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ABSTRACT 

A parameterized singularly perturbed first order quasilinear boundary value problem with integral 

boundary conditions is considered. Asymptotic estimates for the solution and its first derivative have 

been established. Given an example supports these theoretical results and indicate that the estimates 

are sharp. The estimates are obtained with the use of a mathematical technique that can also be 

applied in appropriate grid computations. 2010 Mathematical Subject Classification: 34K10, 34K26, 

34B08 

Keywords: Parameterized problem, Asymptotic estimate, Singular perturbation, Boundary layer, 

İntegral boundary conditions 

İntegral Sınır Şartlı Parametreye Bağlı Problemin Sınır Katı 

Davranışının İncelenmesi 

ÖZ 

Bu çalışmada, integral sınır şartlı parametreye bağlı singüler pertürbe özellikli kuazi-lineer sınır-değer 

problemi ele alınmıştır. Problemin çözümü ve birinci türevleri için asimptotik değerlendirmeler elde 

edilmiştir. Bu teorik sonuçları destekleyen ve değerlendirmelerin kesin olduğunu gösteren bir örnek 

verilmiştir. Asimptotik değerlendirmelerin elde edilmesinde kullanılan yöntem uygun nümerik 

çözümlerin incelenmesinde kullanılabilir. 

Anahtar kelimeler: Parametreli problem, Asimptotik değerlendirme, Singüler pertürbasyon, Sınır 

katı, İntegral sınır şartı 

 

1. Introduction 

In this paper we consider the following 

parameterized singular perturbation 

problem with integral boundary condition: 
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where 0 1   is small and known as the 

singular perturbation parameter,                                                                        

  known as the control parameter, A and B  
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By a solution of (1)-(3) we mean a 

 1{ ( ), } xu t C    for which problem (1)-

(3) is satisfied. For 1   the function )(tu  

has a boundary layer of thickness )(O near 

0t  (see, Section 2). Parameter dependent 

differential equations (such as (1)) occur 

naturally in various fields of science and 

engineering. Singular perturbation problems 

belong to the class of such problems in which 

a very small positive parameter is multiplied 

to the highest order derivative term in the 

differential equation. Such problem undergo 

rapid changes within very thin layers near 

the boundary or inside the problem domain, 

so most of the conventional methods fail 

when this small parameter approaches to 

zero. This kind of problems arise very 

frequently in the fields of applied 

mathematics and physics which include fluid 

dynamics, quantum mechanics, elasticity, 

chemical reactions, gas porous electrodes 

theory, the Navier-Stokes equations of fluid 

flow at high Reynolds number, 

oceanography, meteorology, reaction-

diffusion processes etc. For more details on 

singular perturbation, one can refer to the 

books [Kevorkian and Cole, 1981; Miller et 

al., 2012; Nayfeh, 1993; O’Malley, 1991; Roos 

et al., 2008] and the references therein. 

Differential equations with integral 

boundary conditions constitute a very 

interesting and important class of problems. 

Note that the boundary condition (2) 

includes periodic, two-point, there-point, 

multipoint and initial conditions as special 

cases. Such types of problems have been 

considered for many years. For a discussion 

of existence and uniqueness results and for 

applications of problems with integral 

boundary conditions see, [Ashyralyev and 

Sharifov, 2013; Benchohra et al., 2010; 2011; 

Jankowski 2002; Samoilenko,1991] and the 

references therein. In [Ahmad, et al., 2005; 

Amiraliyev, et al., 2007; Cakir and 

Amiraliyev, 2007;. Jankowski 2003; Khan, 

2003; Kudu and Amiraliyev, 2015], have 

been considered some approximating 

aspects of this kind of problems. This paper 

deals with an integral boundary value 

problem for a singularly perturbed first order 

quasilinear ordinary differential equation 

depending on a parameter. A priori 

asymptotic estimates for the solution and its 

first derivative are proved. Similar 

investigations for this type of problems, have 

been made by [Amiraliyev and Duru, 2005; 

Kudu, 2014; Kudu and Amirali 2016; Kudu 

et al., 2016; Lui and Mcare, 2001; Na, 1979; 

Pomentale, 1976], when the integral 

condition is linear. The estimates are 

obtained with the use of a mathematical 

technique that can also be used to justify the 

uniform convergence of various appropriate 

finite-difference schemes. Henceforth, C and 

c denote the generic positive constants 

independent of   and of the mesh 

parameter. Such a subscripted constant is 

also independent of   and mesh parameter, 

but whose value is fixed. 
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2. Asymptotic estimates for the 

solution of (1)-(3)  

Theorem 1. The solution  ( ),u t  of the 

problem (1)-(3) satisfies the inequalities     

          0 ,c                                                       (4)                                                                                         

        1,u c

                                                    (5)                                                                         

where  
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Integrating (7), (3) we have   
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(8) 

In view of ( ) 0c t  , then after applying the 

mean value theorem for integrals, we deduce 

that, 
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Also, for the first term in the right side of (8) 

for 1  values, we get 
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The relation (8), by taking into consideration 

here (9)-(11), immediately leads to (4). 

Further, by integrating (7), we have 
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Since ( )c t is nonnegative, then  
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Next, by virtue of maximum principle we 

have 
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leads to (5). 
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Differentiating, now the equation (7), we 

have 
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which implies validity of (6). 

3. Example   

Consider the particular problem with  
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The solution  ( ),u t  has the form     

        
/ 1/( ) tu t e te                               (13)                                                                                              

with control parameter  satisfying 

1/( ) ( ) 1 0.g e e           

It is not difficult to see that, the functions 

( , , )f t u  and ( , )K t u satisfy requirements 

from Section 1. Therefore from (13) for the 

first derivative we have  

     / 1/ /1 1
'( ) 1 .t tu t e e e  

 

              (14)                                                                            

Since 1/(0) 0,g e   

1/ 1( 1) ( 1) 2 0g e e         and 

1/'( ) 1 0g e e        we confirm that 

( 1,0).   Thereby the control parameter 

  uniformly bounded in .  From (14) it is 

also clear that the first derivative of ( )u t is 

unbounded while   values are tending to 

zero and ( )u t  has an initial layer near 0t   

of thickness ( ).O   Therefore we observe 

here the accordance with our theoretical 

results described above. 
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