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ON IDEAL BOUNDED SEQUENCES
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Abstract. In this paper, we study the notion of ideal bounded sequences,

related to a given ideal, generalizing an earlier concept known as statistical
boundedness of a sequence. We proceed to prove some results connecting ideal

boundedness of a sequence to that of its subsequences. For this purpose, we
use Lebesgue measure and Baire category to measure size.

1. Introduction

The convergence of sequences has undergone numerous generalizations, one of the
first and most important being the concept of statistical convergence, introduced by
Fast (1951), [8]. Later on, other types of summability including almost convergence,
uniform statistical convergence and more generally ideal convergence of sequences
were researched by many authors in different directions.

In classical and recent works the relationships between a given sequence and
its subsequences regarding different kinds of summability have been studied using
measure or category as gauges of size. It is well known that every x ∈ (0, 1] has
a binary expansion x =

∑∞
n=1 2

−ndn(x) such that dn(x) = 1 for infinitely many
positive integers n, that is unique. Then for any x ∈ (0, 1] and any sequence
s = (sn) we can construct a subsequence (sx) of s in such a way that: (sx)i = sni

,
where n1 < n2 < ... < ni < ... is the set of n ∈ N for which dn(x) = 1.

Using this one-to-one correspondence, the sets of all almost convergent, statisti-
cally convergent, uniformly statistically convergent, ideal convergent subsequences
of a sequence s have been studied in detail in several papers (see [3,4,12–15,17–19,
21–23]).

The concept of statistical boundedness of a sequence first appeared in the work
of Fridy and Orhan (1997), [10]. Theorems researching statistical boundedness
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and its relation to statistical convergence were proved by Tripathy (1997) [20], and
Bhardwaj and Gupta (2014), [5]. Recently the authors, Miller-Van Wieren (2022),
[16] studied statistical boundedness of a sequence and its relation to statistical
boundedness of its subsequences using Lebesgue measure and category. In this
paper we wish to generalize this concept to ideal boundedness, and to obtain results
connecting ideal boundedness of a sequence to that of its subsequences, again with
regards to measure and category.

We will first introduce some necessary notation. A family I ⊆ P (N) of subsets
of N is said to be an ideal on N if I is closed under subsets and finite unions, i.e.
for each A,B ∈ I we have A ∪ B ∈ I and for each A ∈ I and B ⊂ A, we have
B ∈ I. An ideal I is said to be proper if it does not contain N. We say a proper
ideal is admissible if {n} ∈ I for each n ∈ N. Clearly any admissible ideal contains
all finite subsets of N. Throughout the paper, we will assume that the ideal I is
admissible.

A sequence of real numbers s is said to be I-convergent to L if for every ε > 0
the set Kε = {n ∈ N : |sn − L| > ε} belongs to I, and we write I − lim s = L
(see Kostyrko, Šalát and Wilczyński, 2000/01 , Balaz and Šalát , 2006) [2, 11].
It is easy to see that if I = Id = {A ⊂ N : d(A) = 0}, then Id-convergence is
statistical convergence where d(A) denotes the asymptotic density of A [8], and
if I = Iu = {A ⊂ N : u(A) = 0}, then Iu-convergence coincides with uniform
statistical convergence where u(A) denotes the uniform density of A (Yurdakadim
and Miller-Van Wieren 2016, Yurdakadim and Miller-Van Wieren 2017) [21, 22].
Ideals on N can be observed as subsets of the Polish space {0, 1}N. Therefore ideals
can have the Baire property or can be Borel, analytic, coanalytic etc. (Farah,
2000) [7]. From now on, we will refer to sets of first Baire category as meager, and
to sets whose complement is of first category as comeager.

Next we state a well known lemma that can be found in several sources, recently
in (M. Balcerzak, S. Glab, A. Wachowicz , 2016) [3].

Lemma 1. Suppose I is an ideal on N. The following conditions are equivalent:

• I has the Baire property;
• I is meager;
• There exists a sequence n1 < n2 < ... < nk < ... of integers in N such that
no member of I contains infinitely many intervals [nk, nk+1) in N.

It is simple to verify that Id and Iu have the Baire property. Additionally any
analytic or coanalytic ideal has the Baire property.

2. Main Results

First, we recall the definition of a statistically bounded sequence of reals.

Definition 1. A sequence of reals s = (sn) is said to be statistically bounded if
there exists L > 0 such that d({n : |sn| ≥ L}) = 0.
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Statistical boundedness of sequences was studied by Tripathy (1997) [20], Bhard-
waj and Gupta (2014) [5], Aytar and Pehlivan (2006) [1] and by the authors (Miller-
Van Wieren, 2022) [16].

Now we present a generalization of Definition 1, for a given ideal I introduced
by Demirci (2001) [6].

Definition 2. A sequence of reals s = (sn) is said to be I-bounded if there exists
L > 0 such that {n : |sn| ≥ L} ∈ I.

Given a sequence s = (sn) and n1 < n2 < ... < nk < ... we say that s = (snk
) is

I-dense in s if N \ {nk : k ∈ N} ∈ I. It is clear that s = (snk
) is I-bounded if and

only if it has an I-dense subsequence that is bounded.
We will study the relationship of sequences and their subsequences regarding

their I-boundedness, using Lebesgue measure as gauge of size.
In (Miller-Van Wieren, 2022) [16], we have shown the following theorem.

Theorem 1. Suppose s is a sequence of reals. Then s is statistically bounded if
and only if the set {x ∈ (0, 1] : (sx) is statistically bounded} has Lebesgue measure
1. Additionally, s is not statistically bounded if and only if the set {x ∈ (0, 1] :
(sx) is statistically bounded} has Lebesgue measure 0.

Now we direct our attention to sequences and their subsequences with regard to
their I-boundedness. The discussion in the theorems that follow is related to some
results obtained in [17,18].

Theorem 2. Suppose s is a I-bounded sequence, I is an analytic or coanalytic
ideal. Then the set {x ∈ (0, 1] : (sx) is I-bounded} has Lebesgue measure 0 or 1.
Both cases of measure 0 and 1 can occur.

Proof. Let us first prove that {x ∈ (0, 1] : (sx) is I-bounded} is measurable. We
have

{x ∈ (0, 1] : (sx) is I-bounded} =
⋃

M∈N
{x : {i : | (sx)i | ≥ M} ∈ I} .

We define the characteristic function

χM : (0, 1] → {0, 1}N

by setting (χM (x))i =

{
1 , | (sx)i | ≥ M
0 , otherwise

for M ∈ N. We will verify that χM is continuous. For this purpose it is suffi-
cient to check that the i-th component of χM , (χM )i is continuous on (0, 1]. We
will check that the set (χM )−1

i ({1}) is open. Suppose that x ∈ (χM )−1
i ({1}) is

arbitrarily fixed. Easily if y ∈ (0, 1] is such that (sx)j = (sy)j for 1 ≤ j ≤ i, then

y ∈ (χM )−1
i ({1}). We can conclude that there exists a k ≥ i such that: if y ∈ (0, 1]

satisfies xj = yj for 1 ≤ j ≤ k (where xj , yj are the j-th coordinates of x, y respec-

tively as 0− 1 sequences), then y ∈ (χM )−1
i ({1}). We obtain that (χM )−1

i ({1}) is
open. In the same manner, we conclude that (χM )−1

i ({0}) is open.
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Since I is analytic or coanalytic, we conclude that χ−1
M (I) is analytic or coana-

lytic and hence measurable. Therefore
{x : {i : | (sx)i | ≥ M} ∈ I} = χ−1

M (I) is measurable for M ∈ N and consequently
{x ∈ (0, 1] : (sx) is I-bounded} is measurable. Clearly {x ∈ (0, 1] : (sx) is I-bounded}
is a tail set. Since we proved it is measurable we conclude that X = {x ∈ (0, 1] :
(sx) is I-bounded} must have Lebesgue measure 0 or 1.

To see that both values can occur observe the following. If the sequence s is
bounded (and consequently I-bounded), then for every x ∈ (0, 1], (sx) is bounded
and consequently I-bounded, therefore m(X) = 1. Additionaly we can remark that
in the case when I = Id, the authors proved in [16] that the set X is of measure 1
for any I-bounded sequence s. Now we construct an example in which m(X) = 0
occurs.

In [13], Miller and Orhan (2001) constructed a sequence t of 0’s and 1’s,

t = 01001001...00010001....

that we made use of in (Yurdakadim and Miller-Van Wieren, 2016) [21] showing
that t uniformly statistically converges to 0, u({n : tn = 1}) = 0, and X∗ = {x ∈
(0, 1] : {n : (tx)n = 1}is not in Iu} has measure 1.

Now we will construct a sequence s that is Iu-bounded but m(X) = 0. We define
s = (sn) as follows:

sn =

{
0 , tn = 0
n , tn = 1

for n ∈ N.

Now from this definition it follows that u({n : sn ̸= 0}) = 0, so s is Iu-bounded.
Suppose x ∈ X∗. From the definitions of s and X∗ we conclude that there exists
a subset of N, {nk : k ∈ N} not in Iu such that (sx)nk

→ ∞ and therefore sx is
not Iu-bounded. Since m(X∗) = 1, it follows that m(X) = 0. This completes the
proof.

□

Now we will observe the case when I is an analytic or coanalytic ideal with prop-
erty (G). We will use some notation from (M. Balcerzak, S. Glab, A. Wachowicz ,
2016) [3].

We will denote by T the set of all 0-1 sequences that have an infinite number
of ones. A mapping f : N → N is said to be bi-I-invariant if E ∈ I if and only if
f [E] ∈ I whenever E ⊂ N. Given a sequence x ∈ T we can denote {n1 < n2 <
... < ni < ...} = {k ∈ N : xk = 1}. Define fx : N −→ N by fx(k) = nk and define
TI = {x ∈ T : fxis bi-I-invariant}.

An ideal I is said to have property (G) if µ(TI) = 1. For instance, it is easy
to check that Id has property (G) while Iu does not. Now we have an analog of
Theorem 1 for ideals with property (G).

Theorem 3. Suppose s is a sequence, I is an analytic or coanalytic ideal with
property (G). Then s is I-bounded if and only if the set X = {x ∈ (0, 1] :
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(sx) is I-bounded} has Lebesgue measure 1. Additionally, s is not I-bounded if
and only if the set {x ∈ (0, 1] : (sx) is I-bounded} has Lebesgue measure 0.

Proof. Suppose s is I-bounded. Suppose M > 0 is fixed so that {n : |sn| ≥ M} ∈ I.
Let x ∈ TI be arbitrarily fixed (using the earlier mentioned definition of TI). Then
(sx) = (sni)i where n1 < n2 < ... < ni < .... Then,

{ni : |sni | ≥ M} ⊆ {n : |sn| ≥ M} and consequently from above {ni : |sni | ≥ M} ∈
I. Now since x ∈ TI , we have {ni : |sni

| ≥ M} ∈ I → f−1
x ({ni : |sni

| ≥ M}) ∈ I →
{i : |sni

| ≥ M} ∈ I. Hence (sx) is I-bounded. We conclude that TI ⊆ X. Since
m(TI) = 1, m(X) = 1.

Conversely suppose that m(X) = 1.
Let T = X ∩ (1−X)∩ TI ∩ (1− TI) where 1−X = {x : 1− x ∈ X} and 1− TI

is defined analogously. Then m (T ) = 1 and x ∈ T → 1− x ∈ T . Suppose x ∈ T is
fixed. We will denote by {ni} the set of indices corresponding to x and by {nj} the
set of indices corresponding to 1− x. Trivially {ni} ∩ {nj} = ∅, {ni} ∪ {nj} = N.
Then there exists M > 0 for which {i : |sni

| ≥ M} ∈ I and
{
j : |snj

| ≥ M
}
∈ I.

From the above, fx({i : |sni | ≥ M}) ∈ I and f1−x(
{
j : |snj | ≥ M

}
) ∈ I. Therefore

{ni : |sni
| ≥ M} ∈ I and

{
nj : |snj

| ≥ M
}
∈ I and consequently

{n : |sn| ≥ M} = {ni : |sni
| ≥ M}

⋃{
nj : |snj

| ≥ M
}
∈ I.

Therefore s is I-bounded. This completes the proof of the first statement.
To prove the second statement observe that in the proof of Theorem 2, we have

shown that X is a measurable tail set with measure 0 or 1. Therefore the second
statement follows immediately from the first one. The proof is complete.

□

Next we observe the relationship of the subsequences of a given sequence regard-
ing I-boundedness, using Baire category as a gauge of size. In (Miller-Van Wieren,
2022) [16] we showed the following theorem .

Theorem 4. Suppose s = (sn) is an unbounded sequence of reals, and let
X = {x ∈ (0, 1] : (sx) is statistically bounded}. Then X is meager.

We focus on I-boundedness with the assumption that I is an ideal with the
Baire property. If s is a bounded sequence of reals, then all of its subsequences are
likewise bounded, and hence I-bounded as well. If that is not the case we can show
the following theorem.

Theorem 5. Suppose s = (sn) is an unbounded sequence of reals, I an ideal with
the Baire property and X = {x ∈ (0, 1] : (sx) is I−bounded}. Then X is meager.

Proof. Since s is unbounded, it has ∞ or −∞ as a limit point. Let us assume that
∞ is a limit point of s (the case of −∞ is analogous) . Now since I has the Baire
property, we can find a sequence n1 < n2 < ... < nk < ... of integers such that no
member of I contains infinitely many intervals [nk, nk+1).
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For arbitrary m, j ∈ N, let

Km,j = {x ∈ (0, 1] : there exists k ∈ N, nk > m : |(sx)i| > j for i ∈ [nk, nk+1)}.
(1)

Let m, j ∈ N be arbitrarily fixed. We proceed to prove that Km,j is comeager.
Fix an arbitrary finite sequence of 0′s and 1′s denoted by x = (x1, x2, ..., xd). It

suffices to prove that we can find a finite extension x∗ of x such that any x ∈ (0, 1]
starting with x∗ belongs to Km,j . Suppose that x has t 1′s where t ≥ m (we can
assume this without loss of generality). Let k = min{i : ni > t}. We first extend
x to a sequence (x1, x2, ..., xg), g ≥ d that has exactly nk − 1 1′s. Since ∞ is a
limit point of s we can find ink

< ink+1 < ... < ink+1−1 greater than g such that
the terms of s corresponding to those indices are greater than j. Now define the
following extension of x

x∗ = (x1, x2, ..., xg, ..., xink
, ..., xink+1

, ...xink+1−1
)

where for i > g: xi = 1 for i ∈ {ink
, ink+1, ..., ink+1−1} and xi = 0, otherwise. It

is clear that any x ∈ (0, 1] that extends x∗ belongs to Km,j . We conclude Km,j

is comeager. Consequently K = ∩m ∩j Km,j is also comeager. Now if x ∈ K, for
every j the set {n : |(sx)n| > j} contains infinitely many [nk, nk+1). Consequently
for x ∈ K, sx cannot be I-bounded, since if we assumed otherwise, there would
exist j for which {n : |(sx)n| > j} ∈ I, a contradiction. Since K is comeager, it
follows that X is meager. □
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