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Abstract: Aurora kinases, belonging to a highly conserved family of serine/threonine kinases 

with critical roles in the regulation of the cell cycle, comprise three members: Aurora kinase A, 

B, and C, which serve as key mitotic regulators essential for maintaining chromosome stability. 

Aurora kinases play crucial roles in multiple events in mitotic such as the coordination of 

chromosomal and cytoskeletal events, regulation of the spindle assembly checkpoint pathway 

and cytokinesis to ensure the smooth progression of the cell cycle. Besides their mitotic functions, 

Aurora kinases are also involved in the regulation of meiosis. Gene amplification/mutation and 

overexpression of Aurora kinases have been detected in various solid and haematological cancers. 

In human tumours, Aurora kinases exhibit oncogenic roles associated with their mitotic roles, 

which drive the cancer cell proliferation and survival. Deregulation of Aurora kinase activity 

causes failure in centrosome function, spindle assembly, chromosomal alignment, and 

cytokinesis, eventually resulting in the mitotic abnormalities and genetic instability. These 

findings emphasize the crucial functions of Aurora kinases in cancer, prompting their recognition 

as valuable targets for cancer therapy. This review provides an overview of the structures and 

functions of Aurora kinases and sheds light on their oncogenic roles in cancer. 
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Öz: Aurora kinazlar, Aurora A, B ve C şeklinde tanımlanan üç üyeye sahip, hücre döngüsünün 

düzenlenmesinde kritik rolleri olan yüksek oranda korunmuş serin/treonin kinaz ailesine ait 

proteinlerdir. Aurora kinazlar, kromozom stabilitesinin korunmasında önemli rolleri olan mitotik 

düzenleyiciler olarak hizmet etmektedir. Mitozdaki çeşitli olaylarda kritik roller üstlenen Aurora 

kinazlar, kromozomal ve sitoskeletal olayların koordinasyonu, iğ ipliği oluşumu kontrolü ve 

sitokinez gibi olaylarda görev alarak hücre döngüsünün sorunsuz ilerlemesini sağlamaktadır. 

Mitotik fonksiyonlarının yanı sıra, Aurora kinazlar mayoz bölünmenin düzenlenmesi 

süreçlerinde de yer almaktadırlar. Aurora kinazların gen amplifikasyonu/mutasyonu ve aşırı 

ifadesi çeşitli solid ve hematolojik kanserlerde tespit edilmiştir. Aurora kinazlar mitotik rolleri ile 

ilişkilendirilen onkojenik fonksiyonları ile kanser hücrelerinin çoğalması ve hayatta kalmalarını 

sağlamaktadırlar. Aurora kinaz aktivitesinin bozulması, sentrozom fonksiyonunda, iğ ipliklerinin 

oluşumunda, kromozomal hizalanmada ve sitokinezde sorunlara neden olarak mitotik 

anormallikler ve genetik istikrarsızlığa yol açmaktadır. Bu bulgular, Aurora kinazların kanserdeki 

önemli fonksiyonlarını vurgulayarak kanser terapötikleri için değerli hedefler olarak 

tanınmalarını sağlamaktadır. Bu derleme, Aurora kinazların yapı ve fonksiyonlarına genel bir 

bakış sunarak, bu kinazların kanserdeki onkojenik rollerini aydınlatmaktadır.   
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1. INTRODUCTION 

 

1.1 Aurora Kinases 

 

Aurora kinases (AURKs) belong to the family of 

serine/threonine kinases that serve as mitotic regulators 

with crucial roles in various molecular events and 

structures involved in cell division such as centrosome 

duplication, chromosome condensation and separation, 

kinetochore-microtubule interactions, mitotic spindle 

formation, and completion of cytokinesis [1,2]. Aurora 

kinases are not only involved in the regulation of different 

steps during cell division but also contribute to the 

regulation of checkpoints that ensure proper cell cycle 

progression. Therefore, precisely coordinated temporal 

and spatial functions of Aurora kinases are crucial for 

maintaining chromosomal and genomic integrity during 

mitotic and meiotic processes (Figure 1) [3]. Because of 

their fundamental roles in cell cycle regulation, Aurora 

kinases were first identified in the late 1980s through 

genetic screening aimed at identifying the genes involved 

in controlling cell division. They were named after 

Drosophila melanogaster mutants displaying spindle 

defects resembling the phenomenon of the Northern 

Lights, also known as Aurora borealis [4]. Subsequently, 

additional homologs of Aurora kinases have been 

identified across in various species. In Drosophila, a 

second Aurora homolog was discovered, while 

Caenorhabditis elegans possesses two Aurora-related 

kinases, namely AIR-1/Aurora A and AIR-2/Aurora B 

[5,6]. In the budding yeast Saccharomyces cerevisiae, the 

single Aurora kinase gene, Ipl1 (Increased in Ploidy 1), 

has been detected, and phylogenetic trees show that 

Aurora members evolved from this single ancestor gene 

originating in Urochordata [7]. Similar to Drosophila and 

C. elegans, non-mammalian vertebrates such as the frog 

Xenopus possess two kinases, Aurora-A and -B [8]. 

Unlike other eukaryotes, only mammals have a third 

Aurora kinase called Aurora-C [9]. 

 

 
Figure 1. Functional diversity of Aurora kinases (AURKs) [2] 

 

1.1.1. Structure and Functions of Aurora Kinases  

 

Three Aurora kinases have been identified in humans: 

Aurora kinase A (AURKA), Aurora kinase B (AURKB) 

and Aurora kinase C (AURKC). Although AURKA and 

AURKB are ubiquitously expressed, the cellular 

distribution of AURKC is limited to meiotic cells 

including sperms and oocytes [10]. The size of Aurora 

kinases ranges from 309 to 403 amino acids, and they are 

composed of three domains: a highly conserved catalytic 

domain (250–300aa) involving the activation T-loop, a 

short C-terminal domain (15–20aa) regulating protein 

levels via proteasomal degradation and an N-terminal 

domain (39–139aa) with different lengths between 

kinases providing their different localization inside cells 

(Figure 2). Moreover, Aurora kinases have different 

percentages of homology in their catalytic domains as 

follows: 60% between AURKA and AURKC, 71% 

between AURKA and AURKB and 75% between 

AURKB and AURKC [7]. Although Aurora kinases are 

similar to each other in terms of the structure of the highly 

conserved catalytic domain, their N-terminal can vary in 

size and sequence, which allows for selective protein-

protein interactions [11]. All members of the Aurora 

kinases display differences in their localization, 

substrates, regulatory partners, and function. Aurora A 

primarily regulates centrosome maturation and the 

assembly of bipolar spindles, whereas Aurora B and C 

play essential roles in condensation, kinetochore 

attachment, chromosome alignment during (pro-) 

metaphase, and cytokinesis [7]. 

 

 
Figure 2. Structure and domains of Aurora kinases [7] Schematic 
representation of the Aurora A, B and C proteins with the indicated 

domains. The N-terminal and C-terminal domains contain regulatory 

motifs. The KEN regulatory motif is present in Aurora A and B and acts 
as an anaphase-promoting complex recognition signal. The D-box 

(Degradation Box) tag for ubiquitin identification and the D-box 
activating domain (DAD, or A-box), which is absent in Aurora B and C. 

Phosphorylation of conserved threonine residues at Thr288 (AURKA), 

Thr232 (AURKB) and Thr195 (AURKC), within the activation loop of 
the catalytic domain is required for kinase activity.  

a. Percentages of homology of the catalytic domains are shown. 

 

1.1.1.1. Aurora Kinase A (AURKA) 

 

AURKA (also known as AIK, ARKI, STK6, STK7 and 

STK15) maps to the 20q13.2 human chromosomal region 

and its cellular distribution is ubiquitous [12]. AURKA 

activity of AURKA is regulated through multiple 

mechanisms including phosphorylation/de-

phosphorylation events and ubiquitin-mediated 

degradation [1]. The phosphorylation of AURKA by 

TPX2 (Targeting Protein for Xenopus kinesin-like protein 

2) provides its activation and facilitates access to AURKA 

substrates. Moreover, the autophosphorylation of its 

activation segment at Thr288 (in humans) in the kinase 

domain is known to be critical for kinase activity [13]. Its 

inactivation can occur via the dephosphorylation of 

Thr288 by protein phosphatase 1 (PP1). During cell cycle 
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progression, AURKA proteins begin to localize around 

the replicated centrosomes during the S phase. Their 

activity and protein levels increased from the late G2 

through to M phase. Finally, they undergo degradation by 

cadherin-1 (Cdh1)/anaphase-promoting complex/ 

cyclosome complex (APC) during mitosis and mitotic exit 

[14]. AURKA is involved in the regulation of several 

mitotic events occurring from late S-phase through the M 

phase such as centrosome maturation and separation, 

formation of  bipolar spindle by interacting pericentriolar 

material (PCM), stimulation of mitotic entry, 

chromosome alignment during metaphase, mitotic exit 

and cytokinesis [15,16]. AURKA also plays a crucial role 

in spindle orientation by regulating the localization of 

nuclear mitotic apparatus protein (NuMA), thereby 

organizing mitotic spindle poles and coordinating spindle 

orientation [17,18]. Studies of AURKA mutations in 

Drosophila melanogaster have demonstrated defective 

chromosome and centrosome segregations, leading to the 

formation of polyploid cells [19]. Furthermore, defective 

AURKA activity results in impaired PCM function which 

is crucial for microtubule anchoring, and impaired mitotic 

spindle assembly, causing a transient spindle checkpoint-

dependent mitotic arrest and subsequent apoptotic cell 

death [3,20]. Similarly, reduced AURKA activity results 

in proper NuMA distribution during metaphase, 

consequently impairing the orientation of bipolar spindles 

[12]. Apart from mitosis, AURKA plays a role in meiosis  

by stimulating oocyte maturation, polar-body extrusion, 

spindle positioning, and metaphase I exit [1]. 

Consequently, the diverse involvement of AURKA 

throughout cell division underscores its critical functions 

and potential implications during this dynamic period of 

cellular activity. 

 

1.1.1.2. Aurora Kinase B (AURKB) 

 

AURKB (also known as AIK2, AIM1, ARK2, AIRK2, 

IPL1, STK1, STK5, and STK12) is located on the 17p13.1 

human chromosomal region, and its expression, like 

AURKA, is ubiquitous [12]. The kinase activity and 

protein expression levels of Aurora kinase B change based 

on the stages of cell cycle progression, and its expression 

peaks at the transition from G2 to M phase and functions 

until the end of mitosis [11]. Mainly, AURKB plays 

crucial roles in chromosome condensation, alignment and 

biorientation, spindle-assembly checkpoint, kinetochore-

microtubule interaction, direction of metaphase-to-

anaphase transition process and completion of cytokinesis 

[21,22]. In early mitosis, AURKB localizes to in the inner 

centromere, where it phosphorylates histone H3 on Serine 

residues Ser10 and Ser28 and recruits other proteins of the 

large Chromosomal Passenger Complex (CPC) protein 

complex. AURKB acts as a kinase module of CPC with 

three non-enzymatic subunits: survivin, borealin and 

inner centromere protein (INCENP), to ensure accurate 

chromosome segregation [23]. During prophase, AURKB 

binds to and phosphorylates INCENP. This binding, in 

turn, triggers AURKB auto-phosphorylation of Thr232 

within the activation loop of the catalytic domain, altering 

its conformation to induce kinase activity. Subsequently, 

the binding of survivin and borealin proteins completes 

the CPC. In prometaphase, AURKB, as part of the CPC, 

localizes to the kinetochores, and it is subjected to spindle 

assembly checkpoints (SAC), which play a role in the 

correction of impaired spindle kinetochore attachments. 

During the transition from metaphase to anaphase, 

AURKB relocates to the microtubules, ensuring proper 

alignment and segregation of sister chromatids. During 

late mitosis, AURKB phosphorylates several proteins, 

including vimentin and Rac-GTPase activating protein-1 

(MgcRacGAP-1), which are involved in the formation of 

the cleavage furrow to complete cytokinesis [7,22,24]. 

Apart from its mitotic roles, AURKB extends its 

functionality to the DNA damage response (DDR), a 

critical process that determines cell fate by directing cells 

to either repair damage or undergo self-destruction [25]. 

AURKB suppresses the activity of the p53 protein by 

phosphorylating it at various subcellular regions, 

including S183, T211, and S215. This phosphorylation 

leads to rapid degradation of p53 through the 

polyubiquitination-proteasome pathway. This results in 

the downregulation of p53 target genes involved in 

regulating the cell cycle and apoptosis [11].  Furthermore, 

during meiosis, AURKB localizes to chromosomes at 

metaphase, where it regulates kinetochore-microtubule 

attachments and chromosome alignment, and to the 

spindle midzone during anaphase to facilitate cytokinesis 

[26]. Inhibition of AURKB leads to defective 

chromosome alignment and dysfunctional mitotic spindle 

checkpoint, resulting in impaired cytokinesis and 

endoreduplication followed by apoptosis induction [20]. 

In summary, the pivotal role of AURKB in orchestrating 

various aspects of cell division highlights its ability to 

maintain genomic stability and ensure the accurate 

chromosomal segregation during cell division processes.  

 

1.1.1.3. Aurora Kinase C (AURKC) 

 

A third and the most elusive member of the Aurora kinase 

family, AURKC (also known as AIK3, AIE2, ARK3, and 

STK13), maps to the 19q13.43 human chromosomal 

region, and its expression is predominantly in meiotically 

dividing gametes [10,12]. AURKC is predominantly 

expressed at its highest level in the mammalian testis, 

whereas low expression is detected in several somatic 

cells such as the placenta, lung, bladder, and skeletal 

muscle [27]. Aurora C protein and mRNA levels are low 

during the S phase and peak in the G2/M phase [28]. 

Similar to AURKB in mitosis, AURKC is the catalytic 

module of CPC and plays a role in the regulation of 

kinetochore-microtubule attachments, chromosome 

segregation, SAC, and cytokinesis in meiosis [29]. 

Therefore, as a member of the CPC, the subcellular 

localization of Aurora C was found to be similar to that of 

Aurora B [27]. AURKC also concentrates on the 

microtubule-organizing center to keep the integrity of 

bipolar spindles and coordinates the localization and 

function of both AURKA and AURKB in meiotic cells 

[29]. Regarding the regulation of AURKC, similar to 

AURKA and AURKB, autophosphorylation of a 

threonine within the activation loop activates the kinase 

activity of AURKC.  However, AURKC lacks protein 

degradation markers, such as KEN and D-box activating 

domain motifs found in AURKA and AURKB, 

suggesting that they are differentially regulated. 
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Additionally, this situation also demonstrates that 

AURKC provides a longer-lasting form of AURKB 

during meiosis [10,30]. Several studies have shown that 

defective AURKC in male mice results in blunted sperm 

heads, abnormalities in acrosome detachment and 

chromatin condensation, highlighting the critical role of 

AURKC in male fertility [31]. Moreover, mutations in 

AURKC cause meiotic arrest in meiosis-I [32], resulting 

in larger sperms with multiple flagella and misshapen 

heads, a condition called macrozoospermia [10,33]. 

Similar to male mice, AURKC deletion causes subfertility 

and arrests embryonic development in female mice owing 

to abnormalities in meiosis [34]. 

 

1.1.2. Aurora Kinases and Cancer 

 

The connection between Aurora kinases and cancer 

development relies on their crucial functions in different 

stages of the cell cycle. As mentioned above, these mitotic 

kinases are essential for maintaining genomic integrity 

and proper cell division, playing critical roles in mitotic 

entry, centrosome and kinetochore function, spindle 

assembly, microtubule dynamics, spindle assembly 

checkpoint, chromosome segregation, and cytokinesis. 

Consequently, any dysregulation of Aurora kinase 

activity can cause mitotic abnormalities and genetic 

instability. Given that genetic instability, and 

subsequently to uncontrolled cell proliferation, constitutes 

a hallmark of tumorigenesis, the aberrant expression of 

Aurora kinases may emerge as a potential catalyst for 

cancer development [35]. Overexpression and/or gene 

amplifications of AURKs has been demonstrated in 

various human cancers (Figure 3). Moreover, AURKA, B, 

and C exhibited intrinsic instability, with frequent defects, 

amplifications, and mutational regions identified at 

20q13.2, 17p13.1, and 10q13, respectively. These 

observations highlight the abnormal expression of Aurora 

kinases in human cancers, offering a clear explanation for 

their dysregulation in such contexts [14]. Overexpression 

of AURKA and AURKB is frequently observed in 

aneuploid tumours, which constitute approximately 90% 

of human malignancies [7,36] and gene amplification of 

AURKs has been linked to chemotherapy resistance and 

higher grades of malignancy [37]. Despite the 

overexpression and/or gene amplifications, there is no 

reported evidence of a natural deficiency of AURKs in 

human tumours thus far [14]. Moreover, Aurora kinase 

gene polymorphisms have been found to be related to an 

increased risk or early onset of cancer [38]. These findings 

underscore the intricate role of Aurora kinases in cancer 

pathogenesis and highlight their potential implications for 

therapeutic strategies. 

 

 
Figure 3. The median expression of AURKs in a variety of tumours. The data is obtained from Gene Expression Profiling Interactive Analysis (GEPIA) 
[39]. ACC—Adrenocortical carcinoma, BLCA—Bladder Urothelial Carcinoma, BRCA—Breast invasive carcinoma, CESC—Cervical squamous cell 

carcinoma and endocervical adenocarcinoma, CHOL—Cholangio carcinoma, COAD—Colon adenocarcinoma, DLBC—Lymphoid Neoplasm Diffuse 

Large B-cell Lymphoma, ESCA—Esophageal carcinoma, GBM—Glioblastoma multiforme, HNSC—Head and Neck squamous cell carcinoma, 
KICH—Kidney Chromophobe, KIRC—Kidney renal clear cell carcinoma, KIRP—Kidney renal papillary cell carcinoma, LGG—Brain Lower Grade 

Glioma, LIHC—Liver hepatocellular carcinoma, LUAD—Lung adenocarcinoma, LUSC—Lung squamous cell carcinoma, OV—Ovarian serous 

cystadenocarcinoma, PAAD—Pancreatic adenocarcinoma, PCPG—Pheochromocytoma and Paraganglioma, PRAD—Prostate adenocarcinoma, 
READ—Rectum adenocarcinoma, SARC—Sarcoma, SKCM —Skin Cutaneous Melanoma, STAD—Stomach adenocarcinoma, TGCT—Testicular 

Germ Cell Tumours, THCA—Thyroid carcinoma, THYM—Thymoma, UCEC—Uterine Corpus Endometrial Carcinoma, UCS—Uterine 

Carcinosarcoma 

 

1.1.2.1.  Aurora Kinase A in Cancer 

 

Aurora kinase A is a bona-fide oncogene, and its 

expression in tumours is frequently related to gene 

amplification, genetic instability, malignant 

transformation, poor histological differentiation, and 

prognosis [38]. Amplification of AURKA has been 

observed in various solid and haematological cancers 

(Table 1). Furthermore, AURKA tissue expression has 

been demonstrated to be a predictive and prognostic factor 

in several cancers, including colorectal, breast and gastric 

tumours [7]. High AURKA expression stimulates 

carcinogenesis by promoting epithelial-mesenchymal 

transition (EMT), metastasis, cancer cell proliferation, 

self-renewal of cancer stem cells, and resistance to 

apoptosis [40]. Mutation or upregulation of AURKA also 

leads to therapeutic resistance such as cisplatin resistance, 

by enhancing the DNA repair pathway [37]. In addition to 

the well-known phenomenon of overexpression of Aurora 

kinase A, it can interact with a variety of other proteins, 

including tumour suppressors and oncogenes, thus 

contributing to carcinogenesis. AURKA interacts with 

tumour suppressor genes that control centrosome 

duplication, cell cycle checkpoints and chromosomal 

stability, thereby contributing to centrosome 

amplification and cytokinesis failure. For instance, 
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AURKA interacts with the p53 tumour suppressor at 

multiple levels through phosphorylation of Ser315 

residues, which enhances Mdm2-mediated p53 

degradation [28], and on Ser215, which inactivates its 

transcriptional activity [41], subsequently inhibiting 

downstream targets such as PTEN and p21 [42]. Another 

tumour suppressor protein associated with AURKA, 

BRCA1, is involved in coordinating DNA replication 

with the centrosome duplication cycle.  Phosphorylation 

of BRCA1 by AURKA at Ser308 disrupts the G2/M 

checkpoint, leading to centrosome amplification and 

chromosomal instability [43]. Regarding the relationship 

between oncogenes and AURKA, it has been found that 

AURKA facilitates the oncogenic effects of well-known 

oncogenes such as Myc and FOXM1 in cancers, and that 

the overexpression or activation of these oncogenes and 

AURKA are frequently found together in human cancers 

[14,44]. Furthermore, AURKA engages with a multitude 

of substrates crucial in various cancer-promoting 

signalling pathways, notably polo-like kinase 1 (PLK1), 

β-catenin, and Akt. PLK1 acts as a pivotal cell cycle 

regulator, with its phosphorylation at the Thr210 region 

by AURKA being linked to essential processes like 

chromosome segregation, spindle assembly, and 

centrosome maturation [45]. AURKA's role is required 

for the activation of PLK1 to stimulate mitotic entry [46]. 

Overexpression of AURKA promotes PLK1 activity, 

accelerating centrosome amplification, chromosomal 

instability, faulty chromosomal segregation, and 

ultimately tumorigenesis [43]. Moreover, AURKA 

contributes to the downregulation of β-catenin and E-

cadherin expression that is pivotal in regulating cell-cell 

adhesion, thereby promoting EMT [14]. In human 

osteosarcoma cells, AURKA stimulates the 

phosphorylation of Akt and mTOR oncoproteins to 

increase the tumorigenicity [47]. Consequently, aberrant 

AURKA expression drives tumorigenesis by enhancing 

proliferation, evading apoptosis, inducing EMT, and 

promoting genomic instability. Given its critical role in 

cancer development, AURKA emerges as a potential 

target for cancer therapy. In this regard, several small 

molecules designed to inhibit AURKA have been 

developed. These inhibitors have undergone preclinical 

testing, and some have advanced to clinical trials, either 

as monotherapies or in combination with traditional 

treatments [40]. 

 

1.1.2.2.  Aurora Kinase B in Cancer 

 

Aurora B is frequently expressed at high levels in several 

human cancers, and its expression level has been related 

to aneuploidy and genetic instability [38]. AURKB 

overexpression has been detected in a wide range of 

human cancers (Table 1). Overexpression of AURKB 

promotes the impaired chromosome segregation, 

cytokinesis failure and chromosome lagging in metaphase 

in cancer cells [48]. In addition, AURKB plays a 

significant role in tumorigenesis by interacting with 

specific proteins, including the MYC oncogenic protein, 

Breakpoint Cluster Region-Abelson Leukemia (Bcr-Abl) 

oncoprotein, p53, and Cyclin-dependent kinase 1 (Cdk1) 

[11]. In human retinoblastoma, the direct regulation of 

AURKB by MYCN, a member of the MYC proto-

oncogene family, has been elucidated, highlighting the 

enrichment of a MYCN binding motif on the AURKB 

promoter [22]. Additionally, the upregulation of both 

AURKA and AURKB by c-MYC has been demonstrated 

in B-cell lymphoma [49]. Furthermore, Jiang et al. (2020) 

showed that AURKB stabilizes the MYC oncoprotein by 

phosphorylating it at the Ser67 position in T-cell acute 

lymphoblastic leukemia [50]. The Bcr-Abl oncoprotein, a 

product of the Philadelphia chromosome in human 

leukemias, is associated with constitutively activated 

tyrosine kinase, which plays a role in regulating various 

biological processes such as survival, invasion, growth, 

and angiogenesis in carcinogenesis [51,52]. Yang et al. 

(2014) showed that the Bcr-Abl oncoprotein stimulates 

the expression of both AURKA and AURKB via the AKT 

signalling pathway to promote clonogenic growth [53]. 

Furthermore, another study revealed that the progression 

of Chronic Myeloid Leukemia, a neoplastic disease 

arising from hematopoietic stem cells driven by the BCR-

ABL oncogene, is associated with the aberrant expression 

of the AURKB gene [54]. Importantly, AURKB induces 

proteasome-mediated degradation of p53 by 

phosphorylating it at the Ser183, Thr211, and Ser215 

regions to suppress its activity [11]. In addition, AURKB 

suppresses the expression of downstream target genes 

regulated by p53, thereby contributing to cell cycle 

inhibition. For instance, the overexpression of AURKB 

reduces the level of the p53 target p21Cip1 (cyclin-

dependent kinase-interacting protein-1), known as a cell 

cycle inhibitor, and its inverse correlation has been 

demonstrated in human leukemias. This illustrates the 

contribution of AURKB to tumorigenesis by suppressing 

the activity of the cell cycle inhibitor p21Cip1 and 

promoting chromosomal instability [55]. Additionally, 

the decreased expression of the cell cycle inhibitor 

p21Cip1 by AURKB causes abnormal activation of Cdk1, 

allowing cell cycle progression and thus promoting cell 

survival. Moreover, Cdk1 induces the activation of the 

acetyltransferase TIP60, resulting in the acetylation and 

activation of AURKB, which in turn leads to aneuploidy 

and uncontrolled cell cycle progression [14]. In addition 

to its pivotal roles in tumorigenesis, the overexpression of 

AURKB also serves as a significant indicator of disease 

progression and overall survival in various cancers. 

Studies have demonstrated its association with reduced 

overall survival in metastatic colorectal cancer [56] and 

breast cancer [57]. Similarly, patients with 

adenocarcinoma subtype of non-small cell lung 

carcinoma exhibit notably shorter survival times when 

AURKB is overexpressed in their tumour cells [58]. 

Moreover, AURKB expression correlates with poor 

prognosis and is often observed in higher grades of 

malignancy across various neoplastic lesions, suggesting 

its potential utility as a prognostic marker and predictor 

for aggressive tumours [59]. Furthermore, AURKB 

expression has been investigated as a prognostic marker 

in gastric cancer [60], oral cancer [61] and glioblastoma 

[62]. Variants of AURKB in hepatocellular carcinoma 

have been linked to advanced stages, poor prognosis, and 

tumour recurrence [63]. Notably, in colorectal cancer, 

prostate cancer, ovarian, and thyroid carcinomas, the 

degree of AURKB overexpression is directly proportional 

to disease grade or dedifferentiation status, indicating its 
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role in disease progression [64–68]. High expression of 

AURKB was detected in papillary and anaplastic thyroid 

carcinomas, the, with further overexpression observed in 

advanced stages, suggesting a growth advantage for 

neoplastic cells [59,68,69]. This evidence points to the 

targeting of AURKB for cancer therapy and the 

development of small AURKB inhibitors. These 

inhibitors have been extensively studied in preclinical and 

clinical studies across various tumour types  [70]. 

 

1.1.2.3.  Aurora Kinase C in Cancer 

 

AURKC is highly expressed in several cancers (Table 1). 

Even though AURKC overexpression has been observed 

across various cancer types, its precise oncogenic function 

remains unclear due to insufficient understanding of its 

role within the cellular context [71]. However, it is 

hypothesized that AURKC may contribute to centrosome 

amplification and multinucleation in cancer cells, 

potentially providing a survival advantage [72]. 

Moreover, Bejar et al. (2021) demonstrated that meiotic 

gene activation can drive tumour progression, further 

highlighting the potential significance of AURKC as a 

target for novel anti-cancer therapy [29]. Additionally, 

AURKC may exert an oncogenic role by phosphorylating 

several proteins involved in carcinogenesis, such as 

transforming acidic coiled-coil 1 protein (TACC1) [73] 

and telomeric-repeat binding factor 2 protein (TRF2) [74]. 

Notably, the overexpression of TACC1 has been shown 

to stimulate cell transformation and serve as a prognostic 

marker in breast cancer [75,76]. Similarly, TRF2 plays a 

critical role in telomere length regulation, and its 

phosphorylation by AURKC has been implicated in 

promoting tumorigenesis by reducing telomere length  

 [10,74,77]. In conclusion, investigating the normal 

function of AURKC in meiotic cells through ongoing 

studies is essential for a comprehensive understanding of 

its role in cancer progression. While AURKA and 

AURKB have been extensively studied in this context, the 

association of AURKC in carcinogenesis remains 

relatively unexplored, with only a few AURKC inhibitors 

developed thus far [78]. Therefore, further investigation 

into AURKC's role in cancer and the development of 

targeted inhibitors may reveal new therapeutic options for 

cancer treatment and prevention. 

 
 

Table 1. Summary of Aurora kinases and their overexpression/amplification in a wide range of tumour types [14]. 

Kinases Localization Function Tumour Types                                                    References 
 

 
 

 

 
 

 

AURKA 
  

 

 
 

 

 
 

Centrosome Spindle 

microtubule 
Midbody 

 

 
 

Mitotic entry, 

Centrosome 
maturation/separation, 

Bipolar spindle microtubule 

formation, 
Chromosome alignment, 

Cytokinesis, 

Mitosis exit 

 

Breast cancer                                                                         [79,80] 

Cervical cancer                                                                      [81,82] 

Colorectal cancer                                                                   [83,84] 
Esophageal squamous cell carcinoma                                    [85,86]  

Gastric/Gastrointestinal cancer                                               [87,88] 

Glioma                                                                                    [89,90] 
Leukemia                                                                                [91,92] 

Lung cancer                                                                            [93,94]  

Oral cancer                                                                              [95,96] 
Ovarian cancer                                                                        [97,98] 

Prostate cancer                                                                      [99,100] 

 

 
 

 

 
 

 
AURKB 

 
 

 

 
 

Chromosome 
Kinetochore 

Midbody 

 
Chromosome condensation, 

Chromosome Alignment, 

Chromosome Biorientation, 
Regulating SAC 

Kinetochore-microtubule-
interaction, 

Cytokinesis 

 
Breast cancer                                                                        [80,101] 

Cervical cancer                                                                          [102] 

Colorectal cancer                                                                [103,104] 
Gastric/Gastrointestinal cancer                                                    [87] 

Glioma                                                                                  [89,105] 
Leukemia                                                                                   [106] 

Lung cancer                                                                        [107,108] 

Oral cancer                                                                            [61,109] 
Ovarian cancer                                                                      [98,110] 

Prostate cancer                                                                    [100,111] 

Tyroid Cancer                                                                              [68] 
 

 

 

 
AURKC 

 

 

Chromosome 
Midbody 

 

Kinetochore-Microtubule 

Attachment, 
Regulating SAC, 

Meiotic chromosome 

segregation 

Cytokinesis 

 

Breast cancer                                                                             [112]  

Cervical cancer                                                                   [113,114] 
Colorectal cancer                                                                [114,115] 

Glioma                                                                                       [105] 

Prostate cancer                                                                    [100,112] 

  

  

2.CONCLUSION 

 

The Aurora kinase family offers a novel perspective for 

understanding the processes of mitosis, carcinogenesis, 

and their potential relationship. Aurora kinases serve as 

mitotic regulators and play an indispensable role in cell 

cycle progression. They interact with various partners to 

sustain their kinase activity and influence numerous 

downstream targets, including critical tumour suppressor 

proteins and oncoproteins. Therefore, exploring the link 

between interacting substrates and their effects on Aurora 

kinase regulation is significant, highlighting the 

importance of establishing regulatory networks for each 

Aurora kinase. Notably, the deregulation of a single 

mitotic regulator can significantly increase the risk of 

tumorigenesis. Amplification and overexpression of 

Aurora kinases have been found in numerous human 

tumours, and their aberrant expression triggers oncogenic 
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transformation, leading to the deregulation of multiple 

tumour suppressor and oncoprotein-regulated pathways. 

This ultimately results in genomic instability and 

tumorigenesis. The extensive network of Aurora kinases, 

encompassing different protein-protein interactions 

across a wide range of signalling pathways, supports the 

choice of Aurora kinases as potent targets for further 

exploration in drug discovery. The development of 

Aurora kinase inhibitors with fewer side effects and 

enhanced pharmacokinetic efficiency is required to 

counteract the overexpression of Aurora kinases and the 

deregulation of associated kinases involved in 

carcinogenesis. Therefore, Aurora kinases have emerged 

as promising targets to inhibit tumour cell growth and 

revealing the molecular functions of Aurora kinases will 

yield valuable insights for comprehending cell cycle 

control and provide novel strategies for drug design in 

cancer therapy. 
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