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Abstract. The aim of this study is to analyze the behavior of ε on the solution
of an inverse coefficient nonlinear pseudo-hyperbolic equation

ωtt−εωxxtt−ωxx = θ(t)f(x, t, ω) with periodic boundary conditions. We also

consider the inverse coefficient problem ωtt−ωxx = θ(t)f(x, t, ω). The solution
function of nonlinear pseudo-hyperbolic equation is found to be convergent to

the solution function of nonlinear hyperbolic equation, when ε → 0 is proved.
The Fourier method was used to illustrate the theoretically relation between

the inverse problems while the Finite Difference Method was used numerically.

In order to get more accurate numerical solution higher precision schemes have
been applied in implicit finite difference equation. The cases where ε = 0 and

ε ̸= 0 have been solved analytically and numerically, and compared each other.

1. Introduction

Nonlinear hyperbolic equations and nonlinear pseudo-hyperbolic equations are
both types of partial differential equations (PDEs) that arise in various areas of
physics and engineering. While they share some similarities, they have distinct
characteristics.
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Hyperbolic equations typically describe wave phenomena, where information
propagates along characteristics at finite speed [24]. In the nonlinear case, the
coefficients and/or terms n the equation are nonlinear functions of the dependent
variable. Examples of nonlinear hyperbolic equations include the nonlinear wave
equation [21, 35], the Euler equations for compressible fluid flow [27, 39], and the
nonlinear acoustics equations [30].

Pseudo-hyperbolic equations also describe wave-like behavior, but they may not
exhibit strict characteristics along which information propagates. They often arise
as generalizations of hyperbolic equations or in systems where certain terms intro-
duce dispersive effects or alter the characteristics of wave propagation [19]. Nonlin-
ear pseudo-hyperbolic equations can involve terms with mixed spatial and temporal
derivatives and can exhibit dispersive or diffusive behavior alongside wave-like prop-
agation. Examples include certain models of viscoelasticity [29], nonlinear versions
of the Korteweg–de Vries equation [22], and some models in nonlinear optics.

In summary, while both types of equations describe wave-like phenomena, non-
linear hyperbolic equations typically follow characteristics along which information
propagates at finite speed, while nonlinear pseudo-hyperbolic equations may ex-
hibit dispersive effects or altered wave propagation behavior due to the presence of
certain terms.

Numerous analytical techniques exist for solving differential equations. Nonethe-
less, detecting arbitrary functions that fulfill given boundary conditions within these
equations can pose challenges. In fact, finding the general solution of partial differ-
ential equations is generally impossible except in specific scenarios. Consequently,
various approaches have been devised for addressing boundary value problems.
Among these, the Fourier method stands out as a well-known technique, relying on
the separation of variables [5].

The study of inverse problems emerged in the 19th and 20th centuries, con-
tributing to the resolution of numerous challenges in heat transfer, diffusion, nu-
clear physics, seismology. Inverse problems can be utilized with parabolic equations
[6-8, 17, 28]. In addition, inverse problems can also be used for hyperbolic and/or
pseudo hyperbolic equations [9, 25, 31, 32].

The present investigation employs the periodic boundary condition, which is a
specific instance of the nonlocal boundary condition [1]. Periodic boundary condi-
tion is combination between Dirichlet (giving constant properties) and Neumann
(giving constant flux) boundary conditions, and it generally utilizes to avoid large
computational domains for numerical and analytical computation [3, 4].

For the numerical solution of one-dimensional wave equations with inverse coef-
ficients (hyperbolic and pseudo-hyperbolic), there are several numerical methods,
which are finite difference method [23, 34], finite element method [11-13], and finite
volume method [10, 14-16, 20, 36, 37], available. There are many studs that solve
the wave equation (hyperbolic and/or pseudo hyperbolic equations) using the finite
difference method [2, 33, 38].
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In the present study, we investigate an inverse problem of unknown time-dependent
coefficients in the one-dimensional nonlinear hyperbolic and/or pseudo equation
with periodic boundary conditions. For an analytical solution, the Fourier method
is utilized to generate Fourier coefficients for the solutions, and through an iterative
approach, we establish the convergence, uniqueness, and stability of the solution
to the nonlinear problem. For numerical solution, implicit finite difference scheme
is utilized. To achieve a more accurate solution, higher precision schemes have
been employed in implicit finite difference equation. A second-order accurate time
discretization is implemented, and fourth-order accurate finite difference equations
are utilized for the discretization of spatial and multi-variable partial differential
equations. The cases where epsilon equals 0 and epsilon not equal to 0 (different
epsilon values) have been solved analytically and numerically, and compared with
each other.

2. Solution of the Problems

Here, we studied mixed problems of two physical phenomena models: pseudo-
hyperbolic equation (1) and hyperbolic equation (5) in the domain
(x, t) ∈ Ω (0 < x < π, 0 < t < T ) :

ω̃tt − εω̃xxtt − ω̃xx = θ̃(t)f(x, t, ω̃), (1)

ω̃(x, 0, ε) = χ(x),

ω̃t(x, 0, ε) = ϕ(x),
(2)

ω̃(x, 0, ε) = χ(x),

ω̃t(x, 0, ε) = ϕ(x),
(3)

Ẽ(t, ε) =

π∫
0

xω̃(x, t, ε)dx. (4)

The initial, boundary, and overdetermination conditions of the pseudo-hyperbolic
equation are illustrated by (2), (3), and (4), respectively. Similarly, the initial and
boundary conditions set for the solutions of the hyperbolic equation (5) expressed
as follows:

ωtt − ωxx = θ(t)f(x, t, ω), (5)

ω(x, 0) = χ(x),

ωt(x, 0) = ϕ(x),
(6)

ω(0, t) = ω(π, t),

ωx(0, t) = ωx(π, t),
(7)

E(t) =

∫ π

0

xω(x, t)dx. (8)



1174 A. YERNAZAR, E. ASLAN, I. BAĞLAN

Equation (5) is obtained from (1) by setting ε = 0. Here, the equation simplifies
to the standard wave equation. This describes classical wave phenomena where
the speed of wave propagation is constant and there is no additional dependence
on mixed spatial and temporal derivatives. Where ε ≥ 0 is a small parameter,
χ(x), ϕ(x) and E(t, ε) are given functions on x ∈ (0, π) and t ∈ (0, T ), respectively.
Here, the term εω̃xxtt introduces a damping-like or dispersive effect. This term can
account for additional physical phenomena like viscosity or diffusive effects, leading
to modified wave propagation characteristics. For example, it can model how waves
interact with a medium that has additional resistance or how they spread out over
time.
In [18, 26], the authors analyzed the dependence of the solution of direct problems
on ε. In this paper, we show the dependence of the solution of inverse coefficient
problems on ε; that is, the solution function ω̃(x, t, ε) of (1)-(4) is convergent to the
solution function ω(x, t) of (5)-(8) as ε→ 0.

In mathematical physics, direct problems aim to find functions that describe
physical processes, such as sound or heat propagation. Inverse problems arise when
the properties of the medium are unknown and it is necessary to determine these
properties based on information about the solution of the direct problem.

Definition 1. In the inverse problem, in addition to ω(x, t), there is unknown of
function included in the direct problem. This unknown pair {θ(t), ω(x, t)} is called
the solution of the inverse problem.

Definition 2. Banach space is a space in which there exists a set of continuous
functions on [0, T ] , denoted by {ω(t)} = {ω0(t), ωck(t), ωsk(t), k ∈ N} , that sat-
isfy the norm

∥ω(t)∥ = max
0≤t≤T

|ω0(t)|+
∞∑
k=1

(
max
0≤t≤T

|ωck(t)|+ max
0≤t≤T

|ωsk(t)|
)
.

Here, we seek a general solution to (1)-(4) as in

ω̃(x, t) =
ω̃0

2
+

∞∑
k=1

[ω̃ck(x, t) cos 2kx+ ω̃sk(x, t) sin 2kx].

The solution obtained is denoted by (9) below

ω̃(x, t, ε) =
1

2

χ0 + ϕ0t+
2

π

t∫
0

π∫
0

θ̃(τ)(t− τ)f(ξ, τ , ω̃)dξdτ


+

∞∑
k=1

(
χck cos α̃kt+

1

λ̃k
ϕck sin α̃kt (9)

+
1

λ̃k

2

π

t∫
0

π∫
0

θ̃(τ)f(ξ, τ , ω̃) cos 2kξ sin λ̃k(t− τ)dξdτ

 cos 2kx
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+

∞∑
k=1

(
χsk cos α̃kt+

1

λ̃k
ϕsk sin α̃kt

+
1

λ̃k

2

π

t∫
0

π∫
0

θ̃(τ)f(ξ, τ , ω̃) sin 2kξ sin λ̃k(t− τ)dξdτ

 sin 2kx,

λ̃k = 2k√
1+4εk2

, k = 1,∞.

By multiplying equation (1) by x and integrating it over the interval [0, π], and
using initial data (2) and overdetermination condition (4), we find

θ̃(t) =
Ẽ′′(t) + εϕt(π)− εϕt(0)

π∫
0

xf(x, t, ω̃)dx

−
π

∞∑
k=1

(2k)

{(
1 − ελ̃

2
k

)
χsk cos λ̃kt +

(
1

λ̃k
− ελ̃k

)
ϕsk sin λ̃kt +

1
λ̃k

2
π

t∫
0

π∫
0

θ̃(τ)f(ξ, τ, ω̃) sin 2kξ sin λ̃k(t − τ)dξdτ

}
π∫
0

xf(x, t, ω̃)dx

.

(10)

We seek a general solution to equations (5)-(8) as in

ω(x, t) =
ω0

2
+

∞∑
k=1

[ωck(x, t) cos 2kx+ ωsk(x, t) sin 2kx],

and we find the solution

ω(x, t) =
1

2

χ0 + ϕ0t+
2

π

t∫
0

π∫
0

θ(τ)(t− τ)f(ξ, τ , ω)dξdτ


+

∞∑
k=1

(
χck cosλkt+

ϕck
2k

sinλkt

+
1

αk

t∫
0

π∫
0

θ(τ)f(ξ, τ , ω) cos 2kξ sinλk(t− τ)dξdτ

 cos 2kt (11)

+

∞∑
k=1

(
χsk cosλkt+

ϕsk
2k

sinλkt

+
1

αk

t∫
0

π∫
0

θ(τ)f(ξ, τ , ω) sin 2kξ sinλk(t− τ)dξdτ

 sin 2k,
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λk = 2k, k = 1,∞.

With the same method we obtained an inverse coefficient to (5)-(8) as following;

θ(t) =

E′′(t)− π
∞∑
k=1

(2k)
(
χsk cosλkt+

ϕsk

2k sinλkt+
1
2k

∫ t

0
θ(τ)fsk(τ) sinλk(t− τ)dτ

)
∫ π

0
xf(x, t, ω)dx

.

(12)

3. Analysis of Convergence of Solutions

Theorem 1. If following
1.E(t) ∈ C2[0, T ], θ(t) ∈ C[0, T ].
2.φ(x) ∈ C1[0, π], ψ(x) ∈ C1[0, π].
3.The function f(x, t, ω) be continuous to all arguments in Ω × (−∞,∞) and sat-
isfies the following conditions

i)
∣∣∣∂(s)f(x,t,ω)

∂x(s) − ∂(s)f(x,t,ω̃)
∂x(s)

∣∣∣ ≤ b(x, t) |ω − ω̃| , s = 0, 2,

b(x, t) ∈ L2 (D) , b(x, t) ≥ 0;
ii) f(x, t, ω) ∈ C1[0, π], |f(x, t, ω)| ≤M, t ∈ [0, T ];
iii)

∫ π

0
f(x, t, ω)dx ̸= 0, ∀t ∈ [0, T ] conditions are fulfilled, then

lim
ε→0

ω̃(x, t, ε) = ω(x, t).

Proof. Firstly, we examine the difference of the time dependent coefficiets (10) and
(12) and as follows;

θ̃(t)− θ(t) =
Ẽ′′(t) + εϕt(π)− εϕt(0)

π∫
0

xf(x, t, ω̃)dx

−
π

∞∑
k=1

{
akχ

′
ck cos λ̃kt+ bkϕsk sin λ̃kt+

1
λ̃k

2
π

t∫
0

π∫
0

θ̃(τ)f ′(ξ, τ , ω̃) cos 2kξ sin λ̃k(t− τ)dξdτ

}
π∫
0

xf(x, t, ω̃)dx

−
E′′(t)− π

∞∑
k=1

(
χ′

sk cosλkt+ ϕsk sinλkt+
1
λk

2
π

t∫
0

π∫
0

θ(τ)f ′(ξ, τ , ω) cos 2kξ sinλk(t− τ)dξdτ

)
∫ π

0
xf(x, t, ω)dx

,

ak = 1
1+4εk2 , bk = 1√

1+4εk2
. Then we have

θ̃(t)− θ(t) =
2

π2M∗

(
Ẽ′′(t)− E′′(t)

)
+

2

π2M∗
(εϕt(π)− εϕt(0))
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+
2

πM∗

∞∑
k=1

χ′
ck

(
cosλkt− ak cos λ̃kt

)
+

2

πM∗

∞∑
k=1

ϕsk

(
sinλkt− bk sin λ̃kt

)

+
2

πM∗

∞∑
k=1

 1

λk

2

π

t∫
0

π∫
0

θ(τ)f ′(ξ, τ , ω) cos 2kξ sinλk(t− τ)dξdτ

− 1

λ̃k

2

π

t∫
0

π∫
0

θ̃(τ)f ′(ξ, τ , ω̃) cos 2kξ sin λ̃k(t− τ)dξdτ

 .

If the absolute value of the difference is taken after adding and subtracting and
making the necessary grouping, we have∣∣∣θ̃(t)− θ(t)

∣∣∣ ≤ 2

π2M∗

∣∣∣Ẽ′′(t)− E′′(t)
∣∣∣+ 2

π2M∗
|εϕt(π)− εϕt(0)|

+
2

πM∗

∞∑
k=1

|χ′
ck|
∣∣∣cosλkt− ak cos λ̃kt

∣∣∣+ 2

πM∗

∞∑
k=1

|ϕsk|
∣∣∣sinλkt− bk sin λ̃kt

∣∣∣
+

2

πM∗

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(t)− θ(t)

]
f ′(ξ, τ , ω) cos 2kξ sinλk(t− τ)dξdτ

∣∣∣∣∣∣
+

2

πM∗

∞∑
k=1

∣∣∣∣ 1λk − 1

λ̃k

∣∣∣∣ 2π
∣∣∣∣∣∣

t∫
0

π∫
0

θ̃(τ)f ′(ξ, τ , ω̃) cos 2kξ sin λ̃k(t− τ)dξdτ

∣∣∣∣∣∣
+

2

πM∗

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f ′(ξ, τ , ω̃)− f ′(ξ, τ , ω)] cos 2kξ sinλk(t− τ)dξdτ

∣∣∣∣∣∣
+

2

πM∗

∞∑
k=1

1

λk

t∫
0

 2

π

∣∣∣∣∣∣
π∫

0

θ̃(τ)f ′(ξ, τ , ω̃) cos 2kξdξ

∣∣∣∣∣∣
 ∣∣∣sinλk(t− τ)− sin λ̃k(t− τ)

∣∣∣ dτ.
(13)

From (13), the statements
∣∣∣Ẽ′′(t)− E′′(t)

∣∣∣ , |εϕt(π)− εϕt(0)| ,
∣∣∣ 1
λk

− 1
λ̃k

∣∣∣ , ∣∣∣sinλkt− bk sin λ̃kt
∣∣∣ ,∣∣∣cosλkt− ak cos λ̃kt

∣∣∣ , ∣∣∣sinλk(t− τ)− sin λ̃k(t− τ)
∣∣∣ are bounded for k, τ and t (0 ≤ τ ≤ t ≤ T )

as ε→ 0, also ak, bk are limited. Let us denote all of these statements by σ(ε) and
we rewrite (13) as following

∣∣∣θ̃(t)− θ(t)
∣∣∣ ≤σ(ε) + 2

πM∗

∞∑
k=1

1

λ̃k

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f ′(ξ, τ , ω) cos 2kξ sinλk(t− τ)dξdτ

∣∣∣∣∣∣
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+
2

πM∗

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f ′(ξ, τ , ω̃)− f ′(ξ, τ , ω)] cos 2kξ sinλk(t− τ)dξdτ

∣∣∣∣∣∣.
Applying Cauchy, Bessel, Hölder inequalities to the inequality above, we have

∣∣∣θ̃(t)− θ(t)
∣∣∣ ≤ σ(ε)

B
+

2

BM∗

√
t

6π

 t∫
0

π∫
0

{
θ̃(τ)b(ξ, τ) |ω̃ − ω|

}2

dξdτ


1
2

, (14)

B = 1− 4M
πM∗

√
t
π

(
π2

24 + ε
)
.

Let us take the difference of the Fourier coefficients to examine the difference of the
solutions (9) and (11),

ω̃0(t, ε)− ω0(t) =
2

π

t∫
0

π∫
0

θ̃(τ)(t− τ)f(ζ, τ , ω̃)dζdτ − 2

π

t∫
0

π∫
0

θ(τ)(t− τ)f(ζ, τ , ω)dζdτ ,

ω̃ck(t, ε)− ωck(t) =

∞∑
k=1

(χck cos α̃kt− χck cosαkt) +

∞∑
k=1

(
1

λ̃k
ϕck sin α̃kt−

ϕck
λk

sinαkt

)

+

∞∑
k=1

 1

λ̃k

2

π

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) cos 2kζ sin λ̃k(t− τ)dζdτ

− 1

λk

2

π

t∫
0

π∫
0

θ(τ)f(ζ, τ , ω) cos 2kζ sinλk(t− τ)dζdτ

 ,

ω̃sk(t, ε)− ωsk(t) =

∞∑
k=1

(χsk cos α̃kt− χsk cosαkt) +

∞∑
k=1

(
1

λ̃k
ϕsk sin α̃kt−

ϕsk
λk

sinαkt

)

+

∞∑
k=1

 1

λ̃k

2

π

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) sin 2kζ sin λ̃k(t− τ)dζdτ

− 1

λk

2

π

t∫
0

π∫
0

θ(τ)f(ζ, τ , ω) sin 2kζ sinλk(t− τ)dζdτ

 .

By adding and subtracting and taking the absolute values, we obtain

|ω̃0(t, ε)− ω0(t)| ≤
2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[θ̃(τ)− θ(τ)](t− τ)f(ζ, τ , ω)dζdτ

∣∣∣∣∣∣
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+
2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ)(t− τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] dζdτ

∣∣∣∣∣∣ ,

|ω̃ck(t, ε)− ωck(t)| ≤
∞∑
k=1

|χck|
∣∣∣cos λ̃kt− cosλkt

∣∣∣+ ∞∑
k=1

|ϕck|

∣∣∣∣∣ sin λ̃ktλ̃k
− sinλkt

λk

∣∣∣∣∣
+

∞∑
k=1

∣∣∣∣ 1λ̃k − 1

λk

∣∣∣∣ 2π
∣∣∣∣∣∣

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) cos 2kζ sin λ̃k(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

t∫
0

 2

π

∣∣∣∣∣∣
π∫

0

θ̃(τ)f(ζ, τ , ω̃) cos 2kζdζ

∣∣∣∣∣∣
 ∣∣∣sin λ̃k(t− τ)− sinλk(t− τ)

∣∣∣ dτ,

|ω̃sk(t, ε)− ωsk(t)| ≤
∞∑
k=1

|χsk|
∣∣∣cos λ̃kt− cosλkt

∣∣∣+ ∞∑
k=1

|ϕsk|

∣∣∣∣∣ sin λ̃ktλ̃k
− sinλkt

λk

∣∣∣∣∣
+

∞∑
k=1

∣∣∣∣ 1λ̃k − 1

λk

∣∣∣∣ 2π
∣∣∣∣∣∣

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) sin 2kζ sin λ̃k(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

t∫
0

 2

π

∣∣∣∣∣∣
π∫

0

θ̃(τ)f(ζ, τ , ω̃) sin 2kζdξ

∣∣∣∣∣∣
 ∣∣∣sin λ̃k(t− τ)− sinλk(t− τ)

∣∣∣ dτ.
After that, we have

|ω̃(t, ε)− ω(t)| = |ω̃0(t, ε)− ω0(t)|
2

+

∞∑
k=1

[|ω̃ck(t, ε)− ωck(t)|+ |ω̃sk(t, ε)− ωsk(t)|]
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≤ 1

π

∣∣∣∣∣∣
t∫

0

π∫
0

[θ̃(τ)− θ(τ)](t− τ)f(ζ, τ , ω)dζdτ

∣∣∣∣∣∣
+

1

π

∣∣∣∣∣∣
t∫

0

π∫
0

∣∣∣θ̃(τ)(t− τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)]
∣∣∣ dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

|χck|
∣∣∣cos λ̃kt− cosλkt

∣∣∣+ ∞∑
k=1

|ϕck|

∣∣∣∣∣ sin λ̃ktλ̃k
− sinλkt

λk

∣∣∣∣∣
+

∞∑
k=1

|χsk|
∣∣∣cos λ̃kt− cosλkt

∣∣∣+ ∞∑
k=1

|ϕsk|

∣∣∣∣∣ sin λ̃ktλ̃k
− sinλkt

λk

∣∣∣∣∣ (15)

+

∞∑
k=1

∣∣∣∣ 1λ̃k − 1

λk

∣∣∣∣ 2π
∣∣∣∣∣∣

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) cos 2kζ sin λ̃k(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

t∫
0

 2

π

∣∣∣∣∣∣
π∫

0

θ̃(τ)f(ζ, τ , ω̃) cos 2kζdζ

∣∣∣∣∣∣
 ∣∣∣sin λ̃k(t− τ)− sinλk(t− τ)

∣∣∣ dτ
+

∞∑
k=1

∣∣∣∣ 1λ̃k − 1

λk

∣∣∣∣ 2π
∣∣∣∣∣∣

t∫
0

π∫
0

θ̃(τ)f(ζ, τ , ω̃) sin 2kζ sin λ̃k(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

t∫
0

 2

π

∣∣∣∣∣∣
π∫

0

θ̃(τ)f(ζ, τ , ω̃) sin 2kζdζ

∣∣∣∣∣∣
 ∣∣∣sin λ̃k(t− τ)− sinλk(t− τ)

∣∣∣ dτ.
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The statements
∣∣∣Ẽ′′(t)− E′′(t)

∣∣∣ , ∣∣∣ 1
λk

− 1
λ̃k

∣∣∣ , ∣∣∣sinλkt− bk sin λ̃kt
∣∣∣ , ∣∣∣cosλkt− ak cos λ̃kt

∣∣∣ ,∣∣∣sinλk(t− τ)− sin λ̃k(t− τ)
∣∣∣ in the inequality (15) are bounded for k, τ and t

(0 ≤ τ ≤ t ≤ T ) as ε → 0. Let us denote all of these statements by σ(ε) and
we rewrite (15) as follow

|ω̃(t, ε)− ω̃(t)| ≤ σ(ε) +
1

π

∣∣∣∣∣∣
t∫

0

π∫
0

[θ̃(τ)− θ(τ)](t− τ)f(ζ, τ , ω)dζdτ

∣∣∣∣∣∣
+

1

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ)(t− τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

[
θ̃(τ)− θ(τ)

]
f(ζ, τ , ω̃) sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] cos 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣
+

∞∑
k=1

1

λk

2

π

∣∣∣∣∣∣
t∫

0

π∫
0

θ̃(τ) [f(ζ, τ , ω̃)− f(ζ, τ , ω)] sin 2kζ sinλk(t− τ)dζdτ

∣∣∣∣∣∣.

By applying Cauchy, Bessel, Hölder inequalities, and Lipshitz condition to the
last inequality, we have

|ω̃(t, ε)− ω(t)| ≤ σ(ε) (16)

+ 2

√
t3

3π


 t∫

0

π∫
0

{∣∣∣θ̃(τ)− θ(τ)
∣∣∣ f(ξ, τ , ω)}2

dξdτ


1
2

+

 t∫
0

π∫
0

{
θ̃(τ)b(ξ, τ) |ω̃ − ω|

}2

dξdτ


1
2


+ 2

√
πt

6


 t∫

0

π∫
0

{∣∣∣θ̃(τ)− θ(τ)
∣∣∣ f(ξ, τ , ω̃)}2

dξdτ


1
2

+

 t∫
0

π∫
0

{
θ̃(τ)b(ξ, τ) |ω̃ − ω|

}2

dξdτ


1
2

 .
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Then we use the result of the difference of the inverse coefficients (14) in (16),
we have

|ω̃(t, ε)− ω(t)| ≤
(
1 +

CM

B

)
σ(ε) +

(
2CM

BM∗

√
t

6π
+ C

) t∫
0

π∫
0

{
θ̃(τ)b(ζ, τ) |ω̃ − ω|

}2

dζdτ


1
2

,

C =

(
2

√
t3

3π
+ 2

√
πt

6

)
.

If we take into account the inequality (y + z)
2 ≤ 2y2 + 2z2, then

|ω̃(t, ε)− ω(t)|2 ≤ 2

(
1 +

CM

B

)2

σ2(ε)

+2

(
2CM

BM∗

√
t

6π
+ C

)2
 t∫

0

π∫
0

{
θ̃(τ)b(ζ, τ) |ω̃ − ω|

}2

dζdτ

 .

Finally, applying Gronwall inequality to the last inequality, we have

|ω̃(t, ε)− ω(t)|2 ≤ 2

(
1 +

CM

B

)2

σ2(ε)

× exp

2

(
2CM

BM∗

√
t

6π
+ C

)2
 t∫

0

π∫
0

{
θ̃(τ)b(ζ, τ)

}2

dζdτ

 .

(17)

Thus, the right-hand side of (17) converges to zero as ε approaches to zero. That
is,

lim
ε→0

ω̃(t, ε) = ω(t).

In a previous study, we looked at solutions to the problems (1)-(4) and (5)-(8)
in cases ε > 0 and ε = 0, respectively. This paper investigated the convergence of
the solution (9) to the solution (11) as ε → 0 under the theorem conditions. The
solution was therefore found to be

lim
ε→0

ω̃(x, t, ε) = ω(x, t).

□

4. Numerical Method

The Finite Difference Method is commonly used for solving the wave equation
due to its simplicity and efficiency. It approximates derivatives using straight-
forward difference formulas, which is ideal for handling the second-order partial
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derivatives in the wave equation. Additionally, The Finite Difference Method is
computationally efficient, especially for problems on structured grids, making them
less resource-intensive than more complex methods like Finite Element or Spectral
Methods.

We devise an iterative algorithm aimed at the linearizing the problem.

∂2ω(n)

∂t2
= ε

∂4ω(n)

∂x2∂t2
+
∂2ω(n)

∂x2
+ θ (t) f

(
x, t, ω(n−1)

)
, (18)

ω(n)(x, 0) = χ(x), x ∈ [0, π] ,

ω
(n)
t (x, 0) = ϕ(x), x ∈ [0, π] ,

(19)

ω(n)(0, t) = ω(n)(π, t), t ∈ [0, T ] ,

ω(n)
x (0, t) = ω(n)

x (π, t), t ∈ [0, T ] .
(20)

By setting ω(n) (x, t) = v (x, t) and f
(
x, t, ω(n−1)

)
= f̃ (x, t) , we can express the

problem Eqs. (18)-(20) as a linear problem.

∂2v

∂t2
= ε

∂4v

∂x2∂t2
+
∂2v

∂x2
+ θ (t) f̃ (x, t) , (x, t) ∈ D. (21)

After the linearization method, implicit finite difference scheme is applied to solve
the problem numerically. In Eq. (22), a second-order accurate backward finite
difference scheme was used for temporal discretization. For the term with epsilon
and last term in the same equation, a fourth-order accurate central differencing
scheme was employed.

1

∆t2

(
2vj+3

i − 5vj+2
i + 4vj+1

i − vji

)
=

ε

16∆x2∆t2

[(
vj+3
i+2 − 2vj+3

i + vj+3
i−2

)
−
(
2vj+1

i+2 − 4vj+1
i + 2vj+1

i−2

)]

+
ε

16∆x2∆t2

(
vj−1
i+2 − 2vj−1

i + vj−1
i−1

)

+
1

12∆x2

(
vj+3
i+2 + 16vj+3

i+1 − 30vj+3
i + 16vj+3

i−1 − vj+3
i−2

)
+ sj+2f̃ j+2. (22)

Initial condition is defined as

v0i = φi. (23)

Periodic boundary condition is combination of Dirichlet and Neumann boundary
conditions, and it is defined as

vj1 = vjNx, (24)

vjNx =
vj2 + vjNx−1

2
. (25)
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The computational domain spans [0, π] in the x-direction and [0, T ] in time. It’s
discretized into intervals such that xi = i (∆x− 1) for i = 1, 2, ...., Nx in space, and
tj = j∆t for j = 1, 2, ...., Nt in time. Here ∆x represents the spatial increment,
calculated as π/Nx and ∆t represents the time step, calculated as T/Nt Nx

and Nt are two positive integers. The values v, φ and f are discretized as vji =

v (xi, tj) , φi = φ (xi) and f̃ j+2 = f (xi, tj+2), respectively. The initial time t = 0
denotes the initial condition. In our numerical computation j + 3 represents the
present time, j + 2 denotes the time just before the present, j + 1 represents the
two steps before the present, and j three steps before the present.

To determine the inverse coefficient θ (t) , we integrate Eq. (1) over the range
from 0 to φ with respect to x, while incorporating Eq. (3) and Eq. (4), leading to

θ (t) =
E′′ (t)− ε [πvxtt (π, t)− vtt (π) + vtt (0)]− πvx (π, t)

π∫
0

xf̃ (x, t) dx

. (26)

The individual discretization of the elements constituting Eq. (26) using finite
differences one by

E′′ (t) =
[(
2Ej+2 − 5Ej+1 + 4Ej − Ej−1

)
/∆t2

]
, (27)

vtt (π) =
((

2vj+2
Nx − 5vj+1

Nx + 4vjNx − vjNx

)
/∆t2

)
, (28)

vtt (0) =
((

2vj+2
1 − 5vj+1

1 + 4vj1 − vj1

)
/∆t2

)
, (29)

πvx (π, t) = π
(
3vj+2

Nx − 4vj+2
Nx−1 + 4vj+2

Nx−2

)
/2∆x , (30)

πvxtt (π, t) = π
(((

vj+2
i+1 − 2vj+1

i+1 + vji+1

)
−
(
vj+2
i − 2vj+1

i + vji

))
/∆x∆t2

)
.

(31)
Second-order accurate backward finite difference schemes have been used for Eqs.

(27)-(30). The mixed derivative used in Eq. (31) is discretized using a first-order
accurate backward finite difference method.(

f̃ in
)j+2

=

π∫
0

xf̃ (x, t) dx. (32)

Trapezoidal rule for integration is employed to compute Eq. (30). The value
of Nx utilized for numerical solutions differs from the value of Nin used for the
trapezoidal rule integration.

When computing the inverse coefficient during the initial time steps, we utilize
the initial value of v , yet we refrain from presenting the detailed discretization here
to avoid excessive elaboration.

For the numerical solution of Eq. (22), no iterative methods were employed,
a direct method was used instead. The right-hand side matrix constitutes from
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previous values, and it is used in direct method. The right-hand side matrix

rhsi = −5uj+2
i + 4uj+1

i − uji+
ε

8∆x2

(
uj+1
i+2 − 2uj+1

i + uj+1
i−2

)
− ε

16∆x2

(
uj−1
i+2 − 2uj−1

i − uj−1
i−2

)
− sj+2f̃ j+2∆t2. (33)

5. Numerical Example

Considering inverse problem

f (x, t, ω) = ε2 +
(
4 + 4ε3 + ε2

)
sin (2x) ,

φ(x) = 1 + sin 2x,E (t) =

(
π2 − π

)
2

eεt, x ∈ [0, π] , t ∈ [0, T ] .

In that case, the problem transforms as

ωtt − εωxxtt − ωxx = θ(t) sin (2x)
[
ε2 +

(
4 + 4ε3 + ε2

)
sin (2x)

]
ω (x, 0) = 1 + sin 2x, x ∈ [0, π] ,

ω(0, t) = ω(π, t), ωx(0, t) = ωx(π, t), 0 ≤ t ≤ T,∫ π

0

xω(x, t)dx =

(
π2 − π

)
2

eεt.

The analytical solution of this problem can be defined as

{θ (t) , ω (x, t)} =
{
eεt, (1 + sin (2x)) eεt

}
.

5.1. Grid Independence Study, Time Step Size Determination and Vali-
dation. Since the variation of ω over time becomes more significant for the ε = 2,
grid independence, time step size determination, and validation studies were con-
ducted for the ε = 2 case. For the grid independence study, seven different grid
densities are used, these are 20, 40, 80, 160, 320, 640 and 1280. The grid inde-
pendence study is repeated for five different time steps. The time steps used are
in descending order: 0.01s, 0.005s, 0.0025s, 0.00125s, and 0.000625s. The grid in-
dependence studies for each time step are illustrated in Figure 1. The ω values
shown in grid independence study are the maximum ω values at 1sn. The results
estimated with 640 grids for all time steps are very close to those estimated with
1280 grids. Therefore, the grid number of 640 is determined as the grid independent
mesh.

For the ε value of 2, the determination of the time step size for the grid indepen-
dent mesh number of 640 grid is shown in Figure 2. Similarly, the ω values shown
in the time step size determination study are the maximum ω values at 1s. It is
observed that the omega value increases linearly, as the time step size decreases.
However, it can be seen that the ω prediction for the time step sizes of 0.00125s
and 0.000625s are close the each other. Therefore, the appropriate time step is
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determined to be 0.00125s. The result in the subsequent validation study is based
on the numerical solution with 640 grid numbers and a time step size of 0.00125s.

As previously mentioned, numerical solutions are obtained by selecting 640 grid
number and a time step size of 0.00125s based on the grid independence and time
step size determination study. The obtained numerical solutions are compared and
validated against the exact solutions. The validation study is conducted for the
ε value of 2. The validation of the inverse coefficient is shown in Figure 3. In
Figure 3(a), the time-dependent variation of the inverse coefficient is given as both
numerical and exact solutions. Due to the exponential nature with time, the inverse
coefficient increases, and the real solutions closely match the numerical solutions.

In Figure 3(b), the time-dependent variation of the real errors is observed. The
real errors increase with time, although these real errors are very small. Finally, to
better compare the real solution with the numerical solution, the absolute relative
true error is given as a function of time in Figure 3(c). The absolute relative true
errors exhibit oscillations over time, but these oscillations are on a very small scale.
Overall, the average absolute relative real error is at the level of 0.192%, indicating
the numerical solution for the inverse coefficient.

The validation of the omega value for ε = 2 is shown in Figure 4. In Figure 4(a),
the numerical prediction of ω is depicted, in Figure 4(b), the values of ω obtained
from the analytical solution are shown, and in Figure 4(c), the true error between
these two solutions is presented as a function of time. Upon inspection of Figures
4(a) and (b), it can be observed that there is little difference between the numerical
solution and the analytical solution. To better compare the two cases, the true error
between the two solutions is examined, revealing that the error is minimal at the
initial times and increases with time, particularly in boundary regions. However,
despite this increase, the resulting real error is at the level of 0.04. This indicates
that the numerical solution has been validated.

5.2. Numerical Predictions. After the grid independence, timed step size deter-
mination and validation studies, it has been decided to use 640 grids and time step
size of 0.00125s in subsequent numerical computations. Now, numerical solutions
have been computed and compared at specific interval of 0.5 ranging from ε = 0 to
ε = 3.

In Figure 5, the numerical prediction of the inverse coefficients for all epsilon
values is shown. The inverse coefficient is an exponential function, becoming more
prominent as epsilon increases. While at zero seconds, the exponential function-
based inverse coefficient takes a constant value of unity for all epsilons, its value
increases as time progresses.

Figure 6 depicts the variations of ω values for all ε values considered at (a)0.5s
and (b)1s. These ω values are obtained from numerical predictions. The general
trend of omega values increases for all ε values from the beginning of the domain
to a length of 0.79 and then decreases to approximately 2.36 length until reaching
zero, after which it tends to increase again until the end of the domain. While
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dt=0.01 dt=0.005

dt=0.0025 dt=0.00125

dt=0.000625

Figure 1. Grid independence study for ε = 2

the ω value obtained at ε = 0 is symmetric, symmetry is disrupted as ε increases.
Moreover, ω values increase with both ε and time. At t = 0.5s, the maximum ω
value for ε = 3 is around 9, whereas at t = 1s, the maximum ω value for ε = 3 is
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Figure 2. Time step size determination for ε = 2

approximately 40. Additionally, at t = 1s, when ε = 2.5, the maximum ω value is
around 24, while it reaches approximately 41 when ε = 3, as mentioned earlier.

Figure 7 presents three-dimensional graphs showing the variation of ω values
predicted from numerical solutions with respect to both length and time for (a)
ε = 0, (b) ε = 0.5, (c) ε = 1, (d) ε = 1.5, (e) ε = 2, (f) ε = 2.5, and (g) ε = 3.
Figure 7 transforms the lines obtained from only two times (0.5s and 1s) mentioned
in Figure 6 into area plots showing all times. To ensure better comparison across all
values, all graphs are drawn on the same scale. All interpretations made in Figure
6 can also be applied to Figure 7.
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(a) (b)

(c)

Figure 3. Validation of inverse coefficient for ε = 2
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(a) (b)

(c)

Figure 4. Validation of ω for ε = 2
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Figure 5. Numerical predictions of inverse coefficient for all ε

(a) (b)

Figure 6. Numerical predictions of ω for all ε at(a) t = 0.5s and
(b)t = 1s
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 7. Numerical predictions of ω at all times and for (a)ε = 0,
(b)ε = 0.5, (c)ε = 1, (d)ε = 1.5, (e)ε = 2, (f)ε = 2.5 and (g)ε = 3
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6. Conclusions

Analytical and numerical investigation of one-dimensional nonlinear hyperbolic
(ε = 0) and pseudo-hyperbolic (ε ̸= 0) equation with periodic condition is done.
This investigation contains an inverse problem of unknown unsteady coefficients.
For analytical solution, the generalized Fourier method is utilized to calculate
Fourier coefficients. Additionally, an iterative approach is employed to ensure
convergence while assessing the uniqueness and stability of the solution for the
nonlinear problem. For numerical solution, implicit finite difference equation with
higher accurate schemes is applied. A second-order accurate time discretization is
applied, and for the discretization of spatial and multi-variable partial differential
equations, fourth-order accurate finite difference equations are implemented. The
cases where (ε = 0) and ε ̸= 0 (different epsilon values) have been solved analyt-
ically and numerically, and compared with each other. The main conclusions are
listed below;

• In light of the grid independence and time step size determination study,
640 mesh number and 0.00125s time step size are determined. Using this
mesh number and time step size, the numerical computation for the ε = 2
is validated against analytical results for both ω and inverse coefficient.

• In the case of ε = 0, the inverse coefficient does not vary with time (θ(t) =
1), however, as ε and time increases, the inverse coefficient increases due to
its exponential nature.

• The distribution of ω over length is symmetric at a certain time in the
case of hyperbolic equation (ε = 0), but in the case of pseudo-hyperbolic
equation (ε ̸= 0) the distribution of ω over length is asymmetric.

• Due to periodic boundary conditions, the ω values at the boundaries of the
solution domain are identical to each other, and as the ε value increases,
the ω values at the boundary points also increase.

• As the time and ε value increase, the magnitude of ω oscillations increase
at especially at the beginning of the solution domain.
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10.1016/j.crme.2006.01.010

[31] Liu, S., Triggiani, R., Global uniqueness and stability in determining the damping and po-
tential coefficients of an inverse hyperbolic problem, Nonlinear Analysis: Real World Appli-

cations, 12(3) (2011), 1562-1590. https://doi.org/10.1016/j.nonrwa.2010.10.014
[32] Mehraliyev, Y. T., Ramazanova, A. T., Huntul, M. J., An inverse boundary value problem for

a two-dimensional pseudo-parabolic equation of third order, Results in Applied Mathematics,

14 (2022), 100274. https://doi.org/10.1016/j.rinam.2022.100274
[33] Shu, T., Yang, K., Liu, Y., Feng, B., Wu, C., Wave-equation traveltime slope inversion by

combining finite difference and crosscorrelation methods, Journal of Applied Geophysics, 206
(2022), 104817. https://doi.org/10.1016/j.jappgeo.2022.104817

[34] Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Meth-

ods, Oxford University Press, 1985.



1196 A. YERNAZAR, E. ASLAN, I. BAĞLAN
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