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Abstract

The cell is the basic structure and process unit that carries all the living characteristics
of a living thing and has the ability to survive on its own under suitable conditions. The
relationship of cell size with nutrient absorption and nutrient consumption in the cell
membrane has been examined with the current model using the theory of differential
equations in classical analysis. During these examinations, the cell considered was assumed
to be spherical. In fact, the shapes of cells vary depending on their functional properties.
Many have long appendages, cylindrical parts or branch-like structures. However, in this
study, a simple global cell will be discussed, leaving all these complex situations aside.
In the current model, the relationship between the change in the radius of the cell and
the nutrient absorption and consumption in the cell membrane is detailed using classical
differential equations. The answer to the question for which cell size is the consumption
rate exactly balanced with the absorption rate was found in classical analysis. The current
model consists of first-order differential equations. In this model, the dependent variables
are the radius of the cell and the mass of the cell. The classical solutions of these models
will be examined, the size of the cell and the cell membrane relationship will be examined,
and details will be given with numerical examples. However, in order to consider this
biological phenomenon from different perspectives and compare the results, the relevant
event will be modeled using multiplicative analysis, one of the Non-Newtonian analyses.
The new models will be solved using multiplicative analysis techniques, and the results will
be compared with classical analysis. With this new model, it is planned to clarify the results
obtained in the classical case, to reveal more clearly the relationship between the size of the
cell and nutrient absorption and consumption in the cell membrane, and to obtain important
results.

1. Introduction

A spherical cell absorbs nutrients at a rate proportional to its surface area S, but consumes nutrients at a rate proportional to its volume V
(Figure 1.1). Some constants and their equivalents that will appear in the cell model to be established are as follows.
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Figure 1.1: Arbitrary Spherical Cell

A: Net absorption rate of nutrients per unit time,
C: Net rate of consumption of nutrients per unit time,
V : Volume of the cell,
S: Surface area of the cell,
r: Radius of the cell,
In this study, the change of four cell models radii with respect to time was analyzed in classical and multiplicative analyses and each case
was numerically examined and comparisons were made. To establish model, following assumptions are considered [1–10].
1. The cell is roughly spherical.
2. The cell absorbs oxygen and nutrients from its surface. The larger the surface area S, the faster the overall absorption rate. The rate of
absorption of nutrients (or oxygen) is assumed to be proportional to the surface area of the cell.
3. The rate at which nutrients are consumed (i.e. depleted) in metabolism is proportional to the volume V of the cell. The larger the volume,
the more nutrients are needed to keep the cell alive.
Now let’s restate the assumptions mathematically. According to second assumption, the absorption rate A is proportional to S. This means:

A = k1S,

where k1 is proportional constant. Since absorbance and surface area are positive quantities, only positive values of the proportionality
constant are significant, so k1 must be positive (This is consistent with multiplicative analysis). The value of this constant depends on its
properties, such as the permeability of the cell membrane or how many pores it contains to allow the passage of nutrients. By using a general
constant called a parameter to represent this proportionality constant, the model is kept general enough to apply to many different cell types.
According to third assumption, the rate of food consumption, C is proportional to V :

C = k2V,

where k2 is positive proportional constant. k2 depends on cell metabolism, that is, how fast it consumes nutrients while performing its
activities. According to first assumption, the cell is spherical, so

S = 4πr2, V =
4
3

πr3,

where S is surface area and V is its volume. Putting these rationales together gives the following relationships between nutrient absorption A,
consumption C, and cell radius r:

A(r) = (4πk1)r2,

C(r) =

(
4
3

πk2

)
r3.

These equations will contribute to seeing how nutrient balance depends on cell size. Here, functions A and C are second and third degree
polynomial functions, respectively, depending on the radius of the cell. Nutrient balance depends on the radius of a cell. First, the answer to
the question of whether nutrient absorption or nutrient consumption is more effective for small, medium or large cells will be sought [11].
The problem expressed in the following classical case is the problem on which we base our study and make comparisons.

Motivation question: For what cell size is the consumption rate exactly balanced by the absorption rate? What ratio (consumption or
absorption) dominates for small or large cells?
If the consumption rate for the cell is in equilibrium with the absorption rate, it yields

A(r) =C(r).

Then,

(4πk1)r2 =

(
4
3

πk2

)
r3.
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r = 0 is trivial solution of this equation. This is not biologically meaningful anyway. Non-trivial solutions are required for this study. From
the above relation, we get

r =
3k1

k2
,

where r 6= 0. This means that the rates of absorption and consumption are equal for cells of this size. For small r values, C(r) dominates.
Thus, absorption dominates for smaller cells, while consumption dominates for larger cells. From here, cells larger than the critical size
r = 3k1

k2
cannot meet the nutrient demand and the cell dies because consumption cannot meet nutrient absorption [1–8].

Using the simple geometric argument above, it can be concluded that cell size has strong effects on its ability to absorb nutrients or oxygen
fast enough to feed itself. If a cell absorbs nutrients faster than the food consumed (A >C), some of the excess nutrients accumulate and this
accumulation of nutrient mass can be converted into cell mass. This can cause growth (increase in cell mass).
Conversely, if the rate of consumption exceeds the rate of absorption of nutrients, C > A, the cell has a metabolic “fuel” shortage and
must convert some of its own mass into energy reserves that can power its metabolism, resulting in a loss of cell mass. We can track such
changes in cell mass using a simple “equilibrium equation” using differential equations in classical analysis. The equilibrium equation is the
difference between the rate of change of cell mass (A) incoming nutrient (mass) ratio (C);

dm
dt

= A−C, (1.1)

Each term in this equation must have the same units of nutrient mass per unit time. A is a depletion rate that contributes positively to mass
gain, while C is a depletion rate that negatively contributes to mass gain. This is already the basic logic in the creation of the model. If we
consider the expressions

A = k1S, C = k2V, m = pV

in (1.1), we get

d(pV )

dt
= k1S− k2V, (1.2)

where S is surface area, V is volume and p is density of the cell. The above equation is quite general and does not depend on the cell shape.
Let us now consider the special case of a cell being spherical. Eq. (1.1) will be converted into an equation showing the variation of the cell
radius with time where

S = 4πr2, V = 4/3πr3.

By (1.2) and after some adjustments and implementation of chain rule, we get

dr
dt

=
1
p

(
k1−

k2

3
r
)
. (1.3)

With an explanation of how the cell mass changes, a result estimate of the rate of change of the cell radius is reached. This was done using
classical analysis methods. The resulting equation is a differential equation that tells us about a growing cell. This model will be used as a
tool to understand how it predicts the dynamics of cells with different initial sizes. The differential equation (1.3) is a linear differential
equation. The general solution of this equation is given below as a preliminary conclusion for the study. Eq. (1.3) will be solved in the
classical case by the method of variation of parameters. If this equation is adapted to the solution and some adjustments are made, we get

r(t) =
3k1

k2
+ ke−

k2t
3p , (1.4)

where k is an arbitrary constant. Using this solution, the variation of the radius of the cell with time can be obtained for different times [1].
Some considerations will be made on two problems involving stomach and blood cells.
Let’s express some information about stomach cell, which we will examine on the first example.

Example 1.1 (Stomach Cell-Usual Case, [1–8]). The stomach is a muscular, expandable digestive system organ. A healthy stomach cell
radius value is approximately between 10−30µm and the cell density is p = 1.04gr/(cm)3 . Based on this information, let’s analyze the
cell radius variation for classical model. Let’s fix the cell radius at r(t) = 20µm. If we consider the initial condition r(0) = 20µm in general
solution (1.4), we get

r(t) =
3k1

k2
+

(
20− 3k1

k2

)
e−

k2t
3(1,06) ,

and

k1

k2
∼= 6.6.

This value is the equilibrium state. Now let’s observe the change in the cell by changing this ratio. Since r(0) = 20 for k1
k2
∼= 6.6, it can be

said that the balance situation continues. Now let’s observe the state of the cell for different values of the ratio by changing the variable t for
k2 = 10 in Table 1.1.
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k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
6,6 20 19.8081 19.8003 19.8000 19.800 . . . 19.800
6,5 20 19.5081 19.5003 19.5000 19.5000 . . . 19.5000
6,4 20 19.2081 19.2003 19.2000 19.2000 . . . 19.2000
6,3 20 18.9081 18.9003 18.9000 18.9000 . . . 18.9000
6,2 20 18.6081 18.6003 18.6000 18.6000 . . . 18.6000
6,1 20 18.3081 18.3003 18.3000 18.3000 . . . 18.3000
6,0 20 18.0081 18.0003 18.0000 18.0000 . . . 18.0000

Table 1.1: Change of stomach cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 19.800.

As can be seen in this example, for k1
k2

= 6.6, there is a 1% decrease, which is the most stable condition. For k1
k2

= 6.3− 6.4, there is a

4−5.5% decrease, which is within normal limits. For k1
k2

= 6.0−6.1, there is a 8.5−10% decrease, which is the condition that should be
monitored.

Example 1.2 (Blood Cell-Usual Case, [1–8]). Eristocytes, or red blood cells, are the main oxygen-carrying components of blood. Red
blood cells are small (3.5µm), round cells shaped in cross section as two concave discs. Let’s examine the cell radius situation in general
solution (1.4) according to these values. Dense of a blood cell is p = 1,10gr/cm3 . The equilibrium state for this cell is

k1

k2
= 1.17,

for

r(t) =
3k1

k2
+

(
3.5− 3k1

k2

)
e−

k2t
3p ,

where r(0) = 3.5 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,10gr/cm3 by Table 1.2.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
1.17 3.5000 3.5096 3.5112 3.5116 3.5117 . . . 3.5117
1,16 3.5000 3.4796 3.4812 3.4816 3.4817 . . . 3.4817
1,15 3.5000 3.4496 3.4512 3.4516 3.4517 . . . 3.4517
1,14 3.5000 3.4196 3.4212 3.4216 3.4217 . . . 3.4217
1,13 3.5000 3.3896 3.3912 3.3916 3.3917 . . . 3.3917
1,12 3.5000 3.3596 3.3612 3.3616 3.3617 . . . 3.3617
1,11 3.5000 3.3296 3.3312 3.3316 3.3317 . . . 3.3317

Table 1.2: Change of blood cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 3.5117.

As can be seen in this example, for k1
k2

> 1.17 the cell expands and for k1
k2

< 1.17 the cell shrinks. The changes are gradual and controlled
and the final values are within physiological limits. The main changes occur in the first 3 hours. After the 4th hour, complete stability occurs.

Example 1.3 (Brain Cell-Usual Case, [1–8] ). The brain cell is known as a neuron. The average radius of a healthy brain cell is r(t) = 10µm
and its density is p = 1.03gr/cm3 . The equilibrium state for this cell is

k1

k2
= 3.3,

for

r(t) =
3k1

k2
+(10− 3k1

k2
)e−

k2t
3p ,

where r(0) = 10 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,03gr/cm3 by Table 1.3.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
3.3 10.0000 9.9039 9.9004 9.9001 9.9000 . . . 9.9000
3.2 10.0000 9.6039 9.6004 9.6001 9.6000 . . . 9.6000
3.1 10.0000 9.3039 9.3004 9.3001 9.3000 . . . 9.3000
3.0 10.0000 9.0039 9.004 9.0001 9.0000 . . . 9.0000
2.9 10.0000 8.7039 8.7004 8.7001 8.7000 . . . 8.7000
2.8 10.0000 8.4039 8.4004 8.4001 8.4000 . . . 8.4000
2.7 10.0000 8.1039 8.1004 8.1001 8.1000 . . . 8.1000

Table 1.3: Change of brain cell radius over time according to the change
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In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 9.9000.

As can be seen in this example, for k1/k2 ≥ 3.2, there is less than 4% change in size and normal neuronal function is preserved. For
3.0≤ k1/k2 < 3.1, there is a 7−10% change in size and functional changes may occur. For k1/k2 ≤ 2.9, there is a 13% change in size and
neuronal function is at risk.

Example 1.4 (Liver Cell-Usual Case, [1–8] ). Liver cells (hepatocytes) are the basic functional units of the liver. They are large cells with a
polygonal shape, usually 25 micrometers in diameter. Their density is approximately p = 1,09gr/cm3 . These cells perform vital functions
such as protein synthesis, detoxification of toxins, bile production, and glycogen storage. The equilibrium state for this cell is

k1

k2
= 8.3,

for

r(t) =
3k1

k2
+

(
25− 3k1

k2

)
e−

k2t
3p

where r(0) = 25 for k2 = 10. Now let’s observe the change in the blood cell by changing this ratio for p = 1,09gr/cm3 by Table 1.4.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
8.3 25.0000 24.3752 24.0282 23.8162 23.6799 . . . 23.4270
8.2 25.0000 24.0752 23.7282 23.5162 23.3799 . . . 23.1270
8.1 25.0000 23.7752 23.4282 23.2162 23.0799 . . . 22.8270
8.0 25.0000 23.4752 23.1282 22.9162 22.7799 . . . 22.5270
7.9 25.0000 23.1752 22.8282 22.6162 22.4799 . . . 22.2270
7.8 25.0000 22.8752 22.5282 22.3162 22.1799 . . . 21.9270
7.7 25.0000 22.5752 22.2282 21.0162 21.8799 . . . 21.6270

Table 1.4: Change of liver cell radius over time according to the change

In equilibrium, it can be easily seen that

r(5) = 23.5901,r(6) = 23.5294,r(7) = 23.4881,r(8) = 23.4599,r(9) = 23.4405.

As can be seen in this example, for k1/k2 ≥ 8.1, there is less than 8% change in size and normal hepatocyte function is preserved. For
7.9≤ k1/k2 ≤ 8.0, there is a 9-10% change in size and regular monitoring is required. For k1/k2 ≤ 7.8, there is a risk because there is more
than 12% change in size and close monitoring is required.

Remark 1.5. There is no particular reason to examine only the stomach, blood, brain and liver cells here. The changes of four cells radii in
both classical and multiplicative analysis will be examined.
In the next section, we will examine the cell radius models on multiplicative analysis. For this reason, it would be useful to explain the
multiplicative analysis in general terms in this section.
The classical analysis most commonly used today was founded by Gottfried Leibnitz and Isaac Newton in the second half of the 17th century.
Since the basic operation in this analysis is addition, it is called additive (classical) analysis or Newtonian analysis. Many new types of
analysis have emerged as a result of the ideas of establishing new analysis with different arithmetic operations based on classical analysis.
An example of these analyzes is multiplicative analysis. This type of analysis is generally called non-Newtonian analysis in the literature.
The first example of studies carried out with different arithmetic operations can be given as Volterra type analysis defined by Vito Volterra in
1887. Since this new approach is based on multiplication, it is called multiplicative analysis. The first study for Volterra type analysis was
conducted by Volterra and Hostinsky in 1938 [9]. In the period from 1967 to 1970, Michael Grossman and Robert Katz gave definitions of a
new type of derivative and integral, transferring the roles of subtraction and addition operations to division and multiplication operations,
thus introducing a new calculus called multiplicative analysis [10, 11].
Multiplicative analysis is a field of study that can be easily used in solving many scientific problems and provides great advantages. As a
result of the researches on the subject, it is seen that some problems encountered in applied sciences can be complicated to express with
classical analysis. The multiplicative analysis facilitates the solution of these problems and offers a different perspective in the mathematical
modeling of these problems. In this direction, multiplicative analysis emerged as an alternative to classical analysis. Many important studies
have been carried out in different fields related to multiplicative analysis [12–16].

Definition 1.6. Let f : A→ R+ be a positive function for all x on A⊆ R. The multiplicative derivative of f is defined by [17]

f ∗(x) = lim
h→0

(
f (x+h)

f (x)

) 1
h

.

Theorem 1.7. A positive function f is multiplicatively differentiable at x if and only if it is usual differentiable at that point [18]. There is a
relationship between derivative in classical sense and derivative in multiplicative sense as [19],

f ∗(x) = e
f ′(x)
f (x) .
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Definition 1.8 ( [19]). F : (a,b)→ R is called multiplicative anti-derivative of f : (a,b)→ R where F∗(x) = f (x) for each x ∈ (a,b).
Following presentation is used for this concept. ∫

f (x)dx = F(x).

Remark 1.9 ( [20]). If f is positive and continuous on [a,b], it is integrable in multiplicative sense and∫ b

a
f (t)dx = e

∫ b
a ln( f (t))dt .

Definition 1.10 ( [20]). An n− th order multiplicative differential equation is defined by

f (t,y,y∗,y(∗∗), . . . ,y(∗(n−1)),y(∗n)(t)) = 1, (t,y) ∈ R×R+

for a positive function f .

2. Radius Analysis for Some Cells in Multiplicative Calculus

In this section, it is thought that original results will be obtained regarding the change of cell size due to different definitions of derivative,
integral and differential equations in multiplicative analysis. These solutions will then be evaluated with mathematical and numerical
examples. The differential equation discussed in the article proposal will be established in multiplicative analysis and will be solved using
multiplicative analysis techniques. Multiplicative analysis has a very strong literature and different application areas [9–20].
In the classical case, the equation (1.4) discussed in the first section can be written as follows in multiplicative analysis;

r∗(t)r
k2
3p = e

k1
p . (2.1)

This multiplicative equation will be solved using the method of indefinite exponents in multiplicative analysis. According to this method, the
homogeneous solution of the equation is

rh = ec1e
−k2t

3p
,

where

r+
k2

3p
= 0 → r =− k2

3p
.

Let rp(t) = eA be particular solution. If multiplicative derivative is taken for rp(t) to find the constant A and substituted in Eq. (2.1), we get

r∗r
k2
3p = e

k2
p → A =

3k1

k2
.

Then, the general solution of (2.1) is

r(t) = ec1e
−k2t

3p
e

3k1
k2 ,

where r = rhrp.
Now, let’s examine the change in the radii of the stomach, blood, brain and liver cells using this solution in multiplicative analysis.

Example 2.1 (Stomach Cell-Multiplicative Case). Let r(0) = 20µm and p = 1,04gr/cm3 for a stomach cell. We will analyse the change of
radius for a stomach cell in multiplicative analysis by using the following general solution;

r(t) = ec1e
−k2t

3p
e

3k1
k2 .

If this solution is used, the equilibrium ratio for stomach cell is obtained as;

k1

k2
= 0.99,

for r(0) = 20. Here, calculations will be made for particular selections of k1 = 99 and k2 = 100 in Table 2.1.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.99 20.000 19.9967 19.9967 19.9967 19.9967 . . . 19.9967
0.89 20.000 19.1967 19.1867 19.1867 19.1867 . . . 19.1867
0.79 20.000 18.3967 18.3767 18.3767 18.3767 . . . 18.3767
0.69 20.000 17.5967 17.5667 17.5667 17.5667 . . . 17.5667
0.59 20.000 16.7967 16.7567 16.7567 16.7567 . . . 16.7567
0.49 20.000 15.9967 15.9467 15.9467 15.9467 . . . 15.9467
0.39 20.000 15.1967 15.1367 15.1367 15.1367 . . . 15.1367

Table 2.1: Change of stomach cell radius over time according to the change in multiplicative case



Journal of Mathematical Sciences and Modelling 117

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 19.9967

According to the results obtained in the multiplicative model, There is a decrease in the first 2 hours, and a constant value is reached
after the 2nd hour. There is a different balance status for each k1/k2 value. Health Status Assessment: k1/k2 > 0.89 is a safe status,
0.69≤ k1/k2 ≤ 0.89 is a monitoring status, and k1/k2 < 0.69 is a risk status. The classical model is in normal physiological adaptation,
while the multiplicative model may be an acute stress response. The classical model is in a safer range, while the multiplicative model shows
riskier changes. These two models may represent the response of the stomach cell to different conditions (normal adaptation vs. severe
stress).

Example 2.2 (Blood Cell-Multiplicative Case). Let r(0) = 3.5µm and p = 1.10gr/cm3 for a blood cell. Again, we will examine cell radius
change for blood cell using the solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio for the cell is obtained
as;

k1

k2
= 0.41,

for r(0) = 3.5. Here the calculations will be made for particular selections of k1 = 41 and k2 = 100. in Table 2.2.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.41 3.5000 3.4984 3.4984 3.4984 3.4984 . . . 3.4984
0.36 3.5000 3.3484 3.3484 3.3484 3.3484 . . . 3.3484
0.31 3.5000 3.1984 3.1984 3.1984 3.1984 . . . 3.1984
0.26 3.5000 3.0484 3.0484 3.0484 3.0484 . . . 3.0484
0.21 3.5000 2.8984 2.8984 2.8984 2.8984 . . . 2.8984
0.16 3.5000 2.7484 2.7484 2.7484 2.7484 . . . 2.7484
0.11 3.5000 2.5984 2.5984 2.5984 2.5984 . . . 2.5984

Table 2.2: Change of blood cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 3.4984.

Similarly, in this example, for k1/k2 ≥ 0.36, there is less than 5% change in size and normal erythrocyte function is preserved. For
0.26≤ k1/k2 < 0.36, there is a 10-15% change in size and oxygen carrying capacity may be affected. For k1/k2 < 0.26, there is a change in
size of more than 15%, in which case there is a risk of Hemolysis and cell function is seriously compromised.
The classical model represents normal adaptation, while the multiplicative model represents the acute stress response. The classical model
appears more physiological, while the multiplicative model represents pathological conditions. These two models may represent the response
of erythrocytes to different conditions (normal vs. extreme stress).

Example 2.3 (Brain Cell-Multiplicative Case). Let r(0) = 10 and p = 1.03gr/cm3 for a brain cell. Again, we will examine the cell radius
change for the brain cell using solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio brain the cell is obtained
as;

k1

k2
= 0.76,

for r(0) = 10. Here the calculations will be made for particular selections of k1 = 76 and k2 = 100 in Table 2.3.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
0.76 10.0000 9.9984 9.9984 9.9984 9.9984 . . . 9.9984
0.66 10.0000 9.4984 9.4984 9.4984 9.4984 . . . 9.4984
0.56 10.0000 8.9984 8.9984 8.9984 8.9984 . . . 8.9984
0.46 10.0000 8.4984 8.4984 8.4984 8.4984 . . . 8.4984
0.36 10.0000 7.9984 7.9984 7.9984 7.9984 . . . 7.9984
0.26 10.0000 7.4984 7.4984 7.4984 7.4984 . . . 7.4984
0.16 10.0000 6.9984 6.9984 6.9984 6.9984 . . . 6.9984

Table 2.3: Change of brain cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 9.9984.

In this example, for k1/k2 > 0.66 there is minimal dimensional change and normal neuronal function is present. For 0.46≤ k1/k2 ≤ 0.66
there is moderate change and neuroprotective treatment may be required. For k1/k2 < 0.46 there is significant dimensional change and
intensive neuroprotective treatment may be required.
There are following differences between brain cells model in classical analysis and multiplicative analysis. Multiplicative model shows
more dramatic changes, while classical model appears more physiological. Both models reach stable end states. The multiplicative model
responds faster.
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Example 2.4 (Liver Cell-Multiplicative Case). Let r(0) = 25 and p = 1.09gr/cm3 for a liver cell. Again, we will examine the cell radius
change for the liver cell using solution (2.1) in the multiplicative case. If this solution is used, the equilibrium ratio for the cell is obtained as;

k1

k2
= 1.07,

for r(0) = 25. Here the calculations will be made for particular selections of k1 = 107 and k2 = 100 in Table 2.4.

k1
k2

r(0) r(1) r(2) r(3) r(4) . . . r(10)
1.07 25.0000 24.9984 24.9984 24.9984 24.9984 . . . 24.9984
0.97 25.0000 23.9984 23.9984 23.9984 23.9984 . . . 23.9984
0.87 25.0000 22.9984 22.9984 22.9984 22.9984 . . . 22.9984
0.77 25.0000 21.9984 21.9984 21.9984 21.9984 . . . 21.9984
0.67 25.0000 20.9984 20.9984 20.9984 20.9984 . . . 20.9984
0.57 25.0000 19.9984 19.9984 19.9984 19.9984 . . . 19.9984
0.47 25.0000 18.9984 18.9984 18.9984 18.9984 . . . 18.9984

Table 2.4: Change of liver cell radius over time according to the change in multiplicative case

In equilibrium, it can be easily seen that

r(5) = r(6) = r(7) = r(8) = r(9) = 24.9984.

In this example, for k1/k2 = 1.07, there is a 0.006% change, which is the ideal situation. For k1/k2 = 0.97−0.87, a 4-8% reduction is
within normal limits. For k1/k2 = 0.77−0.67, a 12-16% reduction is the situation that should be monitored. For k1/k2 = 0.57−0.47, there
is a 20-24% reduction, which is a risk situation. Hepatoprotective treatment is required.
There are following differences between liver cells model in classical analysis and multiplicative analysis. In the classical case, the rate of
change is slow and continuous, while in multiplicative analysis it is fast and one-time. While in the classical case there is a stability in the
form of an asymptotic approach, in the multiplicative case there is an instantaneous stability.

3. Conclusion

In this study, four types of cells (Stomach, Blood, Brain, Liver) were considered and the change in the radii of the cells was examined
by establishing the classical model in multiplicative analysis. In the classical and multiplicative case, the change in the radius of the cell
membrane as time passes has been examined. In the multiplicative case, changes occur faster than in the classical case and the cells are in a
more difficult situation than in the classical case.
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2020.
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