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Abstract 

The emergence of the Internet of Things (IoT) has ushered in a new era of data generation with 

the opportunity for data to become a key element of connected devices. This study investigates 

new methods to bridge the realms of multivariate time-series data and image analysis, paying 

special attention to Gramian Angular Summation Field (GASF), Gramian Angular Difference 

Field (GADF), Markov Transition Field (MTF), and Recurrence Plot (RP) transformation 

techniques. These techniques serve to convert raw time-series data into visual representations, 

laying the foundation for deeper analysis and predictive modeling. The study introduces a novel 

paradigm by not only employing individual image transformation techniques but also fusing them 

in both horizontal and square orientations. By leveraging Convolutional Neural Networks 

(CNNs), this study demonstrates the efficiency of innovative fused-oriented image transformation 

techniques in predicting complex patterns within a multivariate time-series dataset related to 

electricity distribution and transformer oil temperature. The experimental results indicate that the 

Fused-Horizontal image transformation technique, using the order RP - GADF - MTF - GASF, 

yields the best performance, achieving the lowest MSE of 0.01047, RMSE of 0.10235, and MAE 

of 0.08054. Additionally, the order RP - GADF - GASF - MTF results in the lowest MAPE of 

0.21997, outperforming both Fused-Square techniques and individual methods like GASF, 

GADF, MTF, and RP. These findings underscore the potential of fused image transformation 

techniques in improving prediction accuracy, offering a significant advancement over traditional 

methods. 
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1. INTRODUCTION 

 

The rise of the Internet of Things (IoT) in recent years has transformed various industries by enabling the 

connection of devices and the generation of vast amounts of data. This interconnected network of devices, 

sensors, and systems allows for real-time monitoring, data collection, and decision-making, which are 

crucial for optimizing operations, improving efficiency, and preventing potential failures. A significant 

portion of the data generated by IoT devices is time-series data, which captures the progression of events 

over time, providing insights into patterns, trends, and anomalies that are vital for predictive modeling and 

decision-making processes [1]. 

 

Time-series IoT data plays a pivotal role in industries such as healthcare, agriculture, manufacturing, energy 

management, smart cities, finance and transportation, where it is used to monitor critical parameters, 

forecast future events, and detect anomalies that could indicate potential issues [2-5]. However, traditional 

analysis methods often struggle to reveal the complex patterns and correlations within this data, especially 

in multivariate contexts where multiple variables interact in complex ways [6]. 
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In the existing literature, various image transformation techniques, such as Gramian Angular Summation 

Field (GASF), Gramian Angular Difference Field (GADF), Markov Transition Field (MTF), and 

Recurrence Plot (RP), have been explored as a means of converting time-series data into visual 

representations [7]. These visual representations allow for the application of advanced image processing 

and deep learning techniques, such as Convolutional Neural Networks (CNNs), to extract features and make 

predictions based on the transformed data. However, the focus has predominantly been on applying these 

techniques individually, which may limit their effectiveness in capturing the full complexity of multivariate 

time-series data. 

 

The gap in the literature lies in the limited exploration of combining multiple image transformation 

techniques to enhance predictive accuracy. While some studies have attempted to fuse different image 

transformation methods, they often do so in a limited manner, without fully exploring the potential of 

different fusion orientations and orders. This study addresses this gap by proposing the fusion of GASF, 

GADF, MTF, and RP techniques in both horizontal and square orientations, experimenting with different 

fusion orders to create more comprehensive representations of the data. By leveraging CNNs to analyze 

these fused images, our approach introduces a novel and powerful dimension to predictive modeling in IoT 

multivariate time-series data. Our contribution is twofold: first, we demonstrate the superiority of fused 

image transformation techniques over individual methods in predicting complex patterns within time-series 

data; second, we provide a detailed comparison of different fusion orientations and orders, highlighting the 

best-performing configurations. This study not only fills the gap in the literature but also offers a practical 

approach for improving predictive accuracy in industries reliant on IoT and time-series data. 

 

The remaining part of this paper is organized as follows: Section 2 highlights existing studies in the 

literature, providing a comprehensive overview. Section 3 details the theoretical background of the four 

primary image transformation techniques – GASF, GADF, MTF, and RP – clarifying their unique 

contributions. Section 4 introduces the dataset used in the study, offering a detailed description of its 

characteristics and significance. Section 5 outlines the proposed approach, emphasizing the fused 

orientation of image transformation techniques using CNNs. Section 6 presents experimental evaluation 

and discusses the experimental results to showcase the effectiveness of our approach. Lastly, Section 7 

concludes the paper by summing up the key findings and suggesting avenues for future exploration. 

 

2. LITERATURE REVIEW 

 

The exploration of time-series data and image analysis within the IoT context has garnered attention in 

recent research endeavors. Image transformation techniques have become popular for uncovering hidden 

patterns in time-series data by transforming them into images. These techniques are commonly applied in 

various fields, including security, healthcare, industrial, environmental, smart homes, and finance domains 

[8-17]. This section offers an overview of existing studies, as depicted in Table 1, that contribute to the 

comprehension and manipulation of IoT data, with a focus on time-series data and image transformation 

techniques. 

 

Baldini et al. [8] explored the use of RP image transformation and CNNs for IoT device authentication. 

This approach, known as radiometric identification, showed improved performance in device identification. 

The RP-CNN method, particularly with a threshold of 0.02, achieved an accuracy of 99.4%, outperforming 

other methods. Similarly, Ferraro et al. [9] proposed the use of GAF with a CNN model to improve 

predictive maintenance, conducting experiments on the BackBlaze dataset. They compare their results with 

those of an LSTM model presented in an existing study. According to their findings, the proposed data 

transformation techniques demonstrate superior performance in terms of accuracy, precision, and recall. 

The best results are achieved for both a prediction window of 45 days and a time window of 14 days. The 

work of Hammoud et al. [10] presented a deep learning framework for diagnosing neurological diseases 

using near-infrared eye video and time-series imaging algorithms. The methodology involves extracting 

pupil features from eye recordings and representing them as images through the GADF imaging method. 

These output images are then used to train a disease-detection model. Eye recordings from patients with 

Parkinson's disease (PD), Progressive Supranuclear Palsy (PSP), and Healthy Controls (HC) are included 

in the dataset. The optokinetic exercise produced the best classification results, with best accuracy for the 
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left, right, and both eyes. The study highlights how artificial intelligence might improve Internet of Medical 

Things (IoMT) applications for healthcare decision support.  

 

In another paper, Wang and Kuo [11] tackled the challenge of detecting entanglement anomalies in dyeing 

machines, a critical quality bottleneck for small and medium-sized enterprises in Taiwan. They develop an 

innovative solution that combines GAF and MTF with CNN to create an entanglement detection model. 

The study is based on over 1.75 million pieces of production data collected in collaboration with industry 

manufacturers and universities. The model demonstrates remarkable effectiveness, as evidenced by the 

optimal detection time of 220 seconds for entanglement. Implementation of this system in the field leads to 

quick problem resolution, significantly reducing quality loss and downtime. Deng et al. [12] developed 

Wavelet Gramian CNN (WGCNN) to recognize non-line-of-sight signals in ultra-wideband indoor 

positioning systems. The model uses wavelet analysis for signal denoising and GAF for temporal 

correlation. Additionally, a GAF image reorganization strategy is performed to capture key sub-images, 

thereby eliminating the impact of invalid image sections. Finally, these reorganized sub-images are input 

into the CNN model to develop an LOS/NLOS classifier. The model is tested on the EU Horizon 2020 

program dataset. Performance indicators show that the model achieved a higher recognition rate with an 

average accuracy increase of 3.09% over traditional CNN models. Furthermore, Lee et al. [13] proposed 

image transformation techniques for load prediction at the single household level. The authors employ 

GASF, GADF, MTF, and RP image transformation techniques alongside CNN and compare the results 

with Support Vector Machine (SVM), Artificial Neural Network (ANN), and one-dimensional CNN. The 

results indicate that RP with CNN yields superior prediction performance in terms of MAE, RMSE, and 

MAPE.  Abidi et al. [14] proposed Encodeep, a fusion of four different image transformation techniques—

GASF, GADF, RP, and MTF—integrated with a ResNet model for univariate and multivariate satellite 

image time series. They compare their results with fusion of two techniques (GASF and GADF), and fusion 

of three techniques (GASF, GADF, and MTF). The authors demonstrate that their proposed model achieves 

superior performance in terms of accuracy, F1-score, and Kappa score. 

 

In the literature, image transformation techniques are more commonly used for classification problems. 

However, some studies propose them as solutions for prediction problems as well. Yang et al. [15] proposed 

a data transformation approach for multivariate time series using the Wafer dataset, which is employed to 

monitor semiconductor microelectronics manufacturing. They integrate GASF and GADF into a CNN 

model. The results are compared with several methods from the literature in terms of error rates, and 

superior results are obtained. Additionally, the authors investigate the impact of appending order by 

comparing p-values. The results indicate that appending order does not significantly influence error rates. 

Jiang et al. [16] performed four different image transformation techniques based on GSDF, GADF, MTF, 

and RP using three pre-trained CNN models, including VGG-11, ResNet-18, and DenseNet-121, on the 

M1 and M3 competition datasets. They also combined all techniques into a single fused image to achieve 

improved classification rates and forecasting error results compared to individual techniques. According to 

their findings, the proposed fused method outperforms the singular techniques across both evaluation 

metrics. Cheng et al. [17] proposed using GAF with an aggregated Residual Transform Neural Network 

(ResNext) to improve tool wear prediction and enhance machining quality. This technique transforms one-

dimensional signals into two-dimensional data. The results are compared to results using 1D-CNN in terms 

of RMSE, MAE, and MAPE, demonstrating superior prediction performance. 

 

While individual techniques have been studied, the fusion of multiple image transformation techniques 

remains relatively unexplored. Our approach builds upon the works of Jiang et al. [16]. In this study, the 

authors combined GAF, MTF and RP using fused-square orientation for improved representation of 

multivariate time-series data. However, our study integrates the same techniques and proposes two different 

orientations, including horizontal and square, and experiments with their different orders for enhanced 

predictive modeling. 
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Table 1. Comparison of existing studies on image transformation techniques 

Study Year Image 

Tran. 

Technique 

Deep 

Learning 

Model 

Application 

Domain 

Problem 

Type 

Key Findings 

Baldini 

et al. 

[8] 

2018 RP CNN IoT device 

authentication 

Authentica

tion 

RP-CNN achieved: 

Accuracy: 99.4% with a threshold 

of 0.02 

Ferraro 

et al. 

[9] 

2020 GAF CNN Predictive 

Maintenance 

Classificati

on 

Higher classification results with  

GAF+CNN:  

Accuracy:96.25% 

Precision:96.13% 

Recall: 98.34% 

Hamm

oud et 

al. [10] 

2023 GADF CNN Neurological 

disease 

detection 

Classificati

on 

The optokinetic exercise 

produced the best classification 

results with: 

Accuracy for the left: 96.9% 

Accuracy for right: 90.8% 

Accuracy of both eyes: 96.9% 

Wang 

et al. 

[11] 

2023 GAF  

MTF 

CNN Textile 

manufacturing 

Detection The best detection time for 

entanglement is: 

MTF: 220 seconds (reduced from 

13.5 seconds with XGBoost) 

Deng 

et al. 

[12] 

2023 GAF CNN Smart home 

systems 

Recognitio

n 

The average recognition accuracy 

of wavelength: 

GAF-CNN: 82.63% (3.09% 

higher than that of standard 

CNN.) 

Lee et 

al. [13] 

2023 MTF CNN Object location 

recognition 

Recognitio

n 

MTF with artificial noise 

injection achieved: 

Accuracy: 97.43% 

Abidi 

et al. 

[14] 

2023 GASF 

GADF 

MTF 

RP 

Fused(Squar

e) 

ResNet-

50 

Monitoring Classificati

on 

Higher results of Encodeep with: 

Accuracy: 90.22 

F1-score: 90.26 

Kappa: 85.86 

Yang 

et al. 

[15] 

2019 GASF 

GADF 

CNN Manufacturing Prediction Lower error rates:  

GASF: 1.06 

GADF:1.57 

Jiang 

et al. 

[16] 

2022 GAF  

MTF  

RP  

Fused 

(Square) 

ResNet-

18, 

DenseNet

-121, 

VGG-11 

Micro- 

economic and 

industry 

Prediction Fused image forecasting error 

rates of MAPE with: 

ResNet-18: 11.89 

DenseNet-121: 11.70 

VGG-11: 11.67 

Cheng 

et al. 

[17] 

2024 GAF ResNext Manufacturing Prediction Higher prediction results: 

RMSE:6.96 

MAE:5.44 

MAPE:5.95 

Our 

study 

2024 GAF  

MTF  

RP  

Fused 

(Square, 

Horizontal) 

CNN Energy 

management 

Prediction Horizontally fused orientation 

performed best with:  

MSE: 0.01047 

RMSE:0.10235 

MAE:0.08054 

MAPE:0.21997 
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3. PRELIMINARIES 

 

This section presents the four techniques used in the study to create images from time-series data. Using 

polar coordinates rather than the more common Cartesian coordinates, the first imaging approach is called 

GAF. Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) are the 

two primary representation types used in the GAF technique. Providing different insights into the time-

series data, GASF records the sum of angles, whereas GADF depicts the differences between angles in the 

polar coordinate system [18]. The second technique, called MTF, uses a time-series image to depict a region 

of a discretized time-series' transition probabilities. Time-series can be divided into boxes using a variety 

of strategies. The third and final technique, RP, is a graphical representation of a square matrix used in 

complex data analysis that visualizes the moments when the state of a given dynamic system repeats. The 

columns and rows of the matrix compare the states of the system at different times. 

 

3.1. Gramian Angular Field (GAF) Transformation 

 

GAF is designed to transform time-series data into images using a matrix based on polar coordinates, 

preserving precise temporal correlations [18]. Given a time-series 𝑥 =  𝑥1, 𝑥2, . . . , 𝑥𝑛 consisting of 𝑛 real-

valued observations, we normalize 𝑥 so that all values fall within the interval [-1, 1] to obtain 𝑥, considering 

that the values of the time-series are scalar quantities rather than vectors 

 

                                                        �̃�= 
(𝑥𝑖−max(𝑥))+(𝑥𝑖−min (𝑥))

max(𝑥)−min (𝑥)
                                                                  (1) 

 

where 𝑥𝑖 represents an individual data point within the dataset, 𝑚𝑎𝑥(𝑥) and 𝑚𝑖𝑛 (𝑥) represent the 

maximum and minimum value within the dataset. Then, the newly normalized values are represented within 

the polar coordinate system, where each point on the plane is defined by its distance from a reference point 

and its angle from a reference direction. This representation employs the angular cosine to encode the time 

stamp value as the radius                                                                                     

                                            {
φ =  arccos (  �̅�𝑖), −1 ≤   �̅�𝑖  ≤  1,  �̅�𝑖 ∈  X̅

r =  
𝑡𝑖 

𝑁
 , 𝑡𝑖  ∈  N

                                                (2) 

 

where 𝜙 denotes the angle, serving as a fixed parameter controlling the polar coordinate system. 

𝑡𝑖 represents the timestamp. 𝑁 refers to the polar coordinate plane. 𝑟 represents the radius. The function 

𝑎𝑟𝑐𝑐𝑜𝑠 is the inverse cosine function applied to 𝑥, where  −1 ≤ 𝑥𝑖 ≤ 1. 

 

Utilizing this data converted into a polar coordinate system, there are two distinct techniques to transform 

the normalized vectors into a symmetric matrix, considering both temporal and spatial. The GASF and 

GADF, utilize trigonometric addition in Equation (3) and subtraction and Equation (4), respectively [18]. 

 

• Gramian Angular Summation Field (GASF): Calculates the cosine of the angular addition of 

two points and shows the relationship between each point:  

 

                                                𝐺𝐴𝑆𝐹(𝑖, 𝑗) = cos(𝜙𝑖 + 𝜙𝑗)                                                           (3) 

𝐺𝐴𝑆𝐹 = �̃�′. �̃� −  √I − �̃�2
′

. √I − �̃�2. 

 

• Gramian Angular Difference Field (GADF): Calculates the sine of the angular difference of two 

points and shows the relationship between each point:  

 
 

                                           𝐺𝐴𝐷𝐹(𝑖, 𝑗) = sin(𝜙𝑖 − 𝜙𝑗)                                                               (4) 

                                            𝐺𝐴𝐷𝐹 = √I − �̃�2
′

. �̃� − �̃�′. √I − �̃�2. 
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Figure 1 shows the time-series to image transformations steps in detail. In this figure, the raw time-series 

data is first scaled to the range [−1,1] and converted into a polar coordinate systems. Then, it is transformed 

into the image by GASF and GADF techniques.  

 

 
Figure 1. The steps of time-series to image transformation using GAF technique (GASF, GADF) 

 

3.2. Markov Transition Field (MTF) Transformation 

MTF relies on the probability transition matrix of a Markov chain obtained from the time-series analysis 

[19]. The normalized signal is divided into 𝑁 non-overlapping sub-intervals. The Markov transition field 

(𝑀) which is a matrix of size 𝑄 × 𝑄 is created from a given time-series and it is defined as the following 

matrix in Equation (5), showing the possibilities of transition from one state to another in the partitioned 

time-series:  

 

                                   𝑀 =

[
 
 
 
𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖, 𝑥1𝜖𝑞𝑗 ⋯ 𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖, 𝑥𝑁𝜖𝑞𝑗

𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖, 𝑥1𝜖𝑞𝑗 ⋯ 𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖, 𝑥𝑁𝜖𝑞𝑗

⋮ ⋱ ⋮
𝑤𝑖𝑗|𝑥𝑁𝜖𝑞𝑖 , 𝑥1𝜖𝑞𝑗     ⋯     𝑤𝑖𝑗|𝑥𝑁𝜖𝑞𝑖, 𝑥𝑁𝜖𝑞𝑗]

 
 
 

 .                                              (5) 

 

Figure 2 depicts the steps of raw time-series data to image transformation using MTF. The data is first 

transformed into Markov transition matrix and then MTF.  

 

 
Figure 2. The steps of time-series to image transformation using MTF technique 
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3.3. Recurrence Plot (RP) Transformation 

RP is constructed based on the recurrence of states in a phase space [20], outlined as follows 

 

                                                                   𝑅𝑃𝑖,𝑗(𝜀) = Θ(𝜀 − ||𝑋𝑖 − 𝑋𝑗||) .                                                    (6) 

 

Here, ϵ represents a threshold distance that defines the radius within which states are deemed recurrent. 

||𝑋𝑖 − 𝑋𝑗|| denotes the distance between two states in the phase space. The Heaviside step function Θ 

returns a value of 1 if the distance is less than ϵ (indicating recurrence), and 0 otherwise. The resulting 

binary matrix RP visually represents the recurrent patterns present in the time-series data. Figure 3 indicates 

the graphical patterns reproduced for different sample times. 

 

 
Figure 3. The steps of time-series to image transformation using RP technique 

 

4. DATASET 

 

The ETT-small-m1 dataset is used in the experiments [21]. Sequential utilization determines how energy 

is distributed among several regions in the distribution of power. However, it is challenging to predict a 

region's future demand. This dataset's goal is to predict when the electrical transformers' oil temperature 

will be safe and avoid unnecessary waste. Using this data, we are estimating the electric transformers' oil 

temperature and looking into their overload capacity. 

 

The data is saved in.csv file format. Table 2 displays an example part of ETT-small-m1 data. There is a 

horizontal heading in the first line (8 columns) with the values "date", "HUFL", "HULL", "MUFL", 

"MULL", "LUFL", "LULL", and "OT."  Table 3 provides a full explanation of each column name. 

 

Table 2. An example partial demonstration of ETT-small-m1 dataset 

 Date    HUFL   HULL   MUFL   MULL    LUFL   LULL OT 

0     2016-07-01 00:00:00  5.827   2.009 1.599 0.462  4.203 1.340 30.531000 

1 2016-07-01 00:15:00 5.760 2.076 1.492 0.426  4.264 1.401 30.459999 

2 2016-07-01 00:30:00 5.760 1.942 1.492 0.391  4.234 1.310 30.038000 

3 2016-07-01 00:45:00 5.760 1.942 1.492 0.426  4.234 1.310 27.013000 

4 2016-07-01 01:00:00 5.693 2.076 1.492 0.426  4.142 1.371 27.787001 

 

 



122  Imran BAMUS, et al. / GU J Sci, 38(1): 115-129 (2025) 

 
 

 

Table 3. Description of the abbreviations in the dataset 

Field Date HUFL HULL MUFL MULL LUFL LULL OT 

Descriptions The 

recorded 

date 

High 

UseFul 

Load 

High 

Use- 

Less 

Load 

Middle 

UseFul 

Load 

Middle 

UseLess 

Load 

Low 

Use- 

Ful 

Load 

Low 

Use- 

Less 

Load 

Oil 

Temperature 

 

5. PROPOSED MODEL: FUSION OF IMAGE TRANSFORMATION TECHNIQUES 

 

This section explains the fused-oriented image transformation of time-series IoT data with the objective of 

demonstrating its superiority over individual image transformation techniques. As seen in Figure 4, the 

process of transformation and training consists of a total of three phases. The first phase involves acquiring 

2D images using four different image transformation techniques of the original multivariate time-series 

data. The second phase involves combining images from four different types of transformation techniques. 

The third phase involves obtaining the results using a CNN model. 

 

5.1. Image Transformation Phase 

Image transformation converts multivariate IoT time-series data to 2D images using four transformation 

techniques. The main objective of this transformation is to reshape the attributes of the time data into image 

format, facilitating visual recognition and learning of underlying patterns. Four transformation techniques, 

namely GADF, GASF, MTF, and RP techniques, are employed to generate chronologically arranged 2D 

image sequences. After applying these techniques, four new types of images are generated: 

𝑋_𝐺𝐴𝐷𝐹, 𝑋_𝐺𝐴𝑆𝐹, 𝑋_𝑀𝑇𝐹, 𝑋_𝑅𝑃. We provide the entire time-series data as input to image transformation 

techniques by shifting it, resulting in an output of 𝑁𝑥24𝑥24, indicating the completion of the transformation 

process. In the transformed images, colors closer to dark blue indicate smaller values, while colors closer 

to yellow represent values with greater amplitude, providing visual cues for the data's characteristics. 

 

5.2. Image Fusion Phase 

 

After completing the conversion process, 𝑋𝐺𝐴𝐷𝐹, 𝑋𝐺𝐴𝑆𝐹, 𝑋𝑀𝑇𝐹, 𝑋𝑅𝑃 are generated by employing GADF, 

GASF, MTF, and RP. These images represent 𝑁𝑥𝑁 dimensional matrices, where 𝑋𝐺𝐴𝐷𝐹, 𝑋𝐺𝐴𝑆𝐹, 𝑋𝑀𝑇𝐹, 𝑋𝑅𝑃 

are all 𝑅𝑁𝑥𝑁.  These images can be further combined to create fused images, incorporating multiple 

perspectives of the time-series data. This fusion step involves two orientations: horizontal and square. The 

𝑁𝑥𝑁 images are fused with different orders of techniques to achieve 4𝑥𝑁𝑥𝑁 for horizontal orientation and 

2𝑁𝑥2𝑁 for square orientation. This representation encapsulates valuable and comprehensive information, 

which can subsequently be assessed using image processing techniques.  

 

5.3. Feature Extraction Phase via Convolutional Neural Network (CNN) 

 

The fused images are trained utilizing CNN [22], a widely adopted deep learning algorithm. It is designed 

to process structured grid data, especially in the field of computer vision. CNNs capture spatial properties 

by applying a series of filters to the input data. Using multiple convolutional layers, they learn from simple 

patterns to complex high-level features. It usually includes convolutional layers, activation functions, 

pooling layers-larges, and fully connected layers. Each type of CNN contains specially designed 

convolution layers, activation functions, pooling layers and fully connected layers, tailored to the size and 

structure of the input data. Also, a sliding window approach is employed to enable prediction of the next 

location. This involves dividing the data into windows of a predetermined size and sequentially sliding 

them, enabling the prediction of the subsequent location. We set window size to 24. When converting the 

time-series data into a 2D image, we adapt each set of 24 rows within the window to be suitable for image 

transformation techniques in an 𝑁𝑥24 format depending on the number of columns (𝑁). 
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Figure 4. The structure of proposed fused oriented image transformation techniques with CNN 
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6. EXPERIMENTAL ANALYSIS 

 

By presenting a combined approach, fused oriented image transformation approaches increase the 

effectiveness of image transformation techniques. This section compares the prediction outcomes of 

separate image transformation techniques such as GASF, GADF, MTF, and RP with the proposed fused 

oriented image transformation techniques with horizontal and square orientations. Performance evaluations 

are carried out based on the prediction success for each orientation in a comparative manner. Additionally, 

the results are compared with those obtained from individual image transformation techniques to 

underscore the success of the fused oriented image transformation techniques. 

 

The methods in the experiments are implemented on VS Code. Also, several libraries are used with different 

purposes: PyTorch library to create the deep learning model, Pandas to manipulate our data in CSV format, 

Sclearn for scaler operations, Numpy to manipulate input arrays and results, and Matplotlib to visualize 

results. The Pyts library has been used to translate our data into images.  CUDA is used in conjunction with 

Torch during model training and result acquisition. 

 

6.1. Evaluation Metrics 

 

We describe the evaluation metrics in this section that we used to evaluate the proposed model's 

performance. MSE, RMSE, and MAE are commonly used evaluation metrics in predictive models to 

measure the accuracy and performance of the model by quantifying the differences between predicted and 

actual values, shown in Equations (7)-(10) [23]. 

MSE measures the average of the frames of errors or residues. In the context of CNNs, this quantifies the 

difference between the estimated values (output of the neural network) and the actual target values (actual 

values) 

 

                                                              𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̅�)

2𝑛
𝑖=1   .                                                            (7) 

 

RMSE is especially useful in situations where the unit of MSE cannot be directly exploited because the unit 

of RMSE is the unit of the target variable. Therefore, the RMSE provides a more interpretable value when 

measuring the difference between estimated values and actual target values  

 

                                                             𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̅�)

2𝑛
𝑖=1  .                                                        (8) 

 

MAE shows the average magnitude of the absolute difference between the estimated value and the actual 

value of each data point. MAE is more resilient than MSE, especially in the case of outliers in the dataset  

 

                                                                𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̅�|

𝑛
𝑖=1   .                                                           (9) 

 

MAPE shows the average size of the absolute percentage difference between the estimated value and the 

actual value of each data point. This measurement is especially useful for understanding how inaccurate 

the estimates are as a percentage relative to the original target variables  

 

                                                            𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖−𝑦�̅�

𝑦𝑖
|𝑛

𝑖=1   .                                                        (10) 

 

6.2. Results and Discussion 

 

In this study, images are generated using image transformation techniques including GASF, GADF, MTF, 

and RP applied to time-series data. Subsequently, these images are combined to generate fused images. In 

fused-oriented image transformation techniques, each image transformation technique, including GASF, 

GADF, MTF, and RP, is combined with different orientations, such as square or horizontal. Obtained image 
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datasets are partitioned into 80% for training and 20% for testing. Additionally, CNN is utilized to train 

both individual and fused images. Performance evaluation is conducted on an electricity transformer dataset 

by comparing both individual and fused versions, with different fusion orders. The results are analyzed 

based on various prediction evaluation metrics, including MSE, RMSE, MAE, and MAPE scores.  

 

The hyperparameters of CNN for the proposed model are given in Table 4. Accordingly, 20 epochs are 

determined for the training phase. Adam optimizer is selected due to its faster calculation time and lower 

parameter requirements compared to others. Also, ReLU is determined as the activation function since it 

reduces the probability of encountering gradient vanishing problems. We use a sliding window approach 

for the prediction of the next time-series value. By splitting the data into windows of a specific size and 

sliding them one by one, the next value is predicted. In our proposed model, the sliding window size is set 

to 24. 

 

Table 4. Hyperparameters of CNN 

Parameters Values 

Input Size 24x24, 48x48, 24x96   (H x W) 

Sliding Window Size 24 

Number of Epochs 20 

Pooling Function Max Pooling (2x2) 

Optimizer Adam 

Loss Function MSE Loss 

Activation Function ReLU 

Number of Units 17376 

 

The fused-oriented image transformation techniques have stronger prediction capabilities compared to 

individual image transformation techniques. The prediction results vary according to the orientations and 

orders of these techniques. Tables 5 and 6 show prediction results for fused-oriented image transformation 

techniques with different orders. Specifically, Tables 5 and 6 indicate the MSE, RMSE, MAE, and MAPE 

results for horizontal and square orientations, respectively. The prediction scores change according to the 

orientations and fusion orders of individual techniques. 

 

Table 5. Different horizontal fusion orientations of image transformation techniques 

Fusion Order (horizontal) MSE RMSE MAE MAPE 

RP - GADF - MTF - GASF 0.01047 0.10235 0.08054 0.23675 

GADF - RP - GASF - MTF 0.01082 0.10404 0.08254 0.23685 

RP - MTF - GADF - GASF 0.01159 0.10770 0.08539 0.24090 

MTF - GADF - RP - GASF 0.01208 0.10994 0.08767 0.24625 

RP - GADF - GASF - MTF 0.01220 0.11046 0.08743 0.21997 

RP - MTF - GASF - GADF 0.01263 0.11239 0.08871 0.24664 

MTF - GASF - RP - GADF 0.01263 0.11240 0.08991 0.26514 

GADF - RP - MTF - GASF 0.01268 0.11264 0.09034 0.25425 

GASF - MTF - GADF - RP 0.01328 0.11526 0.09185 0.27425 

GASF - GADF - RP - MTF 0.01341 0.11581 0.09181 0.27118 

MTF - GASF - GADF - RP 0.01361 0.11669 0.09164 0.26425 

RP - GASF - GADF - MTF 0.01365 0.11684 0.09384 0.26454 

RP - GASF - MTF - GADF 0.01371 0.11711 0.09249 0.27753 

GASF - GADF - MTF - RP 0.01380 0.11747 0.09253 0.26988 

GASF - RP - MTF - GADF 0.01387 0.11780 0.09448 0.27861 

GASF - RP - GADF - MTF 0.01413 0.11889 0.09487 0.26403 

GADF - GASF - MTF - RP 0.01421 0.11923 0.09396 0.27361 

GADF - MTF - RP - GASF 0.01463 0.12096 0.09650 0.27025 

GADF - GASF - RP - MTF 0.01521 0.12336 0.09671 0.28487 
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MTF - RP - GADF - GASF 0.01548 0.12443 0.09851 0.27097 

GADF - MTF - GASF - RP 0.01604 0.12665 0.09963 0.30877 

MTF - GADF - GASF - RP 0.01617 0.12719 0.09871 0.29808 

MTF - RP - GASF - GADF 0.01689 0.12996 0.10066 0.29574 

GASF - MTF - RP - GADF 0.01779 0.13339 0.10746 0.29392 

 

When compared to different orders of fused oriented image transformation techniques, Table 5 shows that 

RP - GADF - MTF - GASF horizontal sequence has the highest prediction capability under all evaluation 

metrics, with the lowest MSE of 0.01047, RMSE of 0.10235, MAE of 0.08054. Also, RP - GADF - GASF 

- MTF horizontal sequence has the lowest MAPE of 0.21997. On the other hand, Table 6 shows that the 

RP - GASF - MTF - GADF square sequence exhibits the highest prediction capability, with the lowest MSE 

of 0.01153, RMSE of 0.10739, MAE of 0.08508. Also, GASF - MTF - RP – GADF square sequence has 

the lowest MAPE of 0.22757. 

Table 6. Different square fusion orientations of image transformation techniques 

Fusion Order (square) MSE RMSE MAE MAPE 

RP - GASF - MTF - GADF 0.01153 0.10739 0.08508 0.25059 

GADF - RP - MTF - GASF 0.01178 0.10853 0.08597 0.24990 

GASF - MTF - GADF - RP 0.01195 0.10933 0.08673 0.25404 

GASF - MTF - RP - GADF 0.01198 0.10948 0.08585 0.22757 

RP - MTF - GASF - GADF 0.01209 0.10995 0.08671 0.25514 

GADF - MTF - RP - GASF 0.01213 0.11017 0.08786 0.25728 

RP - GADF - MTF - GASF 0.01247 0.11170 0.08952 0.25438 

RP - GADF - GASF - MTF 0.01252 0.11191 0.08970 0.24968 

MTF - GASF - RP - GADF 0.01256 0.11211 0.08962 0.25448 

MTF - RP - GADF - GASF 0.01315 0.11467 0.08973 0.26424 

GADF - GASF - MTF - RP 0.01319 0.11486 0.09096 0.27288 

MTF - RP - GASF - GADF 0.01340 0.11577 0.09270 0.26976 

MTF - GADF - RP - GASF 0.01391 0.11796 0.09189 0.28174 

GASF - GADF - RP - MTF 0.01410 0.11877 0.09518 0.28260 

MTF - GADF - GASF - RP 0.01437 0.11991 0.09664 0.27823 

RP - GASF - GADF - MTF 0.01448 0.12033 0.09629 0.27632 

GASF - RP - GADF - MTF 0.01449 0.12038 0.09462 0.29571 

RP - MTF - GADF - GASF 0.01466 0.12109 0.09718 0.28891 

MTF - GASF - GADF - RP 0.01467 0.12113 0.09649 0.27793 

GASF - GADF - MTF - RP 0.01472 0.12135 0.09564 0.29089 

GADF - MTF - GASF - RP 0.01517 0.12318 0.09892 0.27378 

GADF - RP - GASF - MTF 0.01599 0.12648 0.10025 0.30083 

GADF - GASF - RP - MTF 0.01629 0.12763 0.10259 0.29799 

GASF - RP - MTF - GADF 0.01861 0.13643 0.10893 0.32141 

 

Table 7 gives the comparative prediction results for fused oriented and individual techniques. According to 

the results, Fused-Horizontal image transformation techniques show superiority among Fused-Square 

oriented and individual techniques in terms of MSE, RMSE, MAE, and MAPE scores. Moreover, Fused-

Square image transformation techniques have slightly lower prediction success with higher MSE, RMSE, 

MAE and MAPE scores than the Fused-Horizontal oriented techniques, but they still outperform GASF, 

GADF, MTF, and RP individual techniques. This suggests that combining multiple techniques through 

fusion enhances the predictive capacity and overall performance of the model. Among individual 

techniques, the RP technique has the best performance with the lowest prediction values, while MTF has 

the worst performance with the highest values. 
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Table 7. Overall performance comparisons of fused and individual image transformation techniques 

Fused / Individual Image 

Transformation Techniques 
MSE RMSE MAE MAPE 

Fused-Horizontal 0.01047 0.10235 0.08054 0.21997 

Fused-Square 0.01153 0.10739 0.08508 0.22757 

GASF 0.01705 0.13058 0.10306 0.31601 

GADF 0.01573 0.12544 0.09876 0.29428 

MTF 0.01973 0.14047 0.11050 0.34201 

RP 0.01232 0.10928 0.08882 0.26374 

 

In the existing literature [8-16], RMSE, MAE, and MAPE scores range from (i) 0.696 to 0.1833, (ii) 0.544 

to 0.1505, and (iii) 0.595 to 0.2134, respectively. Although it would not be fair to compare our results with 

the results of these studies directly due to the use of different datasets, it is seen that the best RMSE and 

MAPE scores obtained in this study are reasonably high and in acceptable range. Additionally, it is seen 

that our study outperforms existing studies in terms of MAE score by achieving 0.08054.  

 

7. CONCLUSION 

 

This study has demonstrated the potential of fusing image transformation techniques to enhance the 

predictive power of deep learning algorithms for multivariate time-series data. The fusion of GAF, MTF, 

and RP techniques in both horizontal and square orientations, coupled with the use of CNN, has shown 

promising results in predicting complex patterns within a dataset related to electricity distribution and 

transformer oil temperature. The findings of this study have significant implications for the fields of IoT, 

multivariate time-series data analysis, image transformation, image fusion, and predictive modeling. This 

study provides a stepping stone towards the development of more sophisticated models for handling 

complex time-series data, paving the way for future advancements in this field. The experimental results 

demonstrate that the Fused-Horizontal image transformation technique with the order of RP - GADF - MTF 

– GASF exhibits the best performance, with the lowest MSE of 0.01047, RMSE of 0.10235, MAE of 

0.08054. Also, the order of RP - GADF - GASF – MTF has the lowest MAPE of 0.21997, compared to 

both the Fused-Square image transformation techniques and other individual image transformation 

techniques such as GASF, GADF, MTF, and RP. Fused-Square image transformation techniques, on the 

other hand, show better performance than individual image transformation techniques. As a result, fused 

oriented image transformation techniques accelerate the performance of the image transformation 

techniques to reveal the hidden patterns in the time-series data. However, this study has certain limitations 

that should be acknowledged. First, the experiments were conducted using a single dataset, which may limit 

the generalizability of the findings to other types of IoT data or different domains. Additionally, the study 

focused on specific fusion techniques and CNN architectures, and other combinations or more advanced 

deep learning models could potentially yield different results. Furthermore, while the fusion techniques 

improved predictive performance, the computational complexity and processing time also increased, which 

could be a limiting factor in real-time or resource-constrained environments.  

 

For future research, we plan to explore the performance of other image transformation techniques with 

different models of deep learning, including traditional machine learning models. Additionally, comparing 

the performance of applying the proposed approach to both univariate and multivariate time-series data 

could offer further insights and strengthen the generalizability of the findings. This study has opened up 

new avenues for leveraging advanced image transformation and fusion techniques to employ the power of 

time-series data for predictive modeling. 
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