

MANAS Journal of Engineering ISSN 1694-7398 | e-ISSN 1694-7398

Volume 12, Issue 2, (2024) Pages 185-191 https://doi.org/10.51354/mjen.1475483

A modelling of the natural logarithm and Mercator series as 5th, 6th, 7th order Bézier curve in plane

Şeyda Kılıçoğlu¹, Semra Yurttançıkmaz^{2,*}

¹ Başkent University, Ankara, Türkiye, seyda@baskent.edu.tr, ORCID: 0000-0001-6712-3687

² Atatürk University, Erzurum, Türkiye, semrakaya@atauni.edu.tr, ORCID: 0000-0003-0252-1574

ABSTRACT

In this study first, natural logarithm function $f(x) = \ln x$ with base *e* has been examined as polynomial function of 5th, 6th, 7th order Bézier curve. By modelling matrix representation of 5th, 6th, 7th order Bézier curve we have found the control points in plane. Further, Mercator series for the curves $\ln(1 + x)$ and $\ln(1 - x)$ have been written too as the polynomial functions as 5th, 6th, 7th order Bézier curve in plane based on the control points with matrix form in \mathbf{E}^2 . Finally, the curve $\ln(1 - x^2)$ has been expressed as 5th, 6th, 7th order Bézier curve, examined the control points and given matrix forms.

1. Introduction

Bézier curves are named after Pierre Bézier, a French engineer who used them in the 1960s for designing automobiles at Renault. They are widely used in computer graphics software like Adobe Illustrator, Photoshop, and in programming libraries such as SVG (Scalable Vector Graphics) and OpenGL for creating smooth curves in digital designs and animations. In 3D animation, Bézier curves are commonly used to define paths that objects follow through space. This is often used for creating smooth and natural-looking motion. Overall, Bézier curves are a powerful tool in 3D animation for defining both the overall path of movement and the interpolation between keyframes, helping animators create lifelike and fluid animations.

Bézier curves have been the focus of attention of many researchers due to their properties. Some of the publications that attracted our attention and examined while preparing our study are as follows: In [3], Marsh showed geometric applications for computer graphics and CAD, and also emphasized the importance of Bézier and B-spline curves in this regard. In [6], H. Hagen investigated Bézier curves with curvature and torsion continuity. In [5] and [7], Bézier curves

ARTICLE INFO

Research article

Received: 29.04.2024 *Accepted:* 03.12.2024

Keywords:

Natural logarithm, Mercator series, 5thorder Bézier curve, 6thorder Bézier curve, 7thorder Bézier curve.

*Corresponding author

and Bézier surfaces were examined by H. Zhang, F. Jieqing and S.Michael. In [4], G. Farin used Bézier curves for CAD and also studied the equivalence conditions of control points and their application to planar Bézier curves. In [8], [9], [10] and [12] it has been examined cubic Bézier curves, their involutes, Bertrand and Mannheim mate of a cubic Bézier curve by using matrix representation in E^3 , respectively. In [11] and [13], it has been researched matrix representation of Bézier curves and 5th order Bézier curve and their derivatives, respectively. In [14] and [15], it has been investigated Bézier curves and 5th order Bézier Curve in three dimensional Euclidean space. In [16],[17],[18] and [19], approaches to various curves (circular helix, sine wave, cosine curve and exponential curves, respectively) with various order Bézier curves were examined.

In simplest form, a Bézier curve is defined by a set of control points. A linear Bézier curve, for example, is defined by two points, while a quadratic Bézier curve is defined by three points, and a cubic Bézier curve is defined by four points.

Generally, it can be defined n^{th} order Bézier curve by n + 1control points P_0, P_1, \ldots, P_n with the parametrization $\mathbf{B}(t) =_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i} [P_i].$ For more detail see in [4], [5], [6], [7]. As is well known, Taylor series $f(x) =_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}$ of a function is an infinite sum of the functions derivatives at a single point *a*, also a Maclaurin series $f(x) =_{n=0}^{\infty} f^{-(n)}(0) \frac{x^n}{n!}$ is a Taylor series where a = 0.

In this study we will focus on the natural logarithm with base e, for 5th, 6th, 7th order Bézier curves. For more detail see [2], [8]. We need to write the coefficients matrix of any 5th order Bézier curve. It is clear that the coefficients matrix on matrix representation is 5th, 6th, 7th order Bézier curves as in the following (see [11]):

The coefficients matrix of any 5th order Bézier curve is

	г—1	5	-10	10	-5	ן1
$[B^5] =$	5	-20	30	-20	5	0
	-10	30	-30	10	0	0
	10	-20	10	0	0	0
	-5			0	0	0
	L ₁	0	0	0	0	01

The coefficients matrix of any 6th order Bézier curve is

$$[B^6] = \begin{bmatrix} 1 & -6 & 15 & -20 & 15 & -6 & 1\\ -6 & 30 & -60 & 60 & -30 & 6 & 0\\ 15 & -60 & 90 & -60 & 15 & 0 & 0\\ -20 & 60 & -60 & 20 & 0 & 0 & 0\\ 15 & -30 & 15 & 0 & 0 & 0 & 0\\ 15 & -30 & 15 & 0 & 0 & 0 & 0\\ -6 & 6 & 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The coefficients matrix of any 7th order Bézier curve is

	г—1	7	-21	35	-35	21	-7	ן1	
$[B^{7}] =$	7	-42	105	35 -140	105	-42	7	0	
	-21	105	-210	210	-105	21	0	0	
	35	-140	210	-140 35	35	0	0	0	
	-35	105	-105	35	0	0	0	0	
	21			0		0	0	0	
	-7	7	0	0	0	0	0	0	
	L_1	0	0	0	0	0	0	0]	

2. The curve $\ln x$ as a 5th, 6th, 7th order Bézier curve

The natural logarithm is used in many areas of mathematics, science, and engineering, particularly in calculus, probability theory, and the natural sciences. It has applications in areas such as exponential growth and decay, compound interest, and solving differential equations. The natural logarithm of a number is its logarithm to the base of the mathematical constant *e*, which is an irrational and transcendental number. We cannot find the Maclaurin series for $\ln(x)$. Hence the natural logarithm of *x* is generally written as $f(x) = \ln x$ with Taylor series for centered at x = 1 is

$$\ln x = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x-1)^k}{k}, \quad if \ 0 < x \le 2$$

$$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6} + \frac{(x-1)^7}{7} - \dots$$

Proposition 1: The matrix representation of the curve $f(x) = \ln x$ as a 7th order Bézier curve has the control points P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , and P_7

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ P_7 \end{bmatrix} = \begin{bmatrix} 0 & \frac{363}{140} \\ \frac{1}{503} \\ \frac{503}{7} \\ \frac{140}{140} \\ \frac{2}{573} \\ \frac{573}{7} \\ \frac{140}{420} \\ \frac{491}{7} \\ \frac{491}{705} \\ \frac{5}{512} \\ \frac{512}{7} \\ \frac{70}{105} \\ \frac{6}{353} \\ \frac{353}{7} \\ \frac{70}{70} \\ \frac{363}{7} \\ \frac{363}{70} \end{bmatrix}$$

Proof. The function $f(x) = \ln x$ has 7^{th} degree Taylor series expansion centered x = 1

$$\ln x = \frac{1}{7}x^7 - \frac{7}{6}x^6 + \frac{21}{5}x^5 - \frac{35}{4}x^4 + \frac{35}{3}x^3 - \frac{21}{2}x^2 + 7x - \frac{363}{140}$$

It can be written as in parametric form and a 7^{th} degree polynomial function

$$(t, \ln t) = (t, \frac{1}{7}t^7 - \frac{7}{6}t^6 + \frac{21}{5}t^5 - \frac{35}{4}t^4 + \frac{35}{3}t^3 - \frac{21}{2}t^2 + 7t - \frac{363}{140}).$$

It has been already known that the matrix representation of $\alpha(t) = (t, a_7 t^7 + a_6 t^6 + ... + a_1 t + a_0)$ is the following matrix equation,

$$\begin{bmatrix} t^7 \\ t^6 \\ t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \end{bmatrix}^T \begin{bmatrix} 0 & \frac{1}{7} \\ 0 & -\frac{7}{6} \\ 0 & \frac{21}{5} \\ 0 & -\frac{35}{4} \\ 0 & \frac{35}{3} \\ 0 & -\frac{21}{2} \\ 1 & 7 \\ 0 & \frac{363}{140} \end{bmatrix} = \begin{bmatrix} t^7 \\ t^6 \\ t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_7 \\ P_7 \end{bmatrix}.$$

Proposition 2: The matrix representation of the curve $f(x) = \ln x$ as a 6th order Bézier curve has the control points that P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , P_6 are

$$\begin{bmatrix} P_0\\ P_1\\ P_2\\ P_3\\ P_4\\ P_5\\ P_6 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{49}{20}\\ \frac{1}{6} & -\frac{29}{20}\\ \frac{1}{3} & -\frac{19}{20}\\ \frac{1}{3} & -\frac{19}{20}\\ \frac{1}{2} & -\frac{37}{60}\\ \frac{2}{3} & -\frac{11}{30}\\ \frac{5}{6} & -\frac{1}{6}\\ 1 & 0 \end{bmatrix}$$

Proof. The function $f(x) = \ln x$ has 6^{th} degree Taylor series expansion centered x = 1.

$$\ln x = -\frac{1}{6}x^{6} + \frac{6}{5}x^{5} - \frac{15}{4}x^{4} + \frac{20}{3}x^{3} - \frac{15}{2}x^{2} + 6x$$
$$-\frac{49}{20}, \quad if \quad 0 < x \le 2$$

it can be written as in parametric form and a 6^{th} degree polynomial function

$$\alpha(t) = (t, \ln t) = (t, -\frac{1}{6}t^6 + \frac{6}{5}t^5 - \frac{15}{4}t^4 + \frac{20}{3}t^3 - \frac{15}{2}t^2 + 6t - \frac{49}{20}).$$

It has been already known that the matrix representation of $\alpha(t) = (t, a_6 t^6 + ... + a_0)$ is as in the following equation

$$\begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} 0 & -\frac{1}{6} \\ 0 & \frac{6}{5} \\ 0 & -\frac{15}{4} \\ 0 & \frac{20}{3} \\ 0 & -\frac{15}{2} \\ 1 & 6 \\ 0 & -\frac{49}{20} \end{bmatrix} = \begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \end{bmatrix}.$$

Proposition 3: The matrix representation of the curve $f(x) = \ln x$ as a 5th order Bézier curve has the control points P_0 , P_1 , P_2 , P_3 , P_4 , and P_5 , where P_0 , P_1 , P_2 , P_3 , P_4 , and P_5 are

Proof. The function $f(x) = \ln(x)$ has 5^{th} degree Taylor series expansion is

$$\ln x = \frac{6}{5}x^5 - \frac{15}{4}x^4 + \frac{20}{3}x^3 - \frac{15}{2}x^2 + 6x - \frac{49}{20}$$

it can be written as in parametric form and a 5^{th} degree polynomial function

$$(t,\ln t) = (t,\frac{6}{5}t^5 - \frac{15}{4}t^4 + \frac{20}{3}t^3 - \frac{15}{2}t^2 + 6t - \frac{49}{20})$$

Hence we get the following equation

$$\begin{bmatrix} t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} 0 & \frac{6}{5} \\ 0 & -\frac{15}{4} \\ 0 & \frac{20}{3} \\ 0 & -\frac{15}{2} \\ 1 & 6 \\ 0 & -\frac{49}{20} \end{bmatrix} = \begin{bmatrix} t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} B^5 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \end{bmatrix}$$

3. Mercator Series as a 5th, 6th, 7th order Bézier curve

The series known in mathematics as the Mercator series or Newton-Mercator series are actually the Taylor series for the natural logarithms with of (1 + x) and (1 - x) that are generally written as

$$\ln(1+x) =_{k=1}^{\infty} (-1)^{k+1} \frac{x^{n}}{k}$$
$$= x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \frac{x^{6}}{6} + \frac{x^{7}}{7} \dots, if$$
$$-1 < x \le 1$$

$$\ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}$$
$$= -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6}$$
$$- \frac{x^7}{7} \dots, \quad if \ -1 < x \le 1$$

Although the serias were first discovered by Johannes Hudde and Isaac Newton, they were independently published by Nicholas Mercator in his 1668 treatise named Logarithmotechnia [1].

3.1. The curve ln(1 + x) as a 5th, 6th, 7th order Bézier curve

Proposition 4: The matrix representation of the curve $f(x) = \ln(1 + x)$ as a 7th order Bézier curve has the control points $P_0, P_1, P_2, P_3, P_4, P_5, P_6, P_7$ as follows

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ P_7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{30} \\ \frac{1}{7} & \frac{193}{420} \\ \frac{1}{7} & \frac{193}{420} \\ \frac{5}{7} & \frac{229}{420} \\ \frac{6}{7} & \frac{37}{7} \\ \frac{319}{60} \\ 1 & \frac{319}{420} \end{bmatrix}$$

Proof. Function $f(x) = \ln(1 + x)$ has 7^{th} degree Maclaurin series expansion is

 $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}, \quad (-1 < x \le 1)$ it can be written as in parametric form and a 7th degree polynomial function

$$\left(t,\ln(1+t)\right) = \left(t,t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4}+\frac{t^5}{5}-\frac{t^6}{6}+\frac{t^7}{7}\right).$$

It has been already known that the matrix representation of $\alpha(t) = (t, a_7 t^7 + a_6 t^6 + ... + a_0)$ is as in the following equation

$$\begin{bmatrix} t^7 \\ t^6 \\ t^5 \\ t^4 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} 0 & \frac{1}{7} \\ 0 & -\frac{1}{6} \\ 0 & \frac{1}{5} \\ 0 & -\frac{1}{4} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{2} \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} t^7 \\ t^6 \\ t^5 \\ t^4 \\ t^2 \\ t^2 \\ t^2 \\ t^2 \\ t^2 \end{bmatrix} \begin{bmatrix} B^7 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_7 \\ P_7 \end{bmatrix}.$$

Proposition 5: The matrix representation of the curve $f(x) = \ln(1 + x)$ as a 6th order Bézier curve has the control points $P_0, P_1, P_2, P_3, P_4, P_5, P_6$ as follows

Proof. Function $f(x) = \ln(1 + x)$ has 6^{th} degree Maclaurin series expansion is

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}, \quad (-1 < x \le 1)$$

it can be written as in parametric form and a 6^{th} degree polynomial function

$$(t, \ln(1+t)) = (t, t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \frac{t^5}{5} - \frac{t^6}{6}).$$

It has been already known that the matrix representation of $\alpha(t) = (t, a_6 t^6 + ... + a_0)$ is as in the following equation

$$\begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} 0 & -\frac{1}{6} \\ 0 & \frac{1}{5} \\ 0 & -\frac{1}{4} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{2} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} B^{6} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \end{bmatrix}$$

Proposition 6: The matrix representation of the curve $f(x) = \ln(1 + x)$ as a 5th order Bézier curve has the control points $P_0, P_1, P_2, P_3, P_4, P_5$ as follows

Proof. Function $f(x) = \ln(1 + x)$ has 5^{th} degree Maclaurin series expansion is

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}, \quad (-1 < x \le 1)$$

188

it can be written as in parametric form and a 5^{th} degree polynomial function

$$(t, \ln(1+t)) = (t, t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \frac{t^5}{5}).$$

It has been already known that the matrix representation of $\alpha(t) = (t, a_5 t^5 + ... + a_0)$ is as in the following equation

$$\begin{bmatrix} t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} 0 & \frac{1}{5} \\ 0 & -\frac{1}{4} \\ 0 & \frac{1}{3} \\ 0 & -\frac{1}{2} \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} B^{5} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \end{bmatrix}.$$

3.2. The curve ln(1 - x) as a 5th, 6th, 7th order Bézier curve

Proposition 7: The matrix representation of the curve $f(x) = \ln(1-x)$ as a 7th order Bézier curve has the control points $P_0, P_1, P_2, P_3, P_4, P_5, P_6, P_7$ as follows

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_6 \\ P_7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{7} & -\frac{1}{7} \\ \frac{2}{7} & -\frac{13}{42} \\ \frac{3}{7} & -\frac{107}{210} \\ \frac{7}{7} & -\frac{319}{420} \\ \frac{4}{7} & -\frac{319}{420} \\ \frac{5}{7} & -\frac{153}{140} \\ \frac{6}{7} & -\frac{223}{140} \\ \frac{1}{7} & -\frac{363}{140} \end{bmatrix}$$

Proof. Function $f(x) = \ln(1-x)$ has 7^{th} degree Maclaurin series expansion is

 $\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \frac{x^7}{7}, \quad (-1 < x \le 1)$ it can be written as in parametric form and a 7th degree polynomial function

$$(t,\ln(1-t)) = (t,-t-\frac{t^2}{2}-\frac{t^3}{3}-\frac{t^4}{4}-\frac{t^5}{5}-\frac{t^6}{6}-\frac{t^7}{7}).$$

Hence we get the following matrix equation

$$\begin{bmatrix} t^7\\ t^6\\ t^5\\ t^4\\ t^3\\ t^2\\ t\\ 1 \end{bmatrix}^T \begin{bmatrix} 0 & -\frac{1}{7}\\ 0 & -\frac{1}{6}\\ 0 & -\frac{1}{5}\\ 0 & -\frac{1}{4}\\ 0 & -\frac{1}{3}\\ 0 & -\frac{1}{3}\\ 0 & -\frac{1}{2}\\ 1 & 0 \end{bmatrix} = \begin{bmatrix} t^7\\ t^6\\ t^5\\ t^5\\ t^3\\ t^2\\ t\\ 1 \end{bmatrix} \begin{bmatrix} B^7 \end{bmatrix} \begin{bmatrix} P_0\\ P_1\\ P_2\\ P_3\\ P_4\\ P_5\\ P_7\\ P_7 \end{bmatrix}$$

Proposition 8: The matrix representation of the curve $f(x) = \ln(1 - x)$ as a 6th order Bézier curve has the control points P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , P_6 as follows

Proof. Function $f(x) = \ln(1 - x)$ has 6^{th} degree Maclaurin series expansion is

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6}, \quad (-1 < x \le 1)$$

it can be written as in parametric form and a 6^{th} degree polynomial function

$$\left(t,\ln(1-t)\right) = \left(t, -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \frac{t^5}{5} - \frac{t^6}{6}\right)$$

Hence we get the following matrix equation

$$\begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \end{bmatrix}^{T} \begin{bmatrix} 0 & -\frac{1}{6} \\ 0 & -\frac{1}{5} \\ 0 & -\frac{1}{4} \\ 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} \\ 0 & -\frac{1}{2} \\ 1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix} \begin{bmatrix} B^{6} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \end{bmatrix}$$

Proposition 9: The matrix representation of the curve $f(x) = \ln(1 - x)$ as a 5th order Bézier curve has the control points P_0 , P_1 , P_2 , P_3 , P_4 , P_5 as follows

$$\begin{bmatrix} P_0\\P_1\\P_2\\P_3\\P_4\\P_5 \end{bmatrix} = \begin{bmatrix} 0 & 0\\1\\-\frac{1}{5} & -\frac{1}{5}\\\frac{2}{5} & -\frac{9}{20}\\\frac{3}{5} & -\frac{47}{50}\\\frac{4}{5} & -\frac{77}{60}\\\frac{4}{5} & -\frac{77}{60}\\1 & -\frac{137}{60} \end{bmatrix}$$

Proof. Function $f(x) = \ln(1 - x)$ has 5^{th} degree Maclaurin series expansion is

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5}, \quad (-1 < x \le 1)$$

it can be written as in parametric form and a 5^{th} degree polynomial function

$$(t, \ln(1-t)) = (t, -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \frac{t^3}{5}).$$

Hence we get the following matrix equation
$$\begin{bmatrix} t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}^T \begin{bmatrix} 0 & -\frac{1}{5} \\ 0 & -\frac{1}{4} \\ 0 & -\frac{1}{3} \\ 0 & -\frac{1}{2} \\ 1 & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} t^5 \\ t^4 \\ t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \begin{bmatrix} B^5 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \end{bmatrix}.$$

3.3. The curve $ln(1-x^2)$ as a 4th and 6th order Bézier curve

Proposition 10: The matrix representation of the curve $f(x) = \ln(1 - x^2)$ as a 6th order Bézier curve has the control points P_0 , P_1 , P_2 , P_3 , P_4 , P_5 , P_6 as follows

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{6} & 0 \\ \frac{1}{3} & -\frac{1}{15} \\ \frac{1}{2} & -\frac{1}{5} \\ \frac{2}{3} & -\frac{13}{30} \\ \frac{5}{6} & -\frac{5}{6} \\ 1 & -\frac{11}{6} \end{bmatrix}$$

Proof. We have already known that $f(x) = \ln(1 - x^2) =$ $\ln[(1-x)(1+x)]$. Hence we get

$$\ln(1-x^2) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7}\right) \\ + \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} - \frac{x^7}{7}\right) \\ = -\frac{1}{3}x^6 - \frac{1}{2}x^4 - x^2$$

Also it can be written as in parametric form and a 6th degree polynomial function $(t, \ln(1-t^2)) = (t, -\frac{1}{3}t^6 - \frac{1}{2}t^4 - \frac{1}{3}t^6)$

 t^2). Hence we get the following matrix equation

$$\begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} 0 & -\frac{1}{3} \\ 0 & 0 \\ 0 & -\frac{1}{2} \\ 0 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} t^{6} \\ t^{5} \\ t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \end{bmatrix}$$

Proposition 11: The matrix representation of the curve $f(x) = \ln(1 - x^2)$ as a 4th order Bézier curve has control points P_0 , P_1 , P_2 , P_3 , P_4 as follows

$$\begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \frac{1}{4} & 0 \\ \frac{1}{2} & -\frac{1}{6} \\ \frac{3}{4} & -\frac{1}{2} \\ 1 & -\frac{3}{2} \end{bmatrix}$$

Proof. Since $f(x) = \ln(1 - x^2) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}\right) + \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5}\right) = -\frac{1}{2}x^4 - x^2$, it can be written as in parametric form and a 4th degree

polynomial function $(t, \ln(1-t^2)) = (t, -\frac{1}{2}t^4 - t^2)$

$$\begin{bmatrix} t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} 0 & -\frac{1}{2} \\ 0 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} t^{4} \\ t^{3} \\ t^{2} \\ t \\ 1 \end{bmatrix}^{T} \begin{bmatrix} B^{4} \end{bmatrix} \begin{bmatrix} P_{0} \\ P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \end{bmatrix}$$

Solving the above equation give us the control points, where $[B^4]$ is the 4th order Bézier curves matrix in **E**².

References

- Vermij, Rienk. "Bijdrage tot de bio-bibliografie van Johannes Hudde". GEWINA / TGGNWT (in Dutch). 18 (1), (2012), 25–35.
- [2]. "Derivatives of a Bézier Curve" https://pages.mtu. edu/126shene/COURSES/ cs362n/NOTES/spline /Bézier/ Bézier-der. html.
- [3]. Marsh D., Applied Geometry for Computer Graphics and CAD. Springer Science and Business Media, 2006.
- [4]. Farin G., Curves and Surfaces for Computer-Aided Geometric Design. Academic Press, 1996.
- [5]. Zhang H. and Jieqing F., Bézier Curves and Surfaces(2). State Key Lab of CAD&CG Zhejiang University, 2006.
- [6]. Hagen H., Bézier-curves with curvature and torsion continuity, Rocky Mountain J. Math., 16(3), (1986), 629-638.
- [7]. Michael S., Bézier curves and surfaces, Lecture 8, Floater Oslo Oct., 2003.
- [8]. Kılıçoğlu Ş., Şenyurt S., On the cubic Bézier curves in E³, Ordu University Journal of Science and Technology, 9(2), (2019), 83-97.
- [9]. Kılıçoğlu Ş., Şenyurt S., On the Involute of the Cubic Bézier Curve by Using Matrix Representation in E³, European Journal of Pure and Applied Mathematics, 13(2), (2020), 216-226.
- [10]. Kılıçoğlu Ş., Şenyurt S., On the Bertrand mate of a cubic Bézier curve by using matrix representation in E^3 , 18^{th} International Geometry Sym., Malatya, Turkey, 2021.

- [11]. Kılıçoğlu Ş., Şenyurt S., On the matrix representation of Bézier curves and derivatives in E³, Sigma J. Engineering and Natural Sci, 41(5), (2023), 992-998.
- [12]. Kılıçoğlu Ş., Şenyurt S., On the Mannheim partner of a cubic Bézier curve in E^3 , International Journal of Maps in Mathematics, 5(2), (2022), 182-197.
- [13]. Kılıçoğlu Ş., Şenyurt S., On the Matrix Representation of 5th order Bézier Curve and Derivatives, Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat., 71(1), (2022), 133–152.
- [14]. Kılıçoğlu Ş., Şenyurt S., How to find Bézier curves in E³, Communications in Advanced Mathematical Sciences, 5(1), (2022), 12-24.
- [15]. Kılıçoğlu Ş., Şenyurt S., An examination on to find 5th order Bézier curve in E³", Journal of New Theory, 37, (2021), 35-44.
- [16]. Kılıçoğlu Ş., On Approximation of Helix 3rd, 5th and 7th Order Bézier Curves in E³, Thermal Science, Vol. 26(2), (2022), 525-538.
- [17]. Kılıçoğlu Ş., On Approximation sine wave with the 5th and 7th order Bézier paths in plane, Thermal Science, Vol. 26(2), (2022), 539-550.
- [18]. Kılıçoğlu Ş., Yurttançıkmaz S., How to Approximate Cosine Curve with 4th and 6th order Bézier Curve in Plane, Thermal Science, Vol. 26(2), (2022), 559-570.
- [19]. Kılıçoğlu Ş., Yurttançıkmaz S., A Modelling on the Exponential Curves as Cubic, 5th and 7th Bézier Curve in Plane, Communications in Advanced Mathematical Sciences, 6(2), (2023), 67-77.