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ABSTRACT

This study aims to predict machinability and high performance optimum surface roughness 
(Ra) by developing multiple regression models and artificial neural network (ANN) model 
for abrasive water jet cutting (AWJC) of Aluminum 7068 alloy. Important basic processing 
parameters such as pump pressure (3500-4000 Bar), nozzle distance (2-5 mm), abrasive flow 
rate (200-350 g/min), abrasive grain size (100-110 mesh), and nozzle traverse speed (240-
300 mm/min) were selected in the study. To examine the effects of these parameters on Ra, 
32 experiments were conducted using the L32 orthogonal array, and data was collected. Ad-
ditionally, the most important factors and interactions affecting Ra were determined using 
multiple regression analysis and analysis of variance (ANOVA). The Artificial Neural Network 
(ANN) model was designed to have multiple hidden layers using MATLAB. The model was 
trained and evaluated using experimental data, and its performance was measured using mean 
squared error (MSE) and mean absolute error (MAE). The model was optimized using hyper 
parameter tuning and cross-validation techniques. As a result, it was determined that the best 
R2 value of 95.65% from the multiple regression models created to estimate the surface rough-
ness could be obtained from the linear regression model. While selecting the optimum process 
parameters for AWJC, it was determined that nozzle rotation speed, abrasive grain size and 
flow rate had the greatest effect by 35.5%, 25.4% and 21.9%, respectively. The optimized ANN 
model showed high accuracy in predicting Ra for different input parameter combinations. 
This study provides a reliable and efficient tool for predicting Ra in AWJC, which can contrib-
ute to improving process planning and control.
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INTRODUCTION 

Abrasive water jet cutting (AWJC) is an effective cutting 
method that uses a high-pressure water jet and abrasive par-
ticles and can be applied to a wide range of materials [1-3]. 
AWJC is preferred in many industries because it makes fast 
and precise cuts. The basic principle of cutting with AWJC 
is the mixture of water and abrasive particles cutting the 
material at high speed from a nozzle [3-5]. This process is 
suitable for cutting various materials such as metal, plastic, 
glass, ceramics, stone, and composites. Many conventional 
machining methods occur under serious temperature 
effects due to high friction between the work piece and the 
cutter, leading to damage to the material microstructure. 
However, AWJC allows the material to be cut without being 
exposed to thermal interaction due to the cooling effect of 
the water jet, which helps to maintain the structural integ-
rity and properties of the material [1-6]. The process can 
also cut complex geometries and high tolerances. AWJC 
shows parallelism with various regulatory directives around 
the world in reducing waste after processing, as well as low 
energy consumption compared to other cutting methods. 
Being an environmentally friendly method, it is used for 
material cutting and shaping in various fields such as avia-
tion and space, automotive, electronics, and construction. 

Aluminum (Al) 7068 alloy maintains its reputation as 
a strategic material in the aerospace industry due to its 
ability to meet many industrial expectations such as a high 
strength-to-weight ratio, low density, good fatigue and cor-
rosion resistance [7,8]. These features make the Al 7068 
alloy suitable for use in industrial components where zero 
defects are expected, such as aircraft bodies, engine parts, 
landing gear, etc. On the other hand, it is also a material that 
meets many critical expectations in the aerospace industry, 
such as not creating too much weight with robotic units 
during transportation with a spacecraft, and being able to 
withstand harsh climate conditions for many years during 
landing on a planet surface under research.

Artificial neural networks (ANN) are a powerful tool 
for increasing process efficiency and reducing costs in the 
industrial field, as they have the ability to learn and gen-
eralize complex and non-linear relationships. ANN can be 
used to optimize and predict cutting processes with many 
input parameters, such as water jet cutting. The use of ANN 
in waterjet cutting provides the following advantages such 
as optimization of cutting parameters, surface roughness 
estimation, cutting time estimation, material strength and 
stress estimation [9-11].

Wang et al. conducted a comprehensive analysis on the 
AWJC process, specifically focusing on Al alloys. In their 
work, they developed and validated a mathematical model 
for predicting the cutting front profile based on the defined 
cutting conditions [12]. In a novel study by Kumar et al., 
the effects of abrasive water jet machining (AWJM) on Al 
alloy 7475 (AA7475) composites, reinforced with varying 
weight fractions of carbon nanotube (CNT) particles, were 

investigated. An optimization of outputs, including material 
removal rate and average roughness (Ra), was conducted 
using the Technique for Order of Preference by Similarity 
to Ideal Solution (TOPSIS) method [13]. Wang et al. delved 
into the impacts of kerf taper in AWJM of Al alloy 6061-
T6. Their results indicated that cutting speed and material 
thickness greatly affect the kerf taper, whereas the influences 
of water pressure and abrasive flow rate are less apparent. 
The study found that reducing cutting speed contributes to 
minimizing kerf taper, and kerf taper inversely correlates 
with material thickness. Building on these findings, the 
authors established a kerf taper prediction model, the effec-
tiveness of which was substantiated through further experi-
ments [14]. Ahmed et al. embarked on a mission to enhance 
the surface roughness in the AWJC process through the 
application of statistical modeling. The study aimed to com-
prehend the impact of AWJC parameters, including traverse 
speed, water pressure, and standoff distance, on the qual-
ity of surface roughness in the cutting process. The authors 
employed design of experiments and statistical modelling 
techniques to establish correlations between the control 
factors and output responses. Using the Response Surface 
Method (RSM) for surface roughness modeling, they dis-
covered that surface roughness could be improved by 
increasing water pressure at low traverse speeds or decreas-
ing the pressure at high traverse speeds [15]. Akkurt et al. 
concentrated their study on the effects of feed rate and work 
piece thickness on the surface roughness in AWJC applica-
tions. Various materials were examined, including pure Al, 
Al-6061 aluminum alloy, brass-353, AISI 1030 and AISI 304 
steel, each cut at different feed rates. The research found that 
the improvement in surface roughness of pure Al remained 
within a narrow range, relative to the decrease in feed rate. 
Additionally, it was noted that the pressure of the AWJ 
adversely influences surface roughness as the thickness of 
the material decreases. For materials with higher strength 
than Al, such as brass and AISI 1030, higher surface rough-
ness was observed in thinner workpieces. [16]. Bañon et al. 
explored the potential of AWJM as a technique for texturing 
thin Al alloy UNS A92024. The researchers highlighted that 
surface modification of metallic alloys could lead to hydro-
philic or hydrophobic surfaces that enhance the material’s 
functional performance. The study examined the impact of 
texturing with and without abrasives, finding that specific 
combinations without abrasive particles could yield surfaces 
of interest. The study determined the influence of texturing 
parameters such as hydraulic pressure, traverse speed, abra-
sive flow, and spacing on surface quality in terms of surface 
roughness parameter (Sa), maksimum surface height (Sz), 
and depth of core roughness (Sk), and wettability [17]. Lv et 
al. conducted a numerical study to explore the fatigue crack 
behavior of 2024 Al alloy specimens treated through AWJ 
peening. A numerical model for fatigue testing was also 
established to evaluate crack growth characteristics in the 
specimen, accounting for the residual compression intro-
duced by peening. The findings suggested a reduction in 
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both the effective stress intensity factor range and the crack 
propagation rate due to the residual stress induced by peen-
ing [18]. Sun et al. aimed to enhance the cutting quality of 
Al alloy machined by an AWJ operating at a relatively low 
pressure. To achieve high cutting quality at a lower pres-
sure of 150 MPa, the researchers optimized AWJ process 
parameters using the RSM. Surface roughness (Ra) and kerf 
taper (Kt) were the metrics used to assess cutting quality. A 
Central Composite Design (CCD) model guided the design 
of the cutting experiment, with the effects of abrasive flow 
rate, standoff distance, and traverse speed on machining 
quality examined via the Analysis of Variance (ANOVA) 
method. [19].

In order to optimize the surface roughness to be 
obtained as a result of cutting with AWJ, Al 7068 alloy 
material was used and basic machining parameters such 
as pump pressure, nozzle distance, abrasive flow, abrasive 
particle size, nozzle advance speed were investigated. Data 
were collected by conducting 32 experiments using L32 
orthogonal design, and the most important factors and 
interactions affecting Ra were determined using multiple 
regression analysis and ANOVA methods. In addition, 
an ANN model with multiple hidden layers was designed 
using MATLAB, and it was optimized by training it with 
experimental data. This optimized ANN model accurately 
predicted Ra for different input parameter combinations. 
This study provides a reliable and efficient tool for pre-
dicting Ra in AWJC and contributes to the development of 
process planning and control. In conclusion, the findings of 
this study provide solutions to problems related to surface 
roughness control in material-cutting processes. By under-
standing how these parameters influence Ra, manufacturers 
can optimize their AWJC processes, leading to increased 
productivity, improved quality, and reduced manufacturing 
costs. In conclusion, the novelty of this research lies in the 
application and optimization of AWJC process parameters 
for Al 7068 alloy and the development of a robust and accu-
rate model to predict surface roughness. The findings from 
this study are anticipated to make a significant contribution 
to the field of AWJM and benefit the aerospace industry.

MATERIALS AND METHODS

Material
In this study, an Al 7068 alloy with a thickness of 30 

mm was used which is a lightweight and high-strength 
material. Due to its higher strength performance and lower 
density compared to Al 7075 alloy, it contributes to weight 

reduction. The chemical composition of this Al-based 
alloy is shown in Table 1, and its mechanical properties are 
shown in Table 2. The novelty of this study in the investi-
gation and optimization of AWJC parameters for Al 7068 
alloy, a material extensively used in critical applications 
within the aerospace industry due to its high strength-to-
weight ratio. Despite its popularity, there is a limited body 
of research focused on the optimization of AWJC parame-
ters for this specific alloy. As AWJC is a versatile and effec-
tive method for cutting metals, it is essential to understand 
the optimal conditions to maximize efficiency and mini-
mize Ra, enhancing the alloy’s performance in subsequent 
applications.

Abrasive Water Jet Cutting
In this study, an AWJC machine with an intensifier-type 

pump with a power of 50 HP was used. Additionally, garnet 
abrasive material was used during the cutting process. The 
pressure value (P) was determined in the range of 3500-
4000 Bar, the stand-off distance (d) was between 2-5 mm, 
the abrasive flow rate (mv) was in the range of 200-350 g/
min, the particle size (a) was between 100-110 mesh, and 
the cutting speed (V) was between 240-300 mm/min. The 
cutting unit of the Portal Type S brand water jet machine 
used in the experiments is shown in Figure 1.a, and the 
pump unit used is shown in Figure 1.b. Figure 2 shows the 
Al 7068 alloy work piece during the AWJC process with the 
pressurized water jet, nozzle, and cutting line. The technical 
specifications of the cutting unit are presented in Table 3.

Experimental Planning and Data Collection 
In this study, 32 different experiments were conducted 

using an L32 orthogonal array design. L32 orthogonal design 
is an experimental planning method that allows obtaining 

Table 1. Chemical composition of Al 7068 alloy [20]

Element Si Cu Mg Zn Ti Fe Zr Al
Weight (%) 0.1 2.1 2.4 7.74 0.07 0.11 0.06 Balance

Table 2. Mechanical properties of Al 7068 alloy [20]

Specifications Units Value
Density (kg/m3) 2850
Yield strength (MPa) 683
Ultimate tensile strength (MPa) 710
Brinell hardness (HB) 190
Fatigue strength (MPa) 220
Fracture toughness (MPa*m1/2) 35
Elasticity modulus (GPa) 71
Elongation (%) 10
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the most accurate results with the minimum number of 
experiments by minimizing the interaction between factors. 
Different parameter combinations were used for the AWJC 
process in each experiment. Factors such as pressure, nozzle 
distance, abrasive flow rate, abrasive particle size, and noz-
zle traverse rate were determined at commonly used levels. 
Ra values were measured using a Mitutoyo Surftest SJ-210 
surface roughness device and the average value from three 
different points on the processed surface of the samples was 
calculated for further analysis. In this study, the 32 experi-
ments conducted using L32 orthogonal array design pro-
vided an important data source for parameter optimization 

of the AWJC process. The “Low” and “High” levels of the 
experiment parameters are presented in Table 4, and the 
experiment order and the training data set used for Ra are 
given in Table 5.

In AWJC operations, various parameters impact the Ra 
of the cut material. In this study, the selected input param-
eters are P, mv, V, d, and a. These parameters were chosen 

Table 4. Levels and values of the process parameters

Parameters Unit Low High
Pressure (P) Bar 3500 4000
Standoff distance (d) mm 2 5
Abrasive flow rate (mv) g/min 200 350
Abrasive grit size (a) mesh 100 110
Traverse speed (V) mm/min 240 300
Surface roughness (Ra) (µm) Response 

Table 3. Specifications of AWJC unit

Properties Values
Machine Model Portal Type S-Standard
Pump Power KMT 50HP
CNC Control System Siemens
Max Error-Free Cutting Speed 12,000 mm/min
Positioning Accuracy 0.03 mm
Maximum Pump Flow Rate 3.8 L/min
Pump Pressure ≤ 4000 Bar
Nozzle Angle 90°
Nozzle Length 76.2 mm
Nozzle Outlet Diameter 0.76 mm
Table Capacity 2 m x 4 m

Figure 2. AWJC of Al 7068 alloy.

 (a) (b)

Figure 1. (a) Water jet cutting table (b) high-pressure system.
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based on their significance in affecting surface quality as 
outlined in previous research and their practical impor-
tance in industrial applications. Pump pressure (P), this is 
the hydraulic pressure at which water is pumped into the 
AWJC system. It directly influences the energy of the water 
jet, and thus, the material removal rate and the Ra. Too high 
a pressure can lead to increased roughness due to a greater 
amount of material being displaced. Conversely, too low a 
pressure may not provide enough cutting force, affecting 
the process efficiency. Abrasive flow rate (mv): The quantity 
of abrasive particles mixed with the water jet significantly 
affects the cutting performance. Higher abrasive flow rates 
may result in a smoother surface finish due to the increased 
cutting action. However, an excessive flow rate may result 

in waste of abrasive and higher operating costs. Nozzle tra-
verse speed (V): This is the speed at which the nozzle moves 
over the workpiece surface. It impacts the cutting time and 
the interaction time between the water jet and the mate-
rial, thus affecting the surface roughness. A faster traverse 
speed may decrease the process time but could increase the 
surface roughness. Stand-off distance (d): It is the distance 
between the nozzle tip and the workpiece. The standoff 
distance has a significant effect on the energy density of 
the water jet, which can impact the material removal and 
the surface roughness. An improper standoff distance can 
result in a poor surface finish. Abrasive grain size (a): The 
size of the abrasive particles used in the AWJC system can 
affect the cutting performance and surface finish. Larger 

Table 5. Training dataset used for test order and surface roughness

Exp. No P (Bar) d (mm) mv (g/min) a (mm) V (mm/min) Ra (µm)
1

3500

2

200
100

240 4.87
2 300 4.97
3

110
240 4.92

4 300 5.04
5

350
100

240 4.96
6 300 5.03
7

110
240 5.10

8 300 5.10
9

5

200
100

240 4.89
10 300 4.96
11

110
240 4.96

12 300 5.03
13

350
100

240 4.95
14 300 5.02
15

110
240 5.02

16 300 5.09
17

4000

2

200
100

240 4.93
18 300 5.01
19

110
240 5.00

20 300 5.08
21

350
100

240 4.99
22 300 5.07
23

110
240 5.06

24 300 5.14
25

5

200
100

240 4.92
26 300 5.00
27

110
240 4.99

28 300 5.07
29

350
100

240 4.98
30 300 5.06
31

110
240 5.05

32 300 5.13
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particles may improve the cutting efficiency but could 
result in a rougher surface due to deeper indentations made 
on the material. Each of these parameters significantly 
impacts the AWJC process’s performance, and their proper 
selection and control are essential to achieve the desired Ra 
and operational efficiency. Hence, the study is focused on 
these parameters to develop accurate models for predicting 
surface roughness in AWJC operations.

Multiple Regression Analysis 
Multiple Regression Analysis is a statistical analy-

sis method used to predict a target variable using multi-
ple independent variables. This method has been used to 
examine the effects of parameters (P, d, mv, a, and V) used 
in AWJC on cutting quality (surface roughness). Different 
models such as Linear regression, Lasso regression, Ridge 
regression, Support Vector Machines, Decision Trees, and 
Bagged Trees were used for multiple regression analysis. 
Mean Squared Error (MSE) was used to determine which 
model performed better among these models. MSE is a 
measure of the average squared difference between pre-
dicted and actual values. Lower MSE values indicate a bet-
ter-performing model.

Artificial Neural Network (ANN) Model 
An ANN model has been developed and trained to pre-

dict the effects of the cutting parameters used in AWJ on 
cutting quality. The developed model consists of a layer of 
5 input parameters, 10 hidden layers, and 1 output layer, 
as shown in Figure 3. Parameters such as P, d, mv, a, and 
V were used to predict their effects on cutting quality (Ra). 
The data set in Table 5 was divided into two parts; 70% of the 
data were used as the training data set (experiment group) 
and 30% were used to verify the validity of the models 

(control group). The ANN model was tested on data set 
samples during the learning process to improve accuracy. 
After the training process was completed, the ANN model 
was used to predict cutting quality and the predictions 
were compared with the actual measurements to evaluate 
the accuracy. Statistical parameters such as the correlation 
coefficient (R2) and Mean Absolute Error (MAE) were used 
for model evaluation. In addition, the performance of the 
ANN model was improved using the optimized parame-
ters, and the results of the optimization were analyzed. This 
study demonstrates that the use of ANN models can be 
beneficial for optimizing the AWJC process.

RESULTS AND DISCUSSION

In this study, the aim was to develop multiple regres-
sion and ANN models for predicting surface roughness in 
AWJC of Al 7068 alloy. The research aimed to eliminate 
surface roughness problems that increase operating costs. 

According to analysis results, Table 5 presents the data 
used as the training set to build a multiple regression model 
to predict Ra in the AWJC process. The input parameters, 
P, d, mv, a, and V, were systematically varied in 32 experi-
ments to examine their effects on Ra. The Ra were measured 
for each experiment and recorded in the table. The multiple 
regression model was built using this data set and optimized 
to predict surface roughness values for new input param-
eter sets. As shown in Table 6, the best R2 value among 
the models used was obtained with the Linear regression 
model, with a value of 95.65%. These results demonstrate 
that Linear regression model performs the best and could 
be considered in the selection of other prediction methods 
such as ANN model. The performance criteria of the other 
models used are also presented in Table 6.

Figure 3. Architecture of ANN model.
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In the post-training phase, the results were obtained 
and compared with each other. The determinant coefficient 
R2 was used as the comparison criterion. The comparative 
R2 graph of the experimental study data clearly shows how 
accurate the ANN model predicts (Figure 4). Therefore, it 
was concluded that the developed ANN model is highly 
compatible and can be used with confidence intervals. 
Ficko et. all (2021) used ANN to predict surface roughness 
of stainless steel X5CrNi18-10 (1.4301) cut by AWJC and 
found that the ANN model had a higher R2 value of 97.87% 
than the multiple regression model with 94.67%. The study 
also showed that the ANN model was more sensitive to the 
changes in the input parameters than the multiple regres-
sion model [21]. Experimentation and optimization of 
cutting parameters of AWJC on AA6082 through response 
surface methodology titled paper uses RSM to optimize the 
cutting parameters of AWJM for AA6082 alloy. The paper 
considers abrasive feed, stand-off distance, and nozzle speed 
as the input parameters, and surface roughness, material 
removal rate, and hardness as the output parameters. The 
paper reports that abrasive feed has the most significant 
effect on surface roughness, followed by nozzle speed and 
stand-off distance. The paper also suggests optimal values 

for each parameter to achieve minimum surface roughness 
and maximum material removal rate and hardness [22].

Furthermore, the results of both the experiments con-
ducted with ANN and the accuracy of ANN in predicting 
the data have been analyzed. The analysis revealed that the 
results obtained from ANN and experimental studies are 
similar (Figure 5). This finding demonstrates the potential 
of ANN to obtain accurate results in the future.

The results of the experiments conducted with the ANN 
model and the success of the model in predicting the data 
have been analyzed. During the training phase of the net-
work, regression curves for the corresponding outputs for 
the training, validation, and testing sets are shown in Figure 
6. The results obtained for each stage of the design process 
(training, validation, testing, and system) have been ana-
lyzed and plotted with the regression process (Figure 6.a-d). 
As shown in Figure 6, the regression R values (top) and lin-
ear regression equations (y-axis) are shown on each graph. 
It can be observed from the figures that the ANN results 
are in good agreement with the experimental results. The 
training for the ANN model is 99%, and the confidence 
interval value obtained in the testing phase is 97%, which 
is higher than the accepted value of 95% in the prediction 

Figure 5. Experiment-ANN data comparison result graph.Figure 4. Comparative experimental-ANN results.

Table 6. Performance comparison table of regression models

Model MSE R2 Performance (%)
{‘Linear’} 0.00029682 0.9565 95.65
{‘Support Vector Machines’} 0.0008664 0.87304 87.30
{‘Lasso’} 0.01019 -0.49329 49.33
{‘Bagged Trees’} 0.004038 0.40828 40.83
{‘Ridge’} 0.0083577 -0.22472 22.47
{‘Decision Trees’} 0.0061625 0.096966 9.70
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analysis (Figure 6). In the graph shown in Figure 7, as the 
epoch number increases, the amount of error decreases, 
and the best validation performance is 0.011626 (MSE). 
When the real and predicted values were compared to eval-
uate the prediction power of the developed model, the error 
between them was found to be less than 1%. This indicates 
that the model has a high level of prediction accuracy. In 
the conducted ANN study and the linear regression model 
created, the parameters that affect the surface quality were 
used to show their effects. This figure shows the perfor-
mance of the network during the training, validation, and 
testing processes. These results confirm that the ANN is 
suitable for modeling the processing process. The success 
rate for all cases is over 90%. It can be observed that the 
results obtained from both experimental and ANN models 
are very close to each other. The decreasing mean squared 
error of the values fabricated for the ANN experiments 
shows that the prediction accuracy increases. The least MSE 
for validation data was obtained in the fifth experiment. In 

the AWJC process, various parameters, such as pump pres-
sure, standoff distance, abrasive flow rate, abrasive particle 
size, and nozzle advance rate, affect the surface roughness 
(Ra). Ćojbašić et al. (2016) developed a model for predict-
ing surface roughness using an extreme learning machine 
(ELM) and AWJ. The papers use different input parame-
ters, such as hydraulic pressure, stand-off distance, traverse 
speed, abrasive flow rate, abrasive grain size, angle of attack, 
cut depth, nozzle diameter, etc. The papers also use differ-
ent output parameters, such as material removal rate, hard-
ness, kerf geometry, etc. The papers use different methods 
to model and optimize the process parameters, such as 
ANN, ELM, FEM, Taguchi method, experimental evalua-
tion, etc. The papers also use different materials for AWJM, 
such as ceramic tiles, AA6082 alloy, Al alloy 6061-T6, mild 
steel, Inconel 718 super alloy, etc [23].

Figure 8 presents the relative importance of the input 
parameters in affecting the surface roughness in AWJM, 
based on the developed ANN model. The results show 

Figure 6. ANN outputs for surface roughness.
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that the most influential parameter on surface roughness 
is the nozzle traverse speed with a percentage of 35.5%. 
The abrasive grain size comes second with 26.8%, followed 
by the abrasive flow rate with 19.4%. The pump pressure 
ranks fourth with 10.4%, and finally, the standoff distance 
has the least effect on surface roughness with a percent-
age of 7.9%. These findings provide valuable informa-
tion for selecting the optimum machining parameters for 
AWJM. Specifically, the results suggest that the nozzle tra-
verse speed, abrasive grain size, and flow rate are the most 
important parameters to consider in achieving the desired 
surface roughness. These findings are consistent with pre-
vious research in the field and highlight the importance of 
selecting appropriate machining parameters to optimize the 
AWJM process. Ramakrishnan et. all used an ANN-based 
genetic algorithm (GA) and particle swarm optimization 
(PSO) to optimize the AWJC parameters for Ti-6Al-4V 
alloy. They considered water jet pressure, standoff distance, 
and abrasive flow rate as input parameters and surface 
roughness and kerf taper angle as output responses. They 
found that water jet pressure was the most significant factor 
affecting both responses [24]. Experimentation and optimi-
zation of cutting parameters of AWJC on AA6082 through 
response surface methodology, which uses response surface 
methodology and ANOVA to optimize the AWJC process 
parameters for reducing surface roughness and maximizing 
material removal rate and hardness of Al alloy [25].

The experiment with the lowest Ra value of 4.87 was 
obtained in Experiment No. 1. The parameters used in 
this experiment were as follows: the pressure (P) was set 
to 3500 Bar, the diameter (d) was 2 mm, the abrasive flow 
rate (mv) was 200 g/min, the stand-off distance (a) was 100 
mm, and the traverse speed (V) was 240 mm/min. In this 
experiment, the combination of these parameters resulted 

in the achievement of the lowest Ra value. The high pres-
sure and moderate stand-off distance likely contributed to 
the efficient removal of material, resulting in a smoother 
surface. Additionally, the chosen diameter and abrasive flow 
rate may have played a role in controlling the cutting action 
and the overall surface finish. It is important to note that 
the specific material being machined, the nozzle type, and 
other factors can also influence the final surface quality. 
However, based on the given parameters, Experiment No. 1 
demonstrated favorable results in terms of achieving a lower 
Ra value, indicating a relatively smoother and more refined 
machined surface. Microstructure images Figure 9 shows 
Scanning Electron Microscope (SEM) images of surfaces 
machined with different cutting parameters. These images 
play an important role in evaluating surface quality and 
roughness. The SEM image (Figure 9) of the machined sur-
face obtained using an AWJ reveals several key features. The 
surface appears to be relatively smooth overall, with some 
visible irregularities and texture. The AWJ has effectively 
removed material, resulting in a clean and uniform surface 
with minimal residual debris. The image shows microscopic 
scratches and grooves, indicative of the cutting action of 
the abrasive particles in the water jet. The surface appears 
to have a matte finish, indicating a moderate level of sur-
face roughness. Additionally, there are no apparent cracks or 
fractures observed, suggesting that the machining process 
has not induced any significant damage to the material.

This study introduces a new approach to optimizing Ra 
in the AWJC of Al 7068 alloy, a material favored in aero-
space manufacturing due to its lightweight, high strength 
performance, and machinability. Instead of solely relying 
on conventional statistical models, this study employs an 
ANN model alongside multiple regression models. Critical 
processing parameters, such as pump pressure, nozzle dis-
tance, abrasive flow rate, abrasive grain size, and nozzle 
traverse speed, are chosen for the study. By using the L32 
orthogonal array, the effects of these parameters on Ra are 
examined through 32 experiments, and data is collected. 
The study uses multiple regression analysis and Analysis of 

Figure 8. Significance of the effect of parameters on Ra.

Figure 7. Performance graph of the neural network after 
training.



Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 516−528, April, 2024 525

Variance (ANOVA) to identify the most significant factors 
and interactions affecting Ra. The ANN model, designed 
with multiple hidden layers using MATLAB, is trained and 
assessed using experimental data, and its performance is 
gauged using mean squared error (MSE) and mean abso-
lute error (MAE). The model is then optimized using 
hyper parameter tuning and cross-validation techniques. 
This approach provides a high-accuracy prediction of Ra 
for different input parameter combinations, representing 
a reliable and efficient tool for predicting Ra in AWJC, 
which could enhance process planning and control, thereby 
potentially reducing operational costs. This is a significant 
leap from earlier studies that focus on parameter optimi-
zation using methods like Response Surface Methodology 
(RSM) or Taguchi’s experimental design. One key differ-
ence from the previous studies is the use of ANN, which 
allows for a more complex and nuanced analysis of the 
effects of various cutting parameters on surface roughness 
and other quality indicators. This stands in contrast to tra-
ditional regression or DOE methods, which, while effective, 
may not fully capture the complex interactions between dif-
ferent cutting parameters. Additionally, this approach can 
be more adaptive, learning from new data to improve pre-
dictions over time. Another point of differentiation is the 
focus on Al 7068 alloy, a high-performance material often 
used in aerospace applications. This might provide insights 
specific to this material that might not be gleaned from 
studies focusing on different types of Al alloys. However, 
it would be interesting to see a comparison of these mod-
eling approaches with more traditional DOE methods in 
terms of their accuracy and reliability. Also, while the ANN 
approach can be more accurate, it’s also more complex and 

may require more computational resources, which could be 
a disadvantage in some settings. The kerf taper in AWJC 
and how it is influenced by different processing parameters 
like cutting speed, material thickness, water pressure, and 
abrasive flow rate. While this research is crucial in its own 
right, it is narrower in focus compared to the in this study 
you mentioned. The in this study uses an ANN model to 
predict surface roughness across different parameters, pro-
viding a more holistic and possibly more accurate approach 
to optimize the cutting process. Both studies focus on the 
impact of processing parameters on the machining process, 
but the in this study has an edge in its ability to predict 
outcomes [14]. The optimization of the cutting process by 
adjusting different parameters to achieve optimal surface 
roughness. Although this study makes significant strides, 
its statistical modelling approach might not capture the 
complex interactions between different cutting parameters 
as efficiently as the ANN model in the in this study [15]. 
The research evaluates how the feed rate and thickness of 
work piece affect surface roughness during AWJC. It pro-
vides important insights into specific parameters and their 
impact, but may not cover the full range of interactions 
and influences that the ANN model in the in this study can 
account for. This points to a potentially more robust predic-
tion capability in this study [16]. The texturing operations 
using AWJ, which is a distinct area of study compared to the 
in this study. While both studies involve altering the mate-
rial surface, the newer study applies an ANN model for sur-
face roughness prediction across various parameters, which 
could potentially offer more flexible and nuanced process 
optimization. [17]. The research investigates fatigue crack 
behavior in the context of AWJ peening, a very different 

Figure 9. SEM image of machined Al alloy surface experiment no. 1. The parameters used in this experiment were as fol-
lows; P=3500 Bar, d= 2 mm, mv= 200 g/min, a= 100 mm, and V= 240 mm/min.
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focus from the in this study. In this study’s use of ANN 
modelling for surface roughness prediction provides a 
method that might be applied to a broader range of AWJC 
applications, even though it may not directly tackle issues 
like fatigue crack behavior [18]. “Improving the cutting 
quality of Al alloy machined by AWJ with a relatively low 
pressure” - This study emphasizes the optimization of pro-
cess parameters to enhance cutting quality at a low pres-
sure. However, it does not make use of advanced methods 
like ANN modelling used in the in this study, which could 
potentially provide a more accurate and dynamic method 
for predicting and improving cutting quality [19]. 

CONCLUSION 

Overall, the study demonstrates the potential of using 
both multiple regression analysis and ANN methods for 
predicting surface roughness in AWJ of Al 7068 alloy. The 
results show that ANN is a reliable tool for predicting sur-
face roughness with reasonable accuracy, and can be used 
to improve process planning and control in the aerospace 
industry. The study also highlights the importance of opti-
mizing process parameters such as nozzle traverse speed, 
abrasive grain size, and flow rate to achieve minimum 
surface roughness. It is worth noting that modeling each 
variable separately using regression analysis was found 
to be more efficient in terms of regression coefficients. 
Furthermore, the study found that the ANN model out-
performed the multiple regression model, with a higher R2 
value of 99% in the training stage and a confidence interval 
of 97% in the testing stage. These results indicate that the 
ANN model has high prediction accuracy and can be reli-
ably used in practice. The study also identified the nozzle 
traverse speed as the most significant parameter affecting 
surface roughness, followed by abrasive grain size and flow 
rate. The study’s findings suggest that when selecting opti-
mum process parameters for AWJC, nozzle traverse speed, 
abrasive grain size, and flow rate should be given priority 
over other parameters.

Overall, this study provides valuable insights into the 
use of multiple regression and ANN methods for pre-
dicting surface roughness in AWJC. It sheds light on the 
importance of optimizing process parameters to achieve 
minimum surface roughness and provides a useful tool for 
process planning and control in the aerospace industry.

The results also show that the pump pressure and the 
standoff distance have less effect on surface roughness in 
AWJM of Al 7068 alloy. This may be due to the fact that 
these parameters have more influence on other aspects of 
the AWJM process, such as cutting depth, kerf width, and 
material removal rate. Moreover, these parameters may have 
more significant effects on surface roughness when using 
higher pressures or larger standoff distances than those 
used in this study. Therefore, it is suggested to explore the 
effects of these parameters on surface roughness in AWJM 
under different pressure and standoff distance ranges.

LIMITATION AND FUTURE WORKS 

The limitations of this study include the use of a sin-
gle material (Al 7068 alloy), a single nozzle diameter (0.3 
mm), and a limited number of experiments (32 pieces). 
These factors may limit the generalizability and robustness 
of the developed models for predicting surface roughness 
in AWJM. Future research could extend this study by using 
different materials, nozzle diameters, and experimental 
designs to improve the accuracy and reliability of the mod-
els. Furthermore, other methods such as fuzzy logic, sup-
port vector machine, and extreme learning machine could 
also be applied to compare their performance with multiple 
regression and ANN models for surface roughness predic-
tion in AWJM.

This study has successfully utilized multiple regression 
and ANN models to predict surface roughness in AWJC 
of Al 7068 alloy. However, the findings of the study lead 
to several potential directions for future research. Material 
and nozzle diameter: This study has focused on a specific 
material (Al 7068 alloy) and a specific nozzle diameter 
(0.3 mm). Future experiments involving different materi-
als and nozzle diameters could further expand our capac-
ity to predict surface roughness in AWJC processes. This 
would help us better understand the effects of different 
materials and nozzle diameters on surface roughness in 
AWJC processes. Utilization of other prediction methods: 
This study used multiple regression and ANN models to 
predict surface roughness. In future studies, the application 
of other prediction methods, such as fuzzy logic, support 
vector machine, and extreme learning machine, could fur-
ther expand our prediction capacity and enhance the accu-
racy and reliability of our results. Expanded experimental 
design: This study concentrated on a specific set of exper-
iments. In the future, a broader experimental design could 
be utilized. This would allow us to work with a broader data 
set and further generalize our results. Different pressure 
and standoff distance ranges: In future studies, it might be 
possible to explore the effects of pump pressure and stand-
off distance on surface roughness in AWJC processes under 
different pressure and standoff distance ranges. This could 
help us better understand the impact of these parameters 
on surface roughness in AWJC processes. These potential 
studies have the capacity to extend the findings of the cur-
rent study and enhance our ability to predict surface rough-
ness in AWJC processes.

NOMENCLATURE 

P Pressure, Bar
d Stand-off distance, mm
mv Abrasive flow rate, g/min
a Abrasive grit size, mesh
V Traverse speed, mm/min
Ra Surface roughness, µm
Kt Kerf taper, °
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