three-

category items are shown in Figure 2. When we examine the distribution of test information 

functions of PISA and simulation data, it is observed that the amount of test information ob-

tained from the simulation is higher due to the larger number of items. 

Figure 2. Test information functions for item pools. 

Dichotomous items Polytomous items 

2.5. Data Analysis  

An MST simulation was created as a data analysis tool. The MST simulation consists of mod-

ules and panels. There is a total of six-panel designs: 1-2, 1-3, 1-4, 1-2-2, 1-2-3, and 1-3-3. 

There are three test lengths: 20, 40, and 60. The number of items in the modules varies accord-

ing to the total test length and panel designs.  
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2.5.1. MST Simulation 

In the process of selecting items for panels in different designs in the MST, the following steps 

were taken. In the first stage, the information functions of items were calculated to place the 

items into panels as easy, medium, and difficult. The information functions for polytomous 

items were calculated using the GPCM, and for dichotomous items, they were calculated using 

the 2PLM. In the MST simulation, there are a total of six-panel designs: 1-2, 1-3, 1-4, 1-2-2, 1-

2-3, and 1-3-3, and specific paths. Some sample panel designs and paths used in the study are 

shown in Figure 3. 

Figure 3. Examples of panel designs used in MST simulation. 

1-3 Panel Design 1-4 Panel Design 

 
 

 

 

1-2-2 Panel Design 1-3-3 Panel Design 

  

The creation of panels and test assembly process were carried out using the IBM CPLEX opti-

mization program. Individuals were randomly assigned to panels in the study. The bottom-up 

test assembly method was used in creating panels. First of all, in order to maximize the module 

information, codes were written in the CPLEX program such that the item information levels 

were easy (θ = -1), low medium (θ =-0.3), medium (θ = 0), high medium (θ = 0.3) and difficult 

(θ = 1). Items that provided the highest information for each module were assigned to the mod-

ules based on the characteristics and numbers of each module. The selection of items designated 

as easy, medium, and difficult was carried out considering the total test length and the ratio of 

polytomous items. For example, the number of items in modules for the 1-2 panel design is 

detailed in Table 4. 
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Table 4. Number of items in modules. 

  Ratio of polytomous items 

  %10 %30 %50 

 Test length 20 40 60 20 40 60 20 40 60 

Panel 

Design 

1-2 

1.Stage-M 1*/9 2*/18 3*/27 3*/7 6*/14 9*/21 5*/5 10*/10 15*/15 

2.Stage -E 1*/9 2*/18 3*/27 3*/7 6*/14 9*/21 5*/5 10*/10 15*/15 

2. Stage -H 1*/9 2*/18 3*/27 3*/7 6*/14 9*/21 5*/5 10*/10 15*/15 

*Indicates the number of polytomous items in the modules. M: Medium, E: Easy, H: Hard 

When examining Table 4, for the special condition of 1-2 design, 60 items and 10% polytomous 

item ratio, 30 items were selected and 10% (3 of them) were polytomous, giving high infor-

mation at the point θ= 0. Similarly, under the condition θ=-1, 30 items were selected to provide 

high information and placed in the second easy module. Finally, under the condition θ=1, 30 

items were selected to provide high information and placed in the second difficult module. 

After creating modules and panels, MST simulations were continued with the R program. The 

simulation study for the MST was conducted using the 'mstR' package in R (Magis et al., 2018). 

The responses of individuals to all items were calculated using the GPCM. The EAP method 

was used for estimating abilities. In MST applications, commonly used routing methods include 

the NC (Weissman et al., 2007; Zenisky et al., 2010), ability estimation, and MFI (Weissman 

et al., 2007). NC routing method is an alternative method commonly used in IRT ability esti-

mation in CAT (Armstrong, 2002). In this study, MFI and NC routing methods were used to 

transition from one stage to another. In the MFI routing method, the maximum amount of in-

formation is provided in one module and directed to the appropriate module in the next stage. 

In the NC-based routing method, an IRT model is used in the background to obtain a score 

distribution. Research indicates that the effectiveness of the NC directing method applied based 

on the raw number of correct responses is consistent with MST results designed for θ estimation 

(Armstrong, 2002). In the NC method, individuals are directed between stages based on the 

cumulative cut score point for each module. When determining the cut scores, the module in-

formation functions obtained by individuals according to MFI and their total number of correct 

responses were calculated for each stage. The correct numbers that provided the highest infor-

mation were chosen as cut scores between modules. For example, for the 1-3 panel design with 

a 10% polytomous item ratio and a 40-item test, the graphs of the directing module information 

and total number of correct responses are shown in Figure 4. 

Figure 4. 1-3 Panel design, 10% polytomous item ratio, routing module information and total numbers 

correct of the 40-item test. 
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2.5.2. Evaluation Criteria  

After obtaining simulation data under appropriate conditions for sub-problems, Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and correlations between actual and estimated 

ability levels were calculated to examine the accuracy of the obtained ability estimation. Bias 

is the square root of the average of the differences between the actual and estimated values. 

MAE is the absolute value of each difference between the actual and estimated values. RMSE 

is the square root of the average of the squares of the differences between the actual and esti-

mated values. Low values of MAE and RMSE, and high correlation values indicate high accu-

racy of ability estimations. These values were calculated separately for each iteration for eval-

uation of the findings. Total values for each condition were divided by the number of iterations 

to report average values. 

After obtaining MAE, RMSE, and correlation values, factorial ANOVA was conducted in SPSS 

using 100 iterations for each condition to determine if there was a significant difference among 

the condition variables. Effect sizes obtained from factorial ANOVA were examined. Three 

separate factorial ANOVA tests were conducted with MAE, RMSE, and correlation values as 

dependent variables, while all other conditions (ratio of polytomous items, test length, panel 

design, and routing method) were independent variables. 

3. FINDINGS 

3.1. Findings Related to Mean Absolute Error 

The MAE findings for all conditions are shown in Table 5. The factorial ANOVA results on 

MAE are given in Table 6. Based on the overall findings, test length emerged as the most 

influential factor, accounting for 98% of the variance (ŋ²p =.98), followed by the ratio of 

polytomous items in the test (ŋ²p = .20). The routing method (MFI vs. NC) also showed a 

moderate effect (ŋ²p = .13), while the panel design exhibited a smaller yet significant influence 

(ŋ²p = .05). Differences across panel designs and routing methods were smaller but indicated a 

slight advantage for more complex panel designs and the MFI routing method. However, the 

ratio of polytomous items had minimal effect on MAE.  

Table 5. Findings of mean absolute error across all conditions. 

  Ratio of Polytomous Items in the Test 

  %10 %30 %50 

Routing 

Method 

Panel 

Design 
20 40 60 20 40 60 20 40 60 

 
1-2 0.24 0.18 0.15 0.23 0.17 0.15 0.23 0.17 0.15 

1-3 0.24 0.18 0.15 0.23 0.17 0.15 0.23 0.17 0.15 

 1-4 0.24 0.18 0.16 0.23 0.18 0.15 0.23 0.17 0.15 

MFI 1-2-2 0.23 0.18 0.15 0.23 0.17 0.14 0.23 0.17 0.14 

 1-2-3 0.23 0.18 0.15 0.23 0.17 0.15 0.23 0.17 0.14 

 1-3-3 0.23 0.18 0.15 0.23 0.17 0.15 0.23 0.17 0.14 

 
1-2 0.24 0.18 0.15 0.23 0.17 0.15 0.23 0.17 0.14 

1-3 0.24 0.18 0.16 0.24 0.18 0.15 0.24 0.18 0.15 

 1-4 0.24 0.18 0.16 0.23 0.17 0.15 0.23 0.17 0.15 

NC 1-2-2 0.25 0.18 0.16 0.24 0.17 0.15 0.24 0.17 0.16 

 1-2-3 0.24 0.18 0.15 0.24 0.17 0.15 0.24 0.18 0.14 

 1-3-3 0.24 0.18 0.16 0.24 0.18 0.15 0.25 0.18 0.15 
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Table 6. ANOVA Results for grand mean absolute bias. 

Factor Sum of Squares df Mean Square F p ŋ²p 

Routing 0.05 1 0.05 1594.11 0.00 0.13 

TL 14.00 2 7.00 228391.13 0.00 0.98 

PIR 0.08 2 0.04 1297.90 0.00 0.20 

PD 0.02 5 0.00 104.28 0.00 0.05 

Routing*TL 0.01 2 0.00 112.19 0.00 0.02 

Routing*PIR 0.00 2 0.00 18.52 0.00 0.00 

Routing*PD 0.04 5 0.09 273.18 0.00 0.11 

TL*PIR 0.00 4 0.00 10.24 0.00 0.00 

TL*PD 0.01 10 0.00 24.61 0.00 0.02 

PIR*PD 0.00 10 0.00 12.92 0.00 0.01 

Routing*TL*PIR 0.00 4 0.00 12.23 0.00 0.01 

Routing*TL*PD 0.01 10 0.00 32.32 0.00 0.03 

Routing*PIR*PD 0.00 10 0.00 8.09 0.00 0.01 

TL*PIR*PD 0.01 20 0.00 11.23 0.00 0.02 

Routing*TL*PIR*PD 0.01 20 0.00 11.41 0.00 0.02 

Error 0.33 10692 0.00    

Total 391.02 10800     

Note. PIR represents the Polytomous Item Ratio, TL refers to the Test Length, and PD denotes the Panel Design 

3.2. Findings Related to Root Mean Square Error (RMSE) 

The RMSE findings for all conditions are shown in Table 7. The factorial ANOVA results on 

this outcome are given in Table 8. The findings reveal that test length is the most influential 

factor (ŋ²p=.98), with longer tests consistently reducing RMSE values across all conditions. For 

instance, RMSE values decreased notably as the test length increased from 20 to 60 items, 

irrespective of the routing method or panel design. The ratio of polytomous items, while 

statistically significant, exhibited a minimal impact on RMSE (ŋ²p=.19). Routing methods 

demonstrated a moderate effect (ŋ²p=.19), with MFI consistently outperforming NC routing in 

reducing RMSE, particularly in tests with longer lengths or more complex panel designs. 

Similarly, panel design contributed to slight improvements in estimation accuracy. 

Table 7. Findings of RMSE across all conditions. 

  Ratio of Polytomous Items in the Test 

  %10 %30 %50 

Routing 

Method 

Panel 

Design 
20 40 60 20 40 60 20 40 60 

 
1-2 0.30 0.23 0.19 0.30 0.22 0.19 0.29 0.22 0.19 

1-3 0.30 0.23 0.19 0.30 0.22 0.19 0.29 0.22 0.19 

 1-4 0.30 0.23 0.20 0.30 0.22 0.19 0.29 0.22 0.19 

MFI 1-2-2 0.30 0.22 0.19 0.29 0.22 0.18 0.29 0.22 0.18 

 1-2-3 0.30 0.22 0.19 0.29 0.22 0.18 0.29 0.22 0.18 

 1-3-3 0.30 0.22 0.19 0.29 0.22 0.18 0.29 0.22 0.18 

 
1-2 0.30 0.23 0.19 0.30 0.22 0.19 0.29 0.22 0.18 

1-3 0.30 0.23 0.20 0.30 0.23 0.19 0.30 0.22 0.19 

 1-4 0.30 0.23 0.20 0.30 0.22 0.19 0.29 0.22 0.19 

NC 1-2-2 0.32 0.24 0.20 0.31 0.22 0.20 0.31 0.22 0.20 

 1-2-3 0.31 0.23 0.19 0.30 0.22 0.19 0.30 0.22 0.18 

 1-3-3 0.31 0.23 0.21 0.31 0.22 0.19 0.32 0.23 0.19 
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Table 8. ANOVA results for grand mean RMSE. 

Factor Sum of Squares df Mean Square F p ŋ²p 

Routing 0.11 1 0.11 2437.64 0.00 0.19 

TL 22.72 2 11.36 251592.07 0.00 0.98 

PIR 0.11 2 0.06 1219.26 0.00 0.19 

PD 0.03 5 0.01 107.25 0.00 0.05 

Routing*TL 0.02 2 0.01 191.05 0.00 0.04 

Routing*PIR 0.00 2 0.00 17.60 0.00 0.00 

Routing*PD 0.09 5 0.02 409.14 0.00 0.16 

TL*PIR 0.00 4 0.00 6.33 0.00 0.00 

TL*PD 0.02 10 0.00 38.50 0.00 0.04 

PIR*PD 0.01 10 0.00 15.59 0.00 0.01 

Routing*TL*PIR 0.00 4 0.00 13.39 0.00 0.01 

Routing*TL*PD 0.02 10 0.00 50.33 0.00 0.05 

Routing*PIR*PD 0.01 10 0.00 11.43 0.00 0.01 

TL*PIR*PD 0.02 20 0.00 21.16 0.00 0.04 

Routing*TL*PIR*PD 0.02 20 0.00 18.73 0.00 0.03 

Error 0.48 10692 0.00    

Total 633.56 10800     

Note. See notes in Table 6. 

3.3. Findings Related to Correlation 

The correlation findings for all conditions are shown in Table 9. The factorial ANOVA results 

on this outcome are given in Table 10. As shown in Table 9, correlations increase with test 

length, consistently improving from 20 to 60 items, regardless of the routing method, panel 

design, or ratio of polytomous items. The ratio of polytomous items demonstrated minimal 

impact on correlation values, as observed in other metrics. Across all panel designs and routing 

methods, correlations remained virtually identical for tests with 10%, 30%, and 50% 

polytomous items. Routing methods showed slight differences, with MFI generally producing 

marginally higher correlations compared to NC routing, especially in longer tests. ANOVA 

reinforced that test length (ŋ²p=.91) is the most influential factor in maximizing the alignment 

between estimated and true abilities, followed by the ratio of polytomous items (ŋ²p=.07) and 

routing method (ŋ²p=.07).  

Table 9. Findings of correlations across all conditions. 

  Ratio of Polytomous Items in the Test 

  %10 %30 %50 

Routing Method Panel Design 20 40 60 20 40 60 20 40 60 

 
1-2 0.95 0.97 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

1-3 0.95 0.97 0.98 0.95 0.98 0.98 0.96 0.98 0.98 

 1-4 0.95 0.97 0.98 0.95 0.97 0.98 0.96 0.98 0.98 

MFI 1-2-2 0.96 0.97 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

 1-2-3 0.96 0.98 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

 1-3-3 0.96 0.97 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

 
1-2 0.95 0.97 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

1-3 0.95 0.97 0.98 0.95 0.97 0.98 0.95 0.97 0.98 

 1-4 0.95 0.97 0.98 0.96 0.98 0.98 0.96 0.98 0.98 

NC 1-2-2 0.95 0.97 0.98 0.95 0.98 0.98 0.95 0.98 0.98 

 1-2-3 0.95 0.97 0.98 0.95 0.98 0.98 0.95 0.97 0.98 

 1-3-3 0.95 0.97 0.98 0.95 0.97 0.98 0.95 0.97 0.98 
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Table 10. ANOVA results for correlation. 

Factor Sum of Squares df Mean Square F p ŋ²p 

Routing 0.01 1 0.01 810.48 0.00 0.07 

TL 1.34 2 0.67 51715.76 0.00 0.91 

PIR 0.01 2 0.01 389.50 0.00 0.07 

PD 0.00 5 0.00 24.99 0.00 0.01 

Routing*TL 0.01 2 0.00 244.91 0.00 0.04 

Routing*PIR 0.00 2 0.00 14.16 0.00 0.00 

Routing*PD 0.01 5 0.00 106.40 0.00 0.05 

TL*PIR 0.01 4 0.00 99.69 0.00 0.04 

TL*PD 0.00 10 0.00 24.70 0.00 0.02 

PIR*PD 0.00 10 0.00 7.57 0.00 0.01 

Routing*TL*PIR 0.00 4 0.00 3.54 0.01 0.00 

Routing*TL*PD 0.00 10 0.00 34.33 0.00 0.03 

Routing*PIR*PD 0.00 10 0.00 7.16 0.00 0.01 

TL*PIR*PD 0.00 20 0.00 4.63 0.00 0.01 

Routing*TL*PIR*PD 0.00 20 0.00 3.21 0.00 0.01 

Error 0.14 10692 0.00    

Total 10158.54 10800     

Note. See notes in Table 6. 

4. DISCUSSION and CONCLUSION  

This study investigates the impact of varying proportions of polytomous items, test length, 

panel design, and routing methods on the accuracy of ability estimation in MST. The findings 

highlight the critical role of test length and the ratio of polytomous items in improving 

estimation accuracy, with secondary influences from panel design and routing methods. These 

results contribute to a nuanced understanding of the conditions under which MST achieves 

optimal precision. 

The results demonstrate that as the ratio of polytomous items in the test increases from 10% to 

50%, the estimation of abilities improves, reflected by lower MAE and RMSE values and higher 

correlations between estimated and true abilities. This aligns with the theoretical premise that 

polytomous items provide more information per item than dichotomous ones (Embretson & 

Reise, 2000). The enhanced test information associated with a higher ratio of polytomous items 

enables more precise ability estimation, a finding corroborated by previous research on mixed-

format tests (Kim et al., 2012). However, the differences between 10% and 30% proportions 

were relatively minor, suggesting that the benefits of polytomous items become more 

pronounced at higher ratios. In contrast to Park (2015), who found that an increased ratio of 

polytomous items reduced measurement precision due to challenges in test construction, this 

study observed consistent improvements in accuracy, likely attributable to well-constructed test 

panels that maintained sufficient test information. 

Test length emerged as the most significant factor influencing ability estimation, as indicated 

by the ANOVA results, which showed that it explained the highest variance across MAE, 

RMSE, and correlations. Longer tests consistently yielded lower error rates and higher 

correlations, with tests comprising 40 or 60 items achieving the most accurate ability estimates. 

This finding is consistent with prior MST studies, which emphasize the role of test length in 

enhancing measurement precision (Erdem-Kara, 2019; Kim et al., 2013; Patsula, 1999). The 

results underscore the importance of prioritizing test length during test assembly to achieve 

optimal accuracy. 
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Panel design also influenced estimation accuracy, with three-stage panel designs generally 

outperforming two-stage designs. This result aligns with the broader MST literature, which 

indicates that additional stages in the panel design allow for more refined routing decisions, 

thereby reducing estimation error (Dogruöz, 2018; Patsula, 1999). However, the effect size was 

smaller compared to the test length and the ratio of polytomous items, suggesting that panel 

design plays a supportive but less critical role in overall accuracy. 

Routing methods showed a modest but significant effect on estimation accuracy, with the MFI 

method consistently outperforming the NC method. This difference was particularly evident in 

conditions involving longer tests and higher proportions of polytomous items. Unlike 

Weissman et al. (2007), who found comparable performance between MFI and NC routing 

methods in terms of classification accuracy, this study suggests that MFI provides superior 

measurement accuracy in contexts requiring precise ability estimation. The superior 

performance of MFI in this study may stem from its ability to optimize information across 

items, whereas NC routing is more constrained by cutoff score determination. 

Overall, this study highlights the critical interplay among test length, item composition, panel 

design, and routing methods in achieving accurate ability estimates in MST. The results 

emphasize the importance of prioritizing test length and leveraging the informational 

advantages of polytomous items while optimizing panel design and routing methods to further 

enhance precision. These findings provide practical guidance for test developers in designing 

MST frameworks that balance psychometric precision with operational constraints. Future 

research should explore these dynamics further in operational settings and extend the analysis 

to other adaptive testing contexts. 

4.1. Recommendations 

The findings of this study provide several practical and theoretical insights for optimizing MST 

frameworks. Key recommendations are presented in the following paragraphs:  

First, test length emerged as the most influential factor in improving ability estimation accuracy. 

Therefore, it is recommended to prioritize longer tests in MST applications, particularly when 

measurement precision is critical. Tests with 40 or more items consistently yielded lower error 

rates and higher correlations, regardless of other factors. However, operational constraints such 

as time limitations and test-taker fatigue should also be considered when extending test lengths. 

Second, the ratio of polytomous items in mixed-format tests significantly enhances the accuracy 

of ability estimates. While the effects of increasing polytomous item ratios from 10% to 30% 

were modest, the benefits became more pronounced at a 50% ratio. These findings suggest that 

incorporating a balanced ratio of polytomous items can maximize test information and improve 

measurement precision. However, test developers should ensure that the item pool remains 

sufficiently diverse and aligned with test specifications to maintain content validity. 

Third, the panel design should be tailored to the specific conditions of the test. Under conditions 

with long tests (60 items) and high proportions of polytomous items (50%), differences in 

measurement accuracy across panel designs were minimal. This suggests that simpler designs 

(e.g., "1-2") could be employed in such cases to reduce operational complexity without 

compromising accuracy. For tests with shorter lengths or lower proportions of polytomous 

items, more complex designs (e.g., "1-2-3") may be beneficial to enhance measurement 

precision. 

Fourth, the choice of routing method is critical for ensuring accuracy in ability estimation. The 

MFI routing method consistently outperformed the NC method across most conditions, 

particularly for longer tests and higher proportions of polytomous items. However, interactions 

between panel designs and routing methods were observed, such as with the "1-2" and "1-4" 

designs, where both methods performed similarly. In such cases, operational considerations, 
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such as ease of implementation or alignment with institutional goals, may guide the choice of 

routing method. 

Future research should address the limitations of this study by expanding the scope of item 

parameters and test conditions. For instance, the data in this study were based on item 

parameters from the PISA 2018 Reading Skills domain test. Investigating other domains or 

disciplines with different item characteristics (e.g., difficulty, discrimination) could provide 

broader insights. Additionally, exploring how MST frameworks perform across diverse cultural 

and linguistic contexts would offer valuable perspectives on the generalizability of these 

findings. 

Finally, this study assumed that individuals’ ability levels followed a normal distribution. 

Future research could investigate how alternative distributions (e.g., uniform, skewed) 

influence ability estimation accuracy. Additionally, examining the effects of systematically 

arranging polytomous items across modules, rather than random distribution, could yield 

insights into how item pool characteristics interact with panel designs and routing methods. 

Such investigations could lead to more tailored and flexible MST designs that accommodate 

diverse testing needs. These recommendations provide actionable guidance for test developers 

while identifying key areas for future research to enhance the flexibility, accuracy, and fairness 

of MST applications. 
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