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Abstract  

Globally, energy demand is continuously increasing due to population growth, economic development, and industrialization. 

Alongside this rising demand, concerns regarding the environmental impacts of fossil fuels have increased the demand for renewable 

and clean energy. In the global transition to renewable energy, biofuels play a crucial role. Therefore, accurate biofuel forecasting 

is critical for shaping regional policies. This enables policymakers to allocate countries' resources according to strategic goals, plan 

the necessary infrastructure and support economic growth. In this study, a forecasting model was developed using the Random 

Forest Algorithm (RFA) to predict the consumption trends of biofuels. Therefore, statistical data for the European region (including 

Total Europe and Other Europe) from 1992 to 2022 were first collected. Then, these values were forecasted for the years 2025, 2030, 

and 2050. The values obtained from the forecasting model created with RFA showed the highest successful results when the number 

of decision trees was 50, with R2 value of 0.9975. The results of the analysis demonstrated that the models created for Europe could 

be used in renewable energy projections for future planning. All results were thoroughly analyzed, and measures/requirements that 

could be taken in line with the European Union Green Deal were discussed. 
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1. Introduction 

 

With population growth and technological innovations, the diversification of production and consumption has steadily increased energy 

demand from the past to the present. In the face of this rising demand, the rapid depletion of fossil fuels and the challenges of accessing 

new sources have further emphasized the importance of renewable alternative energy sources to ensure sustainability in energy supply. 

The fluctuating prices of current fossil fuels, the production of greenhouse gases and other harmful emissions that contribute to global 

warming and environmental pollution, have accelerated the development of sustainable, clean, and renewable energy technologies. 

Especially after the global energy crisis that has persisted since the 1970s, many developed and developing countries have turned to 

renewable energy sources and prioritized increasing the share of renewable energy in the energy supply-demand balance (Reid et al., 

2020; Verma et al., 2022). 

 

Renewable energy sources are those that are constantly replenished in nature and do not carry the risk of depletion. Unlike fossil fuels, 

these energy sources cause less harm to the environment and provide sustainable energy production. Renewable energy sources can be 

exemplified by solar energy, wind energy, hydroelectric energy, geothermal energy, biomass energy, and wave-tidal energy. Because 

these sources are sustainable, they reduce environmental impacts and decrease dependence on fossil fuels (International Renewable 

Energy Agency, 2023). 

 

In the transition process to renewable energy, biofuels play a significant role worldwide. The concepts of biomass, biofuels, and 

bioenergy are broad and interact with each other. Biofuels are a type of energy obtained by converting biomass into fuel form through 

various biochemical or thermochemical processes. Biomass consists of organic materials from plant or animal sources and is used as 

raw material in bioenergy production. Organic components such as vegetable oils, starch, sugar, and cellulose are processed to produce 

bioethanol, biodiesel, and biogas. In summary, biomass forms the source for the bioenergy production process, while biofuels are the 

final products obtained from this process and used in energy production (Sözen et al., 2017). 

 

Today, for countries like Turkey that are dependent on external energy sources, there is an increasing shift towards bioenergy sources 

that can be obtained from biomass due to disadvantages such as the rising production costs of fossil energy sources and issues with the 

continuity of energy supply (Aydın-Kandemir & Sarptaş, 2022). Specifically in Turkey, increasing the amount and diversity of energy 

that can be obtained from biomass resources has been set as a strategic goal for the country’s sustainable economic development (Topal 

& Arslan, 2008). By 2030, Turkey aims to significantly increase the share of renewable energy in the global energy mix and ensure 

access to locally available, reliable, sustainable, and modern energy in the region. To achieve this goal, national policy needs to focus 

on the widespread use of renewable energy sources for electricity generation, ensuring that these sources are integrated into the 

economy in a reliable, economical, and high-quality manner, increasing resource diversity, reducing greenhouse gas emissions, 

utilizing waste, protecting the environment, and developing the manufacturing sector necessary to realize these objectives (T.C. 

Strategy Department, Sustainable Development Goals Evaluation Report, 2019). In parallel with the globalized world, making realistic 

forecasts regarding regional energy supply and demand will not only guide decision-making institutions in the energy sector but also 

provide crucial information to regional entrepreneurs considering investments in this field, thereby contributing to energy security. 

Determining biofuel consumption trends at the European scale is critical for Turkey's renewable energy transition process due to its 

geographical location. Considering the European Green Deal, which aims to make Europe the first climate-neutral continent by 2050 

and reduce carbon emissions by 55% by 2030, biofuels emerge as a significant potential that should be thoroughly examined for 

regional sustainability goals. Since biofuels are generally produced from agricultural products, regional biofuel demand data can assist 

governments and policymakers in shaping agricultural policies; in this context, it will also guide the positioning of infrastructure such 

as management of agricultural lands, sustainable farming practices, biofuel refineries, storage facilities, and distribution networks. 

 

This study uses biofuel consumption data from Turkey between 1992 and 2022 to make a projection of the potential biofuel 

consumption in the near future, based on the European scale. For this purpose, the Random Forest algorithm was used to predict future 

biofuel consumption data. The Random Forest algorithm, a community learning method consisting of decision trees, is widely used in 

both classification and regression tasks, and was preferred in this study to provide realistic data for future projections due to its high 

prediction accuracy, versatility, good generalization capability, and resistance to overfitting (Fawagreh et al., 2014; Probst et al., 2019; 

Fan et al., 2022). Therefore, the algorithm created using past and current biofuel consumption data was validated with the current data 

(for the year 2022), and projections for the years 2025, 2030, and 2050 were made. 

 

2. Renewable Energy, Global Analysis of Bioenergy Usage, and Turkey's Current Position 

 

A renewable energy source is an energy source that is "renewed as much as it is consumed." These sources can be considered alternative 

energy sources only when they are transformed into forms that can replace the demand met by fossil fuels, and this transformation is 

achieved sustainably (Seydioğulları, 2013). Bioenergy is defined as a versatile resource among renewable energy sources because it 

can be used in all consumption sectors such as heating, electricity, and transportation. Additionally, the storage and processability of 

biomass and biofuels make them usable regardless of weather conditions or seasons, unlike wind and solar energy. Therefore, bioenergy 

can provide continuity in energy supply compared to intermittent renewable sources. Biomass is considered one of the most promising 
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energy sources to replace the fossil fuels used today, as synthetic fuels can be produced from biomass in solid, liquid, and gas phases. 

Furthermore, the use of agricultural residues and organic waste as substrates in biofuel production contributes to waste management 

and reduces greenhouse gas emissions from landfills (Sarker et al., 2023; Özsin et al., 2019; Özsin & Pütün, 2017). 

 

When the current status and future position of Turkey's renewable electricity capacity are examined by the International Energy 

Agency, as seen in Figures 1 (a) and (b), it is expected that the share of renewable energy will increase by 26 GW or more than 53% 

during the 2021-2026 period, and it is known that the biomass potential varies geographically among provinces. (International Energy 

Agency (IEA), 2021; Renewables 2021: Analysis and Forecasts to 2026. Paris: IEA). However, compared to other renewable energy 

sources, bioenergy’s role in Turkey in terms of installed capacity remains behind hydroelectric, geothermal, and wind energy. Table 1 

summarizes the data from the Turkey Biomass Energy Potential Atlas (BEPA) prepared by the General Directorate of Renewable 

Energy of the Ministry of Energy and Natural Resources. The results show that more than 34x10^6 TEP of energy could be obtained 

annually from waste biomass sources in Turkey. Furthermore, Turkey's climate and land conditions are highly suitable for energy crop 

cultivation, and due to widespread agricultural production and livestock farming, the country contains significant amounts of 

agricultural and animal waste (Senocak & Goren, 2022). Therefore, determining the quantity and distribution of the country’s biomass 

resources, positioning biorefineries in provinces according to regional biomass potential, and contributing to future energy policies 

through this process are of great importance. On a global scale, it is known that the current annual production capacity of advanced 

biofuels is less than 1 billion gallons worldwide. As a result, it is essential to design and develop many sustainable and biomass-

bioenergy supply chains that link sustainable biomass feedstock and final fuel/energy products in a way that provides lower costs, less 

environmental impact, and greater social benefits. In this context, to accelerate the transition to large-scale and sustainable production 

and use of biofuels and bioenergy products, bioenergy systems must be systematically designed and optimized (Yue et al., 2014). 

 

 

 
(b) 

Figure 1. (a) Forecast of Turkey's Renewable Energy Sources by the International Energy Agency (IEA) (Interatomic Energy 

Agency (IEA), 2021. Renewables 2021: Analysis and Forecasts to 2026) and (b) Biomass Potential by Province (İlleez, 2020). 
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Table 1. Current Energy Equivalents of Biomass Resources in Turkey (TOE/year) 

(Source: https://bepa.enerji.gov.tr/) 

    

Biomass Source Theoretical Energy 

Equivalent 

Economic Energy Equivalent 

Animal Waste 4,385,371  1,084,506  

Plant-Based Waste 25,384,268  1,462,159  

Municipal Waste 3,373,011  485,858  

Forest Residuals 859,899  - 

Total Energy Equivalent  

of Wastes 

34,002,549 - 

   

3. Data Set and Method Used in the Study 

 

3.1. Data set 

 

In this study, the data set used comprises "Biofuel consumption" data (in petajoules, PJ) from the "Energy Institute Statistical Review 

of World Energy" reported in 2023 (The report can be accessed at https://www.energyinst.org/statistical-review). In the report, OECD 

member countries located in the European continent are defined as "European Countries," while other countries in the continent are 

referred to as "Other European Countries”. The report includes complete data for the following European countries: Austria, Belgium, 

Finland, France, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, and the United Kingdom. The "Other European 

Countries" category comprises Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, North Macedonia, Georgia, Gibraltar, 

Latvia, Lithuania, Malta, Montenegro, North Macedonia, Romania, and Serbia. 

 

Data related to European and Other European Countries, as classified in the report, were analyzed and processed in this paper. Analyses 

were conducted using the Random Forest Algorithm (RFA) by using the Orange software. Initially, predictions were made using the 

RFA based on historical data from 1992 to 2022, and the algorithm's performance was tested against actual data. Subsequently, 

hyperparameter optimization was performed on the predictive model to determine the impact of the number of trees, and statistical 

metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) were utilized to 

evaluate model performance. This comprehensive evaluation allowed for a more detailed assessment of the model's performance, and 

biofuel consumption trends for the near future (2025, 2030, and 2050) were estimated. 

 

3.2. Random Forest Algorithm 

 

The Random Forest Algorithm (RFA) (Breiman, 2001) is a widely used machine learning technique in the literature for classification 

and regression problems. This algorithm operates using decision trees as its fundamental units. Decision trees create a model that 

classifies or predicts a dataset based on input features. However, since a single decision tree can often have high variance and low 

predictive power, RFA is preferred to mitigate these weaknesses. RFA works by generating multiple decision trees from a dataset; each 

tree is trained on a randomly sampled subset of the dataset. Additionally, during the growth of these trees, a randomly selected subset 

of features is used. This approach ensures that each decision tree observes different subsets of features and data points. Once each tree 

is independently trained, the predictions of all trees are aggregated, typically by averaging for regression tasks or taking the mode for 

classification tasks. This ensemble approach helps to offset the errors of individual trees, resulting in a more robust and balanced model. 

Random forests generally perform well on high-dimensional and complex datasets. They are also resistant to overfitting and offer 

advantages such as the ability to assess variable importance and handle missing data (Rodriguez-Galiano et al., 2015). 

 

Compared to global machine learning models like Artificial Neural Networks (ANNs) or Support Vector Machines (SVMs), which 

attempt to create a single global model from the data, ensemble learning models such as RFA, which construct and aggregate multiple 

models, often perform better when dealing with complex systems. RFA employs two main strategies: Bagging (Breiman, 1996) and 

the Random Subspace Method (Ho, 1998). All base learners in RFA are classification and regression trees (CART). The general flow 

of the RFA algorithm is illustrated in Figure 2. 

 

 

 

https://bepa.enerji.gov.tr/
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Figure 2. General Flow of the Random Forest Algorithm (RFA) 

Random Forest Algorithm (RFA) demonstrates several advantages over other prediction tools and algorithms in many cases. Since 

RFA operates by combining multiple decision trees, it generally provides higher accuracy compared to a single decision tree. Each 

decision tree is trained on different subsets of data, enhancing the overall predictive performance of the model. Additionally, the ability 

of random forests to work with both numerical and categorical data makes it applicable to problems with diverse data types. 

Furthermore, RFA handles non-linear and non-Gaussian data effectively, is suitable for model interpretation, and avoids overfitting as 

the number of trees increases. The algorithm is also known to provide a measure of the relative importance of predictors, which can be 

useful for variable selection (Islam et al., 2023; Li et al., 2020; Wang et al., 2018). Therefore, RFA can be effectively used in prediction 

models for both classification and regression problems when paired with appropriately chosen parameters (hyperparameter 

optimization). 

 

At its core, RFA involves three steps. The first step utilizes the stochastic nature of the algorithm to create n different training sample 

sets for n CARTs (Classification and Regression Trees) using the bootstrap sampling technique, also known as sampling with 

replacement. In the second step, the random subspace technique is applied. Finally, in the third step, for each node in each CART, 

partial features are randomly selected from all input features. This process builds a predictive model using RFA. 

 

Studies in which RFA has been used for forecasting in the energy field, leveraging the algorithm's superior predictive performance and 

high adaptability, are well-documented in the literature. Specifically, RFA has been successfully applied in areas such as energy 

consumption forecasting, energy efficiency analysis, renewable energy production prediction, and energy market analysis. For 

example, Meng and Song (2020) used RFA to forecast daily photovoltaic power generation during winter in northern China. Lin et al. 

(2015) applied RFA to predict wind speed and direction, which are critical for grid management. Reported results emphasized improved 

prediction accuracy. Torres-Barrán et al. (2019) examined the application of RFA, gradient-boosted regression, and extreme gradient 

boosting methods to global and local wind energy forecasting, as well as to a solar radiation problem. Tharani et al. (2020) investigated 

the prediction of energy generation from non-conventional sources such as wind and solar to transition to renewable energy efficiently 

without disrupting grid balance. They compared the efficiency of linear regression, neural network regression, random forest regression, 

and extra tree regression models in estimating global solar radiation. Assouline et al. (2018) presented a novel hybrid methodology 

combining geographical information systems, solar models, and random forests to estimate rooftop photovoltaic solar energy potential 

on a national scale. They employed a hierarchical approach that divides the final potential estimation into several steps. Fan et al. 

(2022) proposed a model that hybridizes the random forest model and mean-producing function model for short-term accurate load 

forecasting, which is essential for the planning and operation of transportation systems. Their modeling process used input variables 

such as a time variable, a random forest prediction value, and an average prediction value. Meenal et al. (2022) provided a 

comprehensive overview of existing and emerging developments in solar and wind prediction techniques for renewable energy systems 

in smart grids. They discussed the performance of various forecasting models, including physical models, statistical models, artificial 

intelligence-based models, machine learning, and deep learning models. 

 

As seen in mentioned papers above, RFA is a widely preferred method in various forecasting and analysis applications in the energy 

sector. By using this algorithm, the energy industry can make data-driven decisions and achieve more efficient and sustainable energy 

management. 

 

4. Computational Results of The Random Forest Algorithm 

 

The prediction models developed using the Random Forest Algorithm (RFA) achieved an R² value of approximately 0.998. This value 

measures the proportion of variation in the dependent variable that can be explained by the independent variables in the model, 

essentially representing the square of the correlation coefficient. 



IJERAD, (2025) 17(1), 126-136, Alpaslan Takan & Özsin 

131 

Additionally, the model's error metrics were calculated as follows: 

 

 Mean Squared Error (MSE): 129.529 

 Root Mean Squared Error (RMSE): 11.381 

 Mean Absolute Error (MAE): 6.288 

 

In Table 2, the analysis of European countries for the years 1992–2022 is presented, while Table 3 provides the same analysis for other 

European countries during the same time period. As observed from the tables, the predicted values closely matched the actual values 

in most years. However, in some years (e.g., 2003, 2004, and 2005 in Table 3), the differences between predicted and actual values 

were more significant. Nevertheless, considering the overall performance of the model, the results and the high R² value demonstrate 

the predictive success of the algorithm. 

 

Table 2. Analysis of European Countries Using RFA Between 1992–2022 

 

European Countries - Biofuel Consumption (PJ) 

Years Biofuel Actual Data Prediction Result with RFA 

1992 0.843816 2.83964 

1993 2.01661 3.26967 

1994 5.52989 5.91252 

1995 8.6861 8.58013 

1996 12.7927 12.492 

1997 17.4868 16.4658 

1998 16.2537 16.6035 

1999 18.2985 18.0688 

2000 28.5781 26.9966 

2001 33.1586 31.3846 

2002 43.7677 39.2654 

2003 55.4494 55.4786 

2004 73.7325 74.6473 

2005 128.404 110.462 

2006 200.302 179.881 

2007 278.685 261.245 

2008 382.561 350.012 

2009 452.9 437.714 

2010 537.37 504.995 

2011 568.344 540.321 

2012 617.28 583.128 

2013 563.745 574.462 

2014 601.259 587.26 

2015 602.855 604.492 

2016 609.363 611.482 

2017 658.222 640.482 

2018 718.854 703.843 

2019 744.963 741.982 

2020 762.268 758.389 

2021 786.326 783.465 

2022 855.9 819.141 
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Table 3. Analysis of RFA of Other European Countries Between 1992-2022 

 

Other European Countries - Biofuel Consumption (PJ) 

Years Biofuel Actual Data Prediction Result with RFA 

1992 0.0715783 0.169959 

1993 0.153511 0.210925 

1994 0.293022 0.329921 

1995 0.662993 0.595998 

1996 0.918302 0.896542 

1997 1.34858 1.29272 

1998 1.46745 1.44419 

1999 1.83932 1.77074 

2000 2.50382 2.41112 

2001 3.11151 3.97286 

2002 2.74657 4.16091 

2003 2.60803 7.50738 

2004 1.36867 9.9654 

2005 0.912458 13.8248 

2006 7.05159 10.7792 

2007 17.2968 19.2683 

2008 34.8453 31.4862 

2009 43.123 43.3696 

2010 49.6262 49.7965 

2011 59.4157 58.6375 

2012 69.1899 68.7598 

2013 85.2727 79.8927 

2014 81.505 82.6926 

2015 83.6893 86.781 

2016 94.3355 93.1717 

2017 109.166 104.938 

2018 114.933 111.749 

2019 134.01 127.053 

2020 137.664 136.119 

2021 139.597 138.739 

2022 143.676 141.515 

 

 

The predicted values for 2025, 2030, and 2050 are provided in Table 4 for “European countries” and in Table 5 for “Other European 

countries”. The trend of actual data and forecasted data obtained with RFA is shown in Figure 3. As seen in Table 4, the biomass 

consumption amount for European countries is calculated as 821,598 PJ for 2025, while these values are 1,090,569 PJ and 1,895.46 PJ 

for 2030 and 2050, respectively. For other European countries, these values are calculated as 155.722 PJ, 74.954 PJ, and 288.96 PJ, 

respectively. The number of trees used in these forecasting models was determined to be 50, based on hyperparameter optimization. 

 

Table 4. Prediction Results for 2025, 2030, and 2050 Found By RFA for European Countries 

 

 European Countries - Biofuel Consumption (PJ) 

Year 2025  821.598 

Year 2030  1090.569 

Year 2050  1895.46 
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Table 5. Forecast Results for 2025, 2030, and 2050 Found By RFA for Other European Countries 

 

Other European Countries - Biofuel Consumption (PJ) 

Year 2025  155.722 

Year 2030  174.954 

Year 2050  288.96 

 

 
Figure 3. (a) Actual and Forecast Data Curve for European Countries (1992–2022); (b) Actual and Forecast Data Curve for Other 

European Countries (1992–2022) 

The optimization of the parameters used in the algorithm is crucial. In the Random Forest algorithm, the parameter "number of trees 

used" significantly affects the results. The R² values obtained for different numbers of trees are shown for both datasets in Table 6. In 

Figure 4, the variation in R² values for different numbers of trees, as presented in Table 6, is depicted. While R² measures how well the 

model fits the data, MAE, MSE, and RMSE measure the magnitude of prediction errors. Therefore, it is important to use these metrics 

together to comprehensively evaluate the performance of the model. MAE calculates the average of the absolute values of prediction 

errors, whereas MSE and RMSE calculate the mean of the squares of these errors. For this reason, MAE provides a more balanced 

error measure, while MSE and RMSE place greater emphasis on larger errors. 

 

Table 6. Comparison of RFA General Forecast Model Performance in Terms of R² for Different Hyperparameter Values 

 

 MSE RMSE MAE 𝑹𝟐 

# of trees =10 253.37 15.9 7.77 0.9766 

# of trees =15 162.55 12.73 6.31 0.9899 

# of trees =20 175.45 13.22 7.08 0.9917 

# of trees =25 236.6 15.3 8.01 0.9930 

# of trees =30 240.93 15.52 7.11 0.9945 

# of trees =50 180.262 13.45 6.83 0.9975 

# of trees =100 199.7 14.13 7.1 0.9971 
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In Figure 4 below, a visualization of the comparison of the MSE, RMSE, MAE, and R² values obtained from the analysis is presented. 

 
Figure 4. Comparison of MSE, RMSE, MAE, and R² Values for Different Numbers of Trees 

In Figure 5, the variation of the multiple explanatory coefficient based on the number of decision trees is presented. This coefficient is 

an important metric for evaluating both the performance and reliability of RFA, as it measures the contribution of each tree in the 

model. The higher the multiple explanatory coefficient of a feature, the more important it is; that is, the feature provides more 

information and has a greater impact on predictions. Additionally, the trend of the multiple explanatory coefficient with respect to the 

number of trees helps us understand its effect on model performance. In other words, while adding more trees can improve the overall 

performance of the model, the contribution of each individual tree may decrease. This can help reduce overfitting and make the model 

more generalizable. Furthermore, the variation of the multiple explanatory coefficient with the number of trees can also reflect the 

stability of the random forest model. If the multiple explanatory coefficients increase steadily with the number of trees, the model's 

reliability improves. However, fluctuations or decreases in the coefficients as the number of trees increases may indicate instability in 

the model or uncertainty about the importance of certain features in the predictions. 

 

In the developed model, while the multiple explanatory coefficient showed a rapid change as the number of trees increased from 10 to 

15, it exhibited a slower upward trend as the number of trees increased gradually from 15 to 50. The highest multiple explanatory 

coefficient was reached when the number of trees was 50, with a value of 0.9975. Increasing the number of trees beyond this point led 

to a decrease in the multiple explanatory coefficient. As a result, the number of trees in this study was determined to be 50 for the 

biomass consumption prediction model. 

 
Figure 5. Variation of the Multiple Explanatory Coefficient Based on the Number of Decision Trees 

 

5. Conclusion and Recommendations 

 

In this study, forecasting the bioenergy potential for the near future at the European scale was carried out using ROA. The data obtained 

from the forecasting model provided highly accurate (R²=0.9975) predictions of the biofuel consumption data planned for the near 

future. The best prediction result was achieved with a decision tree parameter set at 50 trees. The predicted biofuel consumption values 

for European countries in 2025, 2030, and 2050 were found to be 821,598, 1,090,569, and 1,895.46 PJ, while for Other European 

countries, these values were 155.722, 174.954, and 288.96 PJ for the same years. The developed model can be used to predict 

consumption profiles for the design of renewable biomass energy systems and their integration into existing systems. 

 

Turkey, by evaluating its agricultural, domestic, and forest biomass resources, can replace fossil fuels with biofuels, thus reducing 

greenhouse gas emissions. Turkey is expected to make a significant contribution to the anticipated increase in biofuel consumption in 

2030 and 2050. Turkey’s biomass and biofuel potential should be supported by extensive agricultural areas, waste management, and 

renewable energy investments. For Turkey, which holds a strategic position for energy trade, biofuel production that can be created 
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with efficient energy crops and integrated waste management strategies could enhance energy supply security and reduce dependence 

on energy imports. 
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