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ABSTRACT 
 
The paper highlights the encountered problems in implementing real options under more 
realistic assumptions such as business cycle risk and normally distributed cash flows. The 
problems considered include (i) estimating empirical distribution of cash flows from real option 
investments; (ii) investment decisions across business cycles, and (iii) calculating the 
probability of investing with the above stated rich features. To this end, we estimate operating 
cash flows of US corporate firms using a Markov chain model under both geometric and 
arithmetic Brownian motions assumptions for cash flows and develop a valuation model of real 
option with normally distributed cash flows. Associated investment valuation models 
incorporating these estimates reveal that critical cash flow levels significantly differ across 
models and regimes. 
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1. INTRODUCTION 
 
International financial organizations, such as the IMF, World Bank, and BIS, have flagged a 
declining investment trend, especially since the global financial crisis of 2008-09, as a challenge 
for major economies. For instance, Gutierrez and Phillipon (2017) reports that US investment 
averaged about 20 percent of corporate operating revenues between 1959 and 2001, whereas it 
averaged only 10 percent from 2002 to 2015. Rising uncertainty has been cited as a key factor 
behind this trend (Bloom, 2014). The financial option literature also highlights the role of 
uncertainty in resolving pricing puzzles like volatility smiles and option smirks Liu et al. (2005). 
Business cycles and financial crises increase investor concern about uncertainty to mitigate 
potential losses. 
 
Another critical motivation for this study is the need to analyze massive green investments required 
to achieve net-zero objectives. As nations and corporations intensify their commitments to 
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sustainable practices, understanding how investment models can handle such large-scale, long-
term commitments under various uncertainties is crucial. 
 
This paper modifies the conventional real options approach to incorporate normally distributed 
cash flows and macroeconomic risk. Although cash flows are often modeled as log-normally 
distributed for tractability, evidence supports the use of normal distributions (Burg, 2018). Normal 
distributions are useful for deriving closed formulas in spread options, mergers, and portfolios 
(Leland, 2007). They also accommodate negative values, providing a more accurate representation 
compared to log-normal distributions, which are typically used for their mathematical simplicity 
but may not fully capture real-world cash flow dynamics. 
 
We extend the works of Xin Guo et al. (2005) and Driffill et al. (2013) to analyze the impact of 
normally distributed cash flows and macroeconomic risks on investment decisions Arnold, 
Wagner, and Westermann (2013). While Brownian motion models offer mathematical tractability, 
they may underestimate risks and fail to capture sudden changes or autocorrelation in cash flows. 
To address these limitations, future research could explore more sophisticated models, such as 
jump-diffusion or GARCH models, to better reflect real-world dynamics. 
 
This study examines how firms’ investment behavior differs under normally distributed versus 
lognormally distributed cash flows and how business cycles impact these behaviors. Our approach 
includes: 
 
• Calculating regime-specific investment-triggering cash flow levels for both normal and 

lognormal distributions. 
• Determining the regime-specific probability of investing under each cash flow distribution. 
• Comparing results to highlight differences in investment behavior across distributions and 

business cycle regimes. 
 

The numerical calculations reveal that investments are more likely under lognormally distributed 
cash flows compared to normally distributed ones. Specifically: 
 

• In a boom regime: 
– Lognormal: Probability of investing = 0.206 
– Normal: Probability of investing = 0.139 

• In a recession regime: 
– Lognormal: Probability of investing = 0.004 
– Normal: Probability of investing = 0.001 

 
These results emphasize the significant impact of cash flow distribution assumptions on investment 
decisions and the importance of incorporating business cycle considerations. The lognormal 
distribution’s higher investment probabilities in boom periods reflect its right-skewed nature, 
which suggests a higher potential for returns. 
 
Our paper contributes to the literature by (i) considering normally distributed cash flows, (ii) 
estimating irreversible investment model parameters using US corporate cash flow data, and (iii) 
computing critical cash flow levels and investment probabilities. While our focus is on investment 
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decisions across business cycles, exploring various real-world scenarios will enhance the 
robustness and applicability of our model. 
 
Section 2 reviews related literature, Section 3 outlines the model, Section 4 presents the numerical 
analysis, and the final section concludes. 
 
2. LITERATURE REVIEW 
 
The real options approach to modeling corporate investment captures the flexibility inherent in 
many investment decisions, contrasting with traditional discounted cash flow (DCF) methods that 
treat investments as static and irreversible. Early works by Myers (1977) explored the value of 
delaying investment under uncertainty, while McDonald and Siegel (1986) laid the groundwork 
for real options theory by analyzing investment timing in the presence of geometric Brownian 
motion. Dixit and Pindyck (1994) further developed this framework, highlighting how uncertainty 
creates an opportunity cost of immediate investment versus waiting for new information. 
 
Extensions of the real options model have incorporated more realistic features of investment 
decisions. Notably, regime-switching models Bollen (1998, 1999), Guo et al. (1995), Elliott et al. 
(2009), Chen (2010), Bhamra et al. (2010a, 2010b), Arnold et al. (2013) and Driffill et al. (2013) 
account for changes in economic conditions over time, allowing for discrete shifts in parameters 
like growth rates and volatility. While geometric and arithmetic Brownian motions provide a 
simplified yet robust framework, they may not capture all real-world complexities. 
 
Key contributions to the real options framework include: - McDonald and Siegel (1986), who 
showed that uncertainty increases the value of waiting, leading firms to delay investments until the 
project value significantly exceeds the investment cost. - Dixit and Pindyck (1994), who 
emphasized the interaction of irreversibility, uncertainty, and the ability to delay investment, 
highlighting that standard NPV calculations often underestimate the true value of investment 
opportunities. - Trigeorgis (1996), who extended the framework to include options to abandon, 
expand, or switch, demonstrating the value added by flexibility in investment decisions. - Schwartz 
and Moon (2000), who applied real options to valuing internet companies, incorporating stochastic 
processes for revenues, costs, and growth rates to address high uncertainty and growth potential. 
 
Research on macroeconomic impacts includes: - Guo et al. (2005), who developed a model 
incorporating regime-switching in macroeconomic conditions, showing significant effects on 
optimal investment thresholds and opportunity values. - Bloom (2014), who highlighted how time-
varying uncertainty drives business cycles and affects firm-level investment decisions, showing 
how uncertainty shocks can delay investment and contribute to economic fluctuations. - Wang, 
Chen, and Huang (2014), who examined the impact of policy uncertainty on investment behavior, 
demonstrating that increased policy uncertainty raises the value of waiting, particularly for firms 
facing higher irreversibility or competitiveness. 
 
Despite these advancements, a gap remains in empirical estimation of cash flow distributions across 
different business cycle regimes and their impact on investment decisions. Most studies assume a 
specific distribution (often log-normal) without empirical testing or consideration of how 
distributions vary across economic conditions. 
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Our paper addresses this gap by empirically estimating the parameters of normally and log-
normally distributed cash flows across business regimes. By calculating regime-specific 
investment-triggering cash flow levels and investment probabilities, our work bridges theoretical 
models with empirical realities. This approach enhances understanding of how distributional 
assumptions and business cycle dynamics influence investment decisions, providing valuable 
insights for both academics and practitioners. 
 
In summary, our research extends the real options literature by offering a regime-specific analysis 
of investment under uncertainty, contributing to a more comprehensive understanding of firm 
investment behavior across the business cycle. 
 
3. THE MODEL 
 
Consider a firm that undertakes irreversible investment decisions under uncertain economic 
conditions stemming from continuous randomness and macroeconomic factors, such as regime 
shifts between booms and recessions. These uncertainties are characterized by two types of 
independent shocks: (i) small but continuous shocks modeled by a Brownian motion process Z(t), 
and (ii) large but infrequent shocks represented by a two-state Markov chain process {st}, where 
the two regimes are a boom (s = B) and a recession (s = R). The stochastic processes governing 
the firm’s cash flows and the market price of risk are the primary determinants influencing its 
decision-making process. It is assumed that the cash flow process follows either a normal or a log-
normal distribution, while the market price of risk process is chosen in accordance with the 
distribution of the cash flow process. Investors hedge both risks. 
 
We assume a constant probability setting to govern switching between the two regimes. Hence, the 
probability of the economy switches from state B to state R within a short period Δt approximately 
equals hB𝐏𝐏Δt while the probability of staying in state B is 1 − hB𝐏𝐏Δt. The dynamics of the Markov 
chain process st is given by 
 

𝑑𝑑𝑠𝑠𝑡𝑡 = 𝐇𝐇𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑁𝑁𝑡𝑡,  𝑠𝑠0 = 𝑖𝑖,  (3.1) 
 

where 𝐇𝐇 is the constant intensity matrix H = �hij
𝐐𝐐� = �

−hB𝐏𝐏 hB𝐏𝐏

hR𝐏𝐏 −hR𝐏𝐏
� and dN a Poisson process. 

 
We assume an arithmetic Brownian motion (ABM) process to model cash flows following a normal 
distribution, while a geometric Brownian motion (GBM) process is employed to capture cash flows 
that exhibit a log-normal distribution. 
 
The regime-switching diffusion processes for normally and log-normally distributed cash flows are 
given by: 
 

𝐴𝐴𝐴𝐴𝐴𝐴:  𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡
𝑷𝑷 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑠𝑠𝑡𝑡𝑑𝑑𝑍𝑍𝑡𝑡

𝑷𝑷,   (3.2) 
𝐺𝐺𝐴𝐴𝐴𝐴:  𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑠𝑠𝑡𝑡

𝑷𝑷𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑠𝑠𝑡𝑡𝑋𝑋𝑡𝑡𝑑𝑑𝑍𝑍𝑡𝑡
𝑷𝑷,   (3.3) 
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where 𝑑𝑑𝑍𝑍𝑡𝑡𝑷𝑷 is the increment of a standard pyhsical Wiener process, representing the continuous 
shocks. 𝜇𝜇𝑠𝑠𝑡𝑡

𝑷𝑷  denotes the expected regime-specific change in the cash flow, and 𝜎𝜎𝑠𝑠𝑡𝑡 represents the 
regime-specific volatility of the cash flow. 𝑠𝑠𝑡𝑡 is the regime-switching shock process, with 𝑠𝑠0 = 𝑖𝑖 
as the initial regime. The (phsical) drift (𝜇𝜇𝑠𝑠𝑡𝑡

𝑷𝑷 ) and diffusion (𝜎𝜎𝑠𝑠𝑡𝑡) parameters adjust to reflect shifts 
in macroeconomic conditions. The adjustment is governed by a Markov chain process, which 
models the regime-switching shocks. 
 
To risk-neutralise the model, we utilize the following stochastic discount factor1 
 

𝑑𝑑𝐴𝐴(𝑠𝑠𝑡𝑡)
𝐴𝐴(𝑠𝑠𝑡𝑡)

= − 𝑟𝑟𝑠𝑠𝑡𝑡
𝑓𝑓𝑑𝑑𝑑𝑑 − 𝜆𝜆𝑠𝑠𝑡𝑡𝑑𝑑𝑍𝑍𝑚𝑚,𝑡𝑡

𝑷𝑷 − �𝑒𝑒𝑒𝑒𝑒𝑒�𝜅𝜅𝑠𝑠𝑡𝑡� − 1�[𝑑𝑑𝑠𝑠𝑡𝑡 − 𝐻𝐻𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑],   (3.4) 

 
where 𝜆𝜆 is the risk price for Brownian shock affecting cash flows and 𝜅𝜅𝑖𝑖 is the relative jump size 
of the discount factor when the Markov chain leaves state 𝑖𝑖 implying that 𝑒𝑒𝑒𝑒𝑒𝑒�𝜅𝜅𝑠𝑠𝑖𝑖� − 1 is the price 
of switching risk from regime i to 𝑗𝑗. The model implies that 𝜅𝜅𝑖𝑖 = 1/𝜅𝜅𝑗𝑗.2 
 
The risk neutralisation requires that 𝜇𝜇𝑸𝑸𝐵𝐵 = 𝜇𝜇𝐵𝐵𝑷𝑷 − 𝜆𝜆𝐵𝐵𝜌𝜌𝜎𝜎𝐵𝐵𝜎𝜎𝑀𝑀 and 𝜇𝜇𝑅𝑅

𝑸𝑸 = 𝜇𝜇𝑅𝑅𝑷𝑷 − 𝜆𝜆𝑅𝑅𝜌𝜌𝜎𝜎𝑅𝑅𝜎𝜎𝑀𝑀 for the 
parameters of Brownian motion processes. Here, 𝜎𝜎𝑀𝑀 is the standard deviation for the market 
portfolio and 𝜌𝜌 is the correlation coefficient between market portfolio and investment project in 
hand. Given 𝜆𝜆𝑖𝑖, 𝜌𝜌 and 𝜎𝜎𝑀𝑀 one can convert 𝜇𝜇𝑖𝑖𝑃𝑃 under the physical probability measure to its risk-
neutral counterpart 𝜇𝜇𝑖𝑖

𝑸𝑸 in each regime 𝑖𝑖 = 𝐴𝐴,𝑅𝑅. We apply a similar conversion to the transition 
probability terms: ℎ𝑖𝑖

𝑸𝑸 = 𝑒𝑒𝜅𝜅𝑖𝑖ℎ𝑖𝑖𝑷𝑷 for 𝑖𝑖 = 𝐴𝐴,𝑅𝑅. 
 
We evaluate irreversible investment opportunities faced by investors. The irreversible nature makes 
the investment timing crucial, as a critical cash flow level exists at which the investor should initiate 
the investment. First, we explain the valuation of the investment project itself. Then, we consider 
flexible investment opportunities within this valued project using a regime-switching framework. 
Investors aim to optimally time the investment initiation, incurring a cost I regardless of the 
economic regime. The optimal investment timing corresponds to a specific cash flow value, serving 
as a threshold beyond which investing becomes optimal. However, for models with normally or 
lognormally distributed cash flows, such critical cash flow levels may not be directly comparable. 
Therefore, we also compute the probability of investing to facilitate comparisons. 
 
3.1. Valuation of Projects with Regime Shifts 
 
Consider a project generating perpetual cash flows upon its acceptance. Cash flows follow a normal 
distribution rather than the commonly adopted lognormal one dictated by its mathematical 
tractability. Cash flows are also subject to macroeconomic risk stemming from shifts in conditions 
between benign and adverse ones, e.i., business cycles of boom and recession regimes. In other 
words, there are two types of independent shocks in the economy: (i) small but continuous shocks 

                                                        
1 Bhamra, et al. (2010a), Bhamra, et al. (2010b), Chen (2010) and Driffill et al. (2013) showed that there exists a 
stochastic discount factor that prices both Brownian and regime-switching risks in the economy. 
2 For a careful derivation of this result see Driffill et al. (2013). 
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generated by a Brownian motion 𝑍𝑍(𝑑𝑑) and (ii) large but infrequent shocks by a marked point 
process, more precisely two-state Markov chain process {𝑠𝑠𝑡𝑡}. That is, the two regimes are a boom 
and recession: 𝑠𝑠 ∈ {𝐴𝐴,𝑅𝑅}. Investors hedge both risks using traded assets thanks to their correlation 
with the project’s cash flows 𝑋𝑋𝑡𝑡. 
 
Endowed with the cash flow, Markov Chain and pricing processes, we can now derive expressions 
to value claims on the cash flow. We start with the no-arbitrage valuation of the project’s cash 
flows (assets-in-place) without the option to invest. The regime-switching version of the 
fundamental pricing equation (see for example) is given by: 
 

𝑑𝑑�𝐴𝐴(𝑠𝑠𝑡𝑡)𝑉𝑉(𝑠𝑠𝑡𝑡)� + 𝐴𝐴(𝑠𝑠𝑡𝑡)𝑒𝑒(𝑑𝑑)𝑑𝑑𝑑𝑑 = 0.   (3.5) 
 
The following proposition provides the solution of the equations for the value of the project’s cash 
flows (see Appendix A for proof). 
 
Proposition 1. (Project Valuation under the Regime-Switching ABM Process) The value of 
project’s cash flows (assets-in-place) under the regime-switching ABM process is 
 

𝑉𝑉𝑖𝑖 = 𝐴𝐴‾𝑖𝑖 + 𝐴𝐴‾ 𝑖𝑖𝑒𝑒0, 
 
with 

�𝑉𝑉
𝐵𝐵

𝑉𝑉𝑅𝑅
� = �

𝑟𝑟𝐵𝐵
𝑓𝑓 + ℎ𝐵𝐵

𝑸𝑸 −ℎ𝐵𝐵
𝑸𝑸

−ℎ𝑅𝑅
𝑸𝑸 𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝑸𝑸�

−1

�
𝜇𝜇𝐵𝐵
𝑸𝑸𝐴𝐴‾𝐵𝐵
𝜇𝜇𝑅𝑅
𝑸𝑸𝐴𝐴‾𝑅𝑅

�

⏟
𝐴𝐴‾

+ �𝐴𝐴
‾𝐵𝐵
𝐴𝐴‾𝑅𝑅
� 𝑒𝑒0,

   (3.6) 

 

𝐴𝐴‾𝑖𝑖 =
1
𝑟𝑟𝑖𝑖
𝑝𝑝 ,  𝑟𝑟𝑖𝑖

𝑝𝑝 = 𝑟𝑟𝑖𝑖
𝑓𝑓 +

𝑟𝑟𝑗𝑗
𝑓𝑓 − 𝑟𝑟𝑖𝑖

𝑓𝑓

𝑒𝑒� + 𝑟𝑟𝑗𝑗
𝑓𝑓 𝑒𝑒�𝑓𝑓𝑗𝑗 ,  𝑖𝑖 = 𝐴𝐴,𝑅𝑅 

 
where 𝑟𝑟𝑖𝑖

𝑝𝑝 is the perpetual risk-free rate and 𝑒𝑒� = ℎ𝐵𝐵
𝑸𝑸 + ℎ𝑅𝑅

𝑸𝑸 and 𝑒𝑒0 is the initial cash flow. Here, 𝜇𝜇𝑠𝑠𝑡𝑡
𝑸𝑸 =

𝜇𝜇𝑠𝑠𝑡𝑡
𝑷𝑷 − 𝜌𝜌𝑠𝑠𝑡𝑡𝜆𝜆𝑠𝑠𝑡𝑡𝜎𝜎𝑠𝑠𝑡𝑡 is the risk-neutral drift term and ℎ𝑸𝑸(𝑠𝑠𝑡𝑡) is the risk-neutral transition probability 

term. The term 𝜌𝜌𝑠𝑠𝑡𝑡 = 1 𝑑𝑑𝑑𝑑⁄ 𝐸𝐸(𝑑𝑑𝑍𝑍𝑑𝑑𝑍𝑍𝑚𝑚) captures the regime-specific correlation between the cash 
flow of the project and the pricing process (market portfolio). 𝜆𝜆𝑠𝑠𝑡𝑡 is the regime-specific risk price 
for systematic Brownian shocks from 𝑍𝑍𝑚𝑚. To calculate the project value we simply subtract the 
cost of investment 𝐼𝐼: 𝑉𝑉𝑖𝑖 − 𝐼𝐼 for 𝑖𝑖 = 𝐴𝐴,𝑅𝑅. 
 
The project value under lognormally distributed cash flows takes the following form: 
 

𝑉𝑉𝑖𝑖 = 𝐴𝐴‾ 𝑖𝑖𝑒𝑒0 
 

where 𝐴𝐴‾ 𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑓𝑓 − 𝜇𝜇𝑖𝑖

𝑸𝑸 +
�𝑟𝑟𝑗𝑗

𝑓𝑓−𝜇𝜇𝑗𝑗
𝑸𝑸�−�𝑟𝑟𝑖𝑖

𝑓𝑓−𝜇𝜇𝑖𝑖
𝑸𝑸�

𝑟𝑟𝑗𝑗
𝑓𝑓−𝜇𝜇𝑗𝑗

𝑸𝑸+𝑝𝑝�
𝑒𝑒�𝑓𝑓𝑗𝑗 ,  𝑖𝑖 = 𝐴𝐴,𝑅𝑅 
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3.2. Valuation of the Option to Invest with Regime Shifts 
 
We now consider investment opportunities in the project we have just valued using the regime-
switching framework. There also exits flexibility in investment opportunities. Investors try to 
resolve uncertainty to optimal time the initiation of their investment which costs 𝐼𝐼 irrespective of 
the economic regime. The optimal time effectively corresponds to a cash flow value. This critical 
value is a threshold at which it is optimal to invest. The presence of regime-switching 
macroeconomic conditions generates two of such threshold levels. We first value the option to 
invest under our Markov chain model and then determine the critical cash flow values. To this end, 
we solve the following second-order differential equation (reproduced from Equation A.9 in 
Appendix A): 
 

−𝑟𝑟𝐵𝐵
𝑓𝑓𝑉𝑉𝐵𝐵 + 𝑉𝑉𝑥𝑥𝐵𝐵𝜇𝜇𝐵𝐵

𝑸𝑸 + 𝑉𝑉𝑥𝑥𝑥𝑥𝐵𝐵𝜎𝜎𝐵𝐵2 + ℎ𝐵𝐵
𝑸𝑸(𝑉𝑉𝑅𝑅 − 𝑉𝑉𝐵𝐵) + 𝑒𝑒(𝑑𝑑) = 0,

−𝑟𝑟𝑅𝑅
𝑓𝑓𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑥𝑥𝑅𝑅𝜇𝜇𝑅𝑅

𝑸𝑸 + 𝑉𝑉𝑥𝑥𝑥𝑥𝑅𝑅𝜎𝜎𝑅𝑅2 + ℎ𝑅𝑅
𝑸𝑸(𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑅𝑅) + 𝑒𝑒(𝑑𝑑) = 0.

 

 
With optionality features at present, the solution of this equation requires a homogeneous solution 
besides the particular solution obtained in the previous subsection. The value of the option to invest 
across the boom and recession regimes is given by: 
 

𝐹𝐹𝐵𝐵(𝑒𝑒) = 𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥 + 𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥,
𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝐴𝐴1𝑅𝑅𝑒𝑒𝛾𝛾3𝑥𝑥 + 𝐴𝐴2𝑅𝑅𝑒𝑒𝛾𝛾4𝑥𝑥,

 

 
where 𝐴𝐴1𝐵𝐵 ,𝐴𝐴2𝐵𝐵,𝐴𝐴1𝑅𝑅, and 𝐴𝐴2𝑅𝑅 are the constants determined from the boundary conditions and 𝛾𝛾3 and 
𝛾𝛾4 will be solved from the Cramer-Lunderberg equation (quadric polynomial) (see, for example, 
Guo (2001) for a proof). Once investors exercised the option to invest, the value of 𝐹𝐹𝑖𝑖(𝑒𝑒),  𝑖𝑖 = 𝐴𝐴,𝑅𝑅 
takes their project values as in Proposition 1: 
 

𝐹𝐹𝐵𝐵(𝑒𝑒) = 𝐴𝐴‾𝐵𝐵 + 𝐴𝐴‾𝐵𝐵𝑒𝑒0,
𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝐴𝐴‾𝑅𝑅 + 𝐴𝐴‾𝑅𝑅𝑒𝑒0.

 

 
Solving the model for the constants 𝐴𝐴 and 𝛾𝛾3 requires an involved process. It stems from the fact 
that there is an additional region besides the ones described above. This third one is called the 
transient region associated with shifts from a recession to a boom regime. There are two (regime-
specific) threshold values of cash flows at which investors decide on exercising the option. We 
label them 𝑒𝑒𝐵𝐵 and 𝑒𝑒𝑅𝑅 and assume that 𝑒𝑒𝐵𝐵 < 𝑒𝑒𝑅𝑅. Therefore, the regions are (i) the continuation 
region 𝑒𝑒 < 𝑒𝑒𝐵𝐵 < 𝑒𝑒𝑅𝑅, (i) the transient region 𝑒𝑒𝐵𝐵 ≤ 𝑒𝑒 < 𝑒𝑒𝑅𝑅 and (i) the investment region 𝑒𝑒𝑅𝑅 ≤ 𝑒𝑒. 
Proposition 2 states the value of the option over these three regions. 
 
Proposition 2. (Option to Invest Valuation) At given exercise boundaries [𝑒𝑒𝐵𝐵 , 𝑒𝑒𝑅𝑅], the value of 
the option to invest in regime i is written as where 𝛾𝛾3,  𝛾𝛾4 are the positive roots of the Cramer-
Lundberg equation, 
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𝐹𝐹𝐵𝐵(𝛾𝛾)𝐹𝐹𝑅𝑅(𝛾𝛾) = ℎ𝐵𝐵
𝑸𝑸ℎ𝑅𝑅

𝑸𝑸

where  𝐹𝐹𝐵𝐵(𝛾𝛾) = �𝑟𝑟𝐵𝐵
𝑓𝑓 + ℎ𝐵𝐵

𝑸𝑸� − 𝜇𝜇𝐵𝐵
𝑸𝑸𝛾𝛾 − 1 2⁄ 𝜎𝜎𝐵𝐵2𝛾𝛾2

𝐹𝐹𝑅𝑅(𝜆𝜆) = �𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝑸𝑸� − 𝜇𝜇𝑅𝑅
𝑸𝑸𝛾𝛾 − 1 2⁄ 𝜎𝜎𝑅𝑅2𝛾𝛾2,

 

 

𝐶𝐶3 =
ℎ𝑅𝑅
𝑸𝑸𝐴𝐴‾𝐵𝐵

𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝑸𝑸 and 𝐶𝐶4 =
𝜇𝜇𝑅𝑅
𝑸𝑸𝐶𝐶3 + ℎ𝑅𝑅

𝑸𝑸(𝐴𝐴‾𝐵𝐵 − 𝐼𝐼)

𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝑸𝑸 − 𝜇𝜇𝑅𝑅
𝑸𝑸 , 

 
𝐴𝐴𝑗𝑗𝑅𝑅 = 𝑙𝑙𝑗𝑗𝐴𝐴𝑗𝑗𝐵𝐵 , 

 
with Appendix B solves the system of equations3 
 
Under the assumption of cash flows following a regime-switching geometric Brownian motion, the 
option to invest problem and its solution are modified as follows. The second-order stochastic 
differential equations take the form of 
 

−𝑟𝑟𝐵𝐵
𝑓𝑓𝑉𝑉𝐵𝐵 + 𝑉𝑉𝑥𝑥𝐵𝐵𝜇𝜇𝐵𝐵

𝑸𝑸𝑒𝑒(𝑑𝑑) + 𝑉𝑉𝑥𝑥𝑥𝑥𝐵𝐵𝜎𝜎𝐵𝐵2𝑒𝑒2(𝑑𝑑) + ℎ𝐵𝐵
𝑸𝑸(𝑉𝑉𝑅𝑅 − 𝑉𝑉𝐵𝐵) + 𝑒𝑒(𝑑𝑑) = 0,

−𝑟𝑟𝑅𝑅
𝑓𝑓𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑥𝑥𝑅𝑅𝜇𝜇𝑅𝑅

𝑸𝑸𝑒𝑒(𝑑𝑑) + 𝑉𝑉𝑥𝑥𝑥𝑥𝑅𝑅𝜎𝜎𝑅𝑅2𝑒𝑒2(𝑑𝑑) + ℎ𝑅𝑅
𝑸𝑸(𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑅𝑅) + 𝑒𝑒(𝑑𝑑) = 0.

 

 
The regime specific homogeneous solutions: 
 

𝐹𝐹𝐵𝐵(𝑒𝑒) = 𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3 + 𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4 ,
𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝐴𝐴1𝑅𝑅𝑒𝑒𝛾𝛾3 + 𝐴𝐴2𝑅𝑅𝑒𝑒𝛾𝛾4 .

 

 
At given exercise boundaries [𝑒𝑒𝐵𝐵 , 𝑒𝑒𝑅𝑅], the value of the option to invest in regime i is written as 
 

𝐹𝐹𝑖𝑖(𝑒𝑒) = �
𝐴𝐴1𝑖𝑖 𝑒𝑒𝛾𝛾3 + 𝐴𝐴2𝑖𝑖 𝑒𝑒𝛾𝛾4 , 𝑒𝑒 < 𝑒𝑒𝐵𝐵,   𝑖𝑖 = 𝐴𝐴,𝑅𝑅,
𝐶𝐶1𝑒𝑒𝜉𝜉1 + 𝐶𝐶2𝑒𝑒𝜉𝜉2 + 𝐶𝐶3𝑒𝑒 + 𝐶𝐶4, 𝑒𝑒𝐵𝐵 ≤ 𝑒𝑒 < 𝑒𝑒𝑅𝑅 ,   𝑖𝑖 = 𝑅𝑅
𝐴𝐴‾ 𝑖𝑖𝑒𝑒 − 𝐼𝐼, 𝑒𝑒𝑅𝑅 ≤ 𝑒𝑒,   𝑖𝑖 = 𝐴𝐴,𝑅𝑅.

 

 
The Cramer-Lundberg equation is given by 
 

𝐹𝐹𝐵𝐵(𝜆𝜆)𝐹𝐹𝑅𝑅(𝜆𝜆) = ℎ𝐵𝐵
𝑸𝑸ℎ𝑅𝑅

𝑸𝑸

where  𝐹𝐹𝐵𝐵(𝜆𝜆) = 𝜇𝜇𝐵𝐵
𝑸𝑸𝜆𝜆 + 1 2⁄ 𝜎𝜎𝐵𝐵2𝜆𝜆(𝜆𝜆 − 1) − �𝑟𝑟𝐵𝐵

𝑓𝑓 + ℎ𝐵𝐵
𝑸𝑸�

𝐹𝐹𝑅𝑅(𝜆𝜆) = 𝜇𝜇𝑅𝑅
𝑸𝑸𝜆𝜆 + 1 2⁄ 𝜎𝜎𝑅𝑅2𝜆𝜆(𝜆𝜆 − 1) − �𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝑸𝑸�,

 

 
With 
 

𝐶𝐶3 = ℎ𝑅𝑅
𝑸𝑸 𝐴𝐴‾𝐵𝐵
𝑟𝑟𝑅𝑅
𝑓𝑓 − 𝜇𝜇𝑅𝑅

𝑸𝑸 + ℎ𝑅𝑅
𝑸𝑸 and 𝐶𝐶4 = −ℎ𝑅𝑅

𝑸𝑸 𝐼𝐼
𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝑸𝑸, 

                                                        
3 Bensoussan et al. (2012) provides the existence and uniqueness of the solution. to obtain [𝐴𝐴1𝐵𝐵,𝐴𝐴2𝐵𝐵 ,𝐴𝐴1𝑅𝑅,𝐴𝐴2𝑅𝑅 , 𝑒𝑒𝐵𝐵, 𝑒𝑒𝑅𝑅]. 
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𝜉𝜉1,2 =
1
2
−
𝜇𝜇𝑅𝑅
𝑸𝑸

𝜎𝜎𝑅𝑅2
± ��

1
2
−
𝜇𝜇𝑅𝑅
𝑸𝑸

𝜎𝜎𝑅𝑅2
�
2

+
2�𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝑸𝑸�

𝜎𝜎𝑅𝑅2
, 

 
𝐴𝐴𝑗𝑗𝑅𝑅 = 𝑙𝑙𝑗𝑗𝐴𝐴𝑗𝑗𝐵𝐵 , 

 

𝑙𝑙𝑗𝑗 =
𝐴𝐴𝑗𝑗𝑅𝑅

𝐴𝐴𝑗𝑗𝐵𝐵
=

1
ℎ𝐵𝐵
𝑸𝑸 �ℎ𝐵𝐵

𝑸𝑸 + 𝑟𝑟𝐵𝐵
𝑓𝑓 − 𝜇𝜇𝐵𝐵

𝑸𝑸𝛾𝛾𝑗𝑗 − 1 2⁄ 𝜎𝜎𝐵𝐵2𝛾𝛾𝑗𝑗�𝛾𝛾𝑗𝑗 − 1�� ,  𝑗𝑗 = 3,4. 

 
3.3. Probability of Investment 
 
This section explains how to compute the probability of investing. Unfortunately, models with 
regime shifts do not have closed-form solutions. We, therefore, briefly explain the derivation for 
single-regime cases. It resembles the case of a perpetual American call option holder who wants to 
calculate the probability of exercising the option within the next T years. We derive the probability 
expression by summing two probabilities: (i) the probability of the path that ends above the critical 
investment level 𝑒𝑒(𝑇𝑇) = 𝑒𝑒∗ at time 𝑇𝑇, and (ii) the probability of the path that ends below the level 
𝑒𝑒(𝑇𝑇) = 𝑒𝑒∗ at time 𝑇𝑇 but has crossed the level 𝑒𝑒(𝑑𝑑) = 𝑒𝑒∗ at some time before T.4 Following the 
derivation in Harrison (2013), we derive the corresponding probability to invest over the period 
[0,T] for the ABM process as follows:5 
 

𝑷𝑷(𝑇𝑇𝑥𝑥∗ , 0 < 𝑇𝑇) = 𝛷𝛷 �
(𝑒𝑒0 − 𝑒𝑒∗) + 𝜇𝜇𝑷𝑷𝑇𝑇

𝜎𝜎√𝑇𝑇
�+ 𝑒𝑒𝑒𝑒𝑒𝑒 �

2𝜇𝜇𝑷𝑷(𝑒𝑒∗ − 𝑒𝑒0)
𝜎𝜎2

�𝛷𝛷 �
(𝑒𝑒0 − 𝑒𝑒∗) − 𝜇𝜇𝑷𝑷𝑇𝑇

𝜎𝜎√𝑇𝑇
� .  (3.7) 

 
where 𝑒𝑒∗ is the investment trigger point and 𝛷𝛷(⋅) denotes the standard normal cumulative density 
function. Similarly, its GBM counterpart is: 
 

𝑷𝑷(𝑇𝑇𝑥𝑥∗ , 0 < 𝑇𝑇) = 𝛷𝛷�
𝑙𝑙𝑙𝑙 �𝑒𝑒0𝑒𝑒∗� + (𝜇𝜇𝑷𝑷 − 1 2⁄ 𝜎𝜎2)𝑇𝑇

𝜎𝜎√𝑇𝑇
� + �

𝑒𝑒∗

𝑒𝑒0
�
2𝜇𝜇𝑷𝑷
𝜎𝜎2 −1

𝛷𝛷 �
𝑙𝑙𝑙𝑙 �𝑒𝑒0𝑒𝑒∗� − (𝜇𝜇𝑷𝑷 − 1 2⁄ 𝜎𝜎2)𝑇𝑇

𝜎𝜎√𝑇𝑇
� .  (3.8) 

 
While the reflected Brownian motion method offers a closed-form solution for the probability of a 
Brownian particle reaching a specific level, the inverse Laplace transform of the first passage time 
distribution provides an alternative approach that can potentially be more efficient. The Laplace 
transform of the first-passage time is given by 
 

                                                        
4 Harrison (2013, equation 1.51, page 15) obtains the probability associated with this case based on reflected Brownian 
motion, which is the second term on the right-hand side of Eq. (1.47) in his book. For a rigorous derivation, see 
especially his Chapter 6. Sarkar (2000) also uses the expression for the Geometric Brownian Motion (GBM) case. 
5 This is exactly the equation 12 of Hieber (2014). 
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𝛹𝛹 = 𝑒𝑒𝑒𝑒𝑒𝑒�
𝜇𝜇𝑷𝑷(𝑒𝑒∗ − 𝑒𝑒0)

𝜎𝜎2
�1 −�1 +

2𝜎𝜎2𝑟𝑟
𝜇𝜇𝑷𝑷

��. 

 
By ınverting this Laplace transform equation using the Laplace inversion tables one can obtain the 
first-passage time probabilities of Brownian motion, i.e., Equation 3.7 and 8. 
 
Let 𝑇𝑇𝐵𝐵𝑅𝑅 denote the first time the cash flow process 𝑒𝑒𝑡𝑡 hits either of the two barriers 𝑒𝑒𝐵𝐵 or 𝑒𝑒𝑅𝑅, with 
𝑇𝑇𝐵𝐵𝑅𝑅+  representing the case when 𝑒𝑒𝑇𝑇𝐵𝐵𝐵𝐵 > 𝑒𝑒𝐵𝐵, and 𝑇𝑇𝐵𝐵𝑅𝑅−  when 𝑒𝑒𝑇𝑇𝐵𝐵𝐵𝐵 ≤ 𝑒𝑒𝐵𝐵. The Laplace transform of 
the first-passage time distribution is defined as 𝛹𝛹±(𝑟𝑟) = 𝑬𝑬�𝑒𝑒𝑒𝑒𝑒𝑒�−𝑟𝑟𝑇𝑇𝐵𝐵𝑅𝑅

± ��. Several numerical 
methods are available to invert these Laplace transform expressions, including: 
 
• The Wiener-Hopf factorization technique Hieber (2014) 
• The Brownian Bridge method (Hieber 2014) 
• Numerical integration approaches (Hieber 2014) 
• Lattice-based methods Hieber (2014) 
• Monte Carlo simulations Hieber (2014) 

 
Each method has its own advantages and limitations, and the choice depends on factors such as the 
required accuracy, computational efficiency, and the specific problem characteristics. For instance, 
Monte Carlo simulations can be computationally intensive but offer flexibility in handling complex 
processes, while lattice-based methods may be more efficient for certain problems but require 
discretization of the underlying process. In this paper, we employ a Monte Carlo simulation method 
involving the simulation of continuous-time Brownian-Markov chain processes to obtain the first-
passage time distributions. This approach allows us to handle the specific characteristics of our 
cash flow process while maintaining a desired level of accuracy. 
 
3.4. The One Regime Model 
 
This subsection presents the single-regime model as a special case of models with regime shifts. 
Table 1 provides detailed expressions for both models, considering cash flows following either an 
arithmetic Brownian motion (ABM) or a geometric Brownian motion (GBM) specification. 
 
The project value under one regime case reduces to 𝜇𝜇

�𝑟𝑟𝑓𝑓�
2 + 0

𝑟𝑟𝑓𝑓
− 𝐼𝐼. 

 
In a single regime model, the real option valuation with ABM and GBM processes simplifies to: 
 

 ABM Model GBM Model 
Process 𝑑𝑑𝑒𝑒(𝑑𝑑) = 𝜇𝜇𝑸𝑸𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑍𝑍𝑸𝑸 𝑑𝑑𝑒𝑒(𝑑𝑑) = 𝜇𝜇𝑸𝑸𝑒𝑒(𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑒𝑒(𝑑𝑑)𝑑𝑑𝑍𝑍𝑸𝑸 
Project value 𝜇𝜇𝑸𝑸

(𝑟𝑟𝑓𝑓)2 +
𝑒𝑒0
𝑟𝑟𝑓𝑓
− 𝐼𝐼 

𝑒𝑒0
𝑟𝑟𝑓𝑓 − 𝜇𝜇𝑸𝑸

− 𝐼𝐼 

Option value 𝐹𝐹(𝑒𝑒) = 𝐴𝐴𝑒𝑒𝜆𝜆𝑥𝑥0 𝐹𝐹(𝑒𝑒) = 𝐴𝐴𝑒𝑒0𝜆𝜆 
 

𝐴𝐴 = 𝑒𝑒−𝜆𝜆𝑥𝑥∗ �
𝜇𝜇𝑸𝑸

(𝑟𝑟𝑓𝑓)2 +
𝑒𝑒∗

𝑟𝑟𝑓𝑓
− 𝐼𝐼� 𝐴𝐴 =

(𝑒𝑒∗)1−𝜆𝜆

𝑟𝑟𝑓𝑓 − 𝜇𝜇𝑸𝑸
− (𝑒𝑒∗)−𝜆𝜆𝐼𝐼 



IER Volume 16, Issue 1 

60 

 
𝜆𝜆 = −

𝜇𝜇𝑸𝑸

𝜎𝜎2
+ ��

𝜇𝜇𝑸𝑸

𝜎𝜎2
�
2

+
2𝑟𝑟𝑓𝑓

𝜎𝜎2
 𝜆𝜆 =

1
2
−
𝜇𝜇𝑸𝑸

𝜎𝜎2
+ ��

𝜇𝜇𝑸𝑸

𝜎𝜎2
−

1
2
�
2

+
2𝑟𝑟𝑓𝑓

𝜎𝜎2
 

Critical value 
𝑒𝑒∗ =

1
𝜆𝜆

+ 𝑟𝑟𝑓𝑓𝐼𝐼 −
𝜇𝜇𝑸𝑸

𝑟𝑟𝑓𝑓
 𝑒𝑒∗ =

𝜆𝜆
𝜆𝜆 − 1

[𝑟𝑟𝑓𝑓 − 𝜇𝜇𝑸𝑸]𝐼𝐼 
Table 1. Expressions of One Regime Models 

 
4. ESTIMATION AND NUMERICAL ANALYSIS 
 
Quarterly data on operating income comes from Datastream for the period 1989:2 - 2021:1, 
covering four US economic recessions. Data is available for 314 US corporate firms. Furthermore, 
we applied a data clustering algorithm, Density-based spatial clustering of applications with noise 
(DBSCAN), to remove outliers. It reduced the total firm number to 278. To convert nominal values 
into real ones, we use the US consumer price index (CPI). 
 
We utilised the R package MSwM to estimate the parameters of regime-switching geometric and 
arithmetic operating cash flow processes. Table 2 reports the estimated values for 𝜇𝜇𝐵𝐵

𝑸𝑸, 𝜇𝜇𝑅𝑅
𝑸𝑸,𝜎𝜎𝐵𝐵,𝜎𝜎𝑅𝑅 ,ℎ𝐵𝐵

𝑸𝑸 
and ℎ𝑅𝑅

𝑸𝑸
6F

6. To ensure the robustness of our results, we have also estimated our models using two 
additional statistical software packages, Stata and Python’s StatModels. Table A1 and A2 in 
Appendix C present a comparative summary of the findings across these different implementations. 
 
Plugging these estimates into the respective real options models yields the following investment 
triggering cash flows across regimes: 
 
Another way of comparing the alternative ABM and GBM models is to calculate the probability 
of investing within a particular period. We take five years as the length of the period and simulate 
operating cash flows over this span using both ABM and GBM stochastic processes. We count 
instances whenever the simulated value passes the regime-specific value within each regime. These 
counted instances enable us to calculate the probability of investing by dividing them by the total 
number of simulations. Table 4 reports these cumulative probabilities. The table also shows the 
average timing of investment over the five years. It is needless to say that the results in Table 4 
depending on the relative distance of initial operating cash flows from its critical values given in 
Table 3. As stated in Table 3 in both model and regimes, we take the initial value of 𝑒𝑒 as 50. 
 
Again, the cumulative probability of investing and average expected investment times in Table 4 
reveals that firms with the GBM operating cash flow assumption are likely to invest much earlier 
than those holding the ABM assumption. 
 
5. CONCLUSION 
 
Our analytical models and numerical results underscore the critical importance of accurately 
determining the probability distribution of cash flows from investments and incorporating 

                                                        
6 Similar estimates for the single regime case are 𝜇𝜇𝐺𝐺𝐵𝐵𝑀𝑀 = 0.165, 𝜇𝜇𝐴𝐴𝐵𝐵𝑀𝑀 = 0.85, 𝜎𝜎𝐺𝐺𝐵𝐵𝑀𝑀 = 0.89, 𝜎𝜎𝐴𝐴𝐵𝐵𝑀𝑀 = 75.2. as well 
as plausible values for the interest rate 𝑟𝑟𝐵𝐵

𝑓𝑓 and 𝑟𝑟𝑅𝑅
𝑓𝑓.[^4] 
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macroeconomic risks. The numerical calculations reveal a significant finding: investments are 
more likely under lognormally distributed cash flows compared to normally distributed cash flows. 
This insight highlights the substantial impact that distributional assumptions can have on 
investment decisions. 
 
Several promising avenues for future research emerge from this study: 
 
• Incorporating uncertainty aversion could provide valuable insights into how risk 

perception influences investment decisions, potentially explaining observed patterns of 
investment hesitancy. 

• Considering firm-specific leverage conditions could yield more nuanced, individualized 
results, enhancing the model’s applicability to diverse corporate scenarios. 

• Integrating idiosyncratic aspects related to firm characteristics or industry-specific factors 
could improve the model’s granularity and predictive power. 

• Applying our proposed valuation model to various real-world investment scenarios could 
test its robustness and practical utility. 

• Refining the estimation methodology could significantly enhance the model’s accuracy. 
Two potential approaches stand out: 

a) Employing filtering and parameter estimation techniques from Hidden Markov 
Models, as demonstrated by Elliott et al. (1995).  

b) Utilizing Gibbs sampling for Monte Carlo Markov Chain models, offering an 
alternative perspective on parameter estimation and uncertainty quantification. 

 
Furthermore, our regime-switching framework has broader applications beyond investment 
decisions. It can be leveraged to analyze other critical financial decisions across business cycles, 
including capital structure optimization, dividend policy formulation, and scope decisions. 
In conclusion, this study not only provides valuable insights into the relationship between cash 
flow distributions, business cycles, and investment behavior but also lays the groundwork for a 
more comprehensive understanding of corporate financial decision-making under varying 
economic conditions. As we continue to refine and expand these models, we move closer to a more 
robust and nuanced framework for financial analysis and decision-making in a complex, cyclical 
economic environment. 
 
6. APPENDIX 
 
6.1. Proof of Proposition 1 
 
Proof. Applying Ito’s formula to the pricing equation in Equation 3.5 in the main text 
 

𝑑𝑑�𝐴𝐴(𝑠𝑠𝑡𝑡)𝑉𝑉(𝑠𝑠𝑡𝑡)� + 𝐴𝐴(𝑠𝑠𝑡𝑡)𝑒𝑒(𝑑𝑑)𝑑𝑑𝑑𝑑 = 0 
 
Yields 
 

𝑉𝑉(𝑠𝑠𝑡𝑡)𝑑𝑑𝐴𝐴(𝑠𝑠𝑡𝑡) + 𝐴𝐴(𝑠𝑠𝑡𝑡)𝑑𝑑𝑉𝑉(𝑠𝑠𝑡𝑡) + 𝑑𝑑𝑉𝑉(𝑠𝑠𝑡𝑡)𝑑𝑑𝐴𝐴(𝑠𝑠𝑡𝑡) + 𝐴𝐴(𝑠𝑠𝑡𝑡)𝑒𝑒(𝑑𝑑)𝑑𝑑𝑑𝑑 = 0. 
 
After substituting Equation 3.4 and noting that 
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𝑑𝑑𝑉𝑉(𝑠𝑠𝑡𝑡) = 𝑉𝑉𝑥𝑥(𝑠𝑠𝑡𝑡)𝑑𝑑𝑒𝑒(𝑑𝑑) + 𝑉𝑉𝑥𝑥𝑥𝑥(𝑠𝑠𝑡𝑡)�𝑑𝑑𝑒𝑒(𝑑𝑑)�

2
+ 𝑑𝑑𝑠𝑠𝑡𝑡𝛥𝛥𝑉𝑉(𝑠𝑠𝑡𝑡), 

 
we write the expected value of the above equation over two regimes as: 
 

−𝑟𝑟𝐵𝐵
𝑓𝑓𝑉𝑉𝐵𝐵 + 𝑉𝑉𝑥𝑥𝐵𝐵𝜇𝜇𝐵𝐵

𝐐𝐐 + 𝑉𝑉𝑥𝑥𝑥𝑥𝐵𝐵𝜎𝜎𝐵𝐵2 + ℎ𝐵𝐵
𝐐𝐐(𝑉𝑉𝑅𝑅 − 𝑉𝑉𝐵𝐵) + 𝑒𝑒(𝑑𝑑) = 0,

−𝑟𝑟𝑅𝑅
𝑓𝑓𝑉𝑉𝑅𝑅 + 𝑉𝑉𝑥𝑥𝑅𝑅𝜇𝜇𝑅𝑅

𝐐𝐐 + 𝑉𝑉𝑥𝑥𝑥𝑥𝑅𝑅𝜎𝜎𝑅𝑅2 + ℎ𝑅𝑅
𝐐𝐐(𝑉𝑉𝐵𝐵 − 𝑉𝑉𝑅𝑅) + 𝑒𝑒(𝑑𝑑) = 0.

   (𝐴𝐴. 9) 

 
By postulating 𝑉𝑉𝑖𝑖 = 𝐴𝐴‾𝑖𝑖 + 𝐴𝐴‾𝑖𝑖𝑒𝑒 for 𝑖𝑖 = 𝐴𝐴,𝑅𝑅 we obtain the value of assets-in-place under the regime 
switching ABM process: 
 

�𝑉𝑉
𝐵𝐵

𝑉𝑉𝑅𝑅
� = �

𝑟𝑟𝐵𝐵
𝑓𝑓 + ℎ𝐵𝐵

𝐐𝐐 −ℎ𝐵𝐵
𝐐𝐐

−ℎ𝑅𝑅
𝐐𝐐 𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝐐𝐐�

−1

�
𝜇𝜇𝐵𝐵
𝐐𝐐𝐴𝐴‾𝐵𝐵
𝜇𝜇𝑅𝑅
𝐐𝐐𝐴𝐴‾𝑅𝑅

�

⏟
𝐴𝐴‾

+ �𝐴𝐴
‾𝐵𝐵
𝐴𝐴‾𝑅𝑅
� 𝑒𝑒0,

   (𝐴𝐴. 10) 

 
With 
 

𝐴𝐴‾𝑖𝑖 =
1
𝑟𝑟𝑖𝑖
𝑝𝑝 ,  𝑟𝑟𝑖𝑖

𝑝𝑝 = 𝑟𝑟𝑖𝑖
𝑓𝑓 +

𝑟𝑟𝑗𝑗
𝑓𝑓 − 𝑟𝑟𝑖𝑖

𝑓𝑓

𝑒𝑒� + 𝑟𝑟𝑗𝑗
𝑓𝑓 𝑒𝑒�𝑓𝑓𝑗𝑗 ,  𝑖𝑖 = 𝐴𝐴,𝑅𝑅 

 
where 𝑟𝑟𝑖𝑖

𝑝𝑝 is the perpetual risk-free rate, 𝑒𝑒� = ℎ𝐵𝐵
𝐐𝐐 + ℎ𝑅𝑅

𝐐𝐐, 𝑓𝑓𝑖𝑖 = �ℎ𝑅𝑅
𝐐𝐐/𝑒𝑒�,ℎ𝐵𝐵

𝐐𝐐/𝑒𝑒�� and 𝑒𝑒0 is the initial cash 
flow. [QED]. 
 
6.2. Proof of Proposition 2 
 
In the continuation region 𝑒𝑒 < 𝑒𝑒𝐵𝐵 < 𝑒𝑒𝑅𝑅, the option values satisfy the following system in compact 
matrix form: 
 

0.5𝚺𝚺𝐅𝐅𝐱𝐱𝐱𝐱 + 𝐌𝐌𝐅𝐅𝐱𝐱 + (𝐇𝐇 − 𝐑𝐑)𝐅𝐅 = 0,   (𝐴𝐴. 11) 
 
where 𝐑𝐑 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑟𝑟𝐵𝐵, 𝑟𝑟𝑅𝑅), 𝐌𝐌 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝜇𝜇𝐵𝐵

𝐐𝐐, 𝜇𝜇𝑅𝑅
𝐐𝐐� and 𝚺𝚺 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜎𝜎𝐵𝐵2,𝜎𝜎𝑅𝑅2). The value functions are the 

vector 𝐅𝐅, and the first and second derivatives of the value functions 𝐅𝐅𝐱𝐱 and 𝐅𝐅𝐱𝐱𝐱𝐱, respectively. 
Jobert and Rogers (2006) formulates the homogeneous part of Equation A.11 as a quadratic 
eigenvalue problem with solution: 
 

𝐹𝐹𝐵𝐵 = 𝚺𝚺𝑗𝑗=14 𝐴𝐴𝑗𝑗𝐵𝐵𝑏𝑏𝑗𝑗𝐵𝐵𝑒𝑒
𝛾𝛾𝑗𝑗
𝐵𝐵

𝐹𝐹𝑅𝑅 = 𝚺𝚺𝑗𝑗=14 𝐴𝐴𝑗𝑗𝑅𝑅𝑏𝑏𝑗𝑗𝑅𝑅𝑒𝑒
𝛾𝛾𝑗𝑗
𝐵𝐵𝑥𝑥,

 

 
where 𝑏𝑏𝑗𝑗𝑖𝑖 and 𝛾𝛾𝑗𝑗𝑖𝑖 are solutions to the following standard eigenvalue problem: 

� 𝟎𝟎 𝕀𝕀
−𝟐𝟐𝚺𝚺−𝟏𝟏(𝐇𝐇−𝐑𝐑) −𝟐𝟐𝚺𝚺−𝟏𝟏𝐌𝐌� �

𝐛𝐛
𝐝𝐝� = 𝜸𝜸 �𝐛𝐛𝐝𝐝�, 
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where 𝕀𝕀 is an 2 × 2 identity matrix. We follow Jobert and Rogers (2006) to obtain: 
 

0 = 0.5Σ𝛾𝛾2b + M𝛾𝛾b + (H − R)b, 
 
which yields the Cramer-Lundberg equation 
 

𝐹𝐹𝐵𝐵(𝛾𝛾)𝐹𝐹𝑅𝑅(𝛾𝛾) = ℎ𝐵𝐵
𝐐𝐐ℎ𝑅𝑅

𝐐𝐐

where  𝐹𝐹𝐵𝐵(𝛾𝛾) = �𝑟𝑟𝐵𝐵
𝑓𝑓 + ℎ𝐵𝐵

𝐐𝐐� − 𝜇𝜇𝐵𝐵
𝐐𝐐𝛾𝛾 − 1 2⁄ 𝜎𝜎𝐵𝐵2𝛾𝛾2

𝐹𝐹𝑅𝑅(𝛾𝛾) = �𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝐐𝐐� − 𝜇𝜇𝑅𝑅
𝐐𝐐𝛾𝛾 − 1 2⁄ 𝜎𝜎𝑅𝑅2𝛾𝛾2,

 

 
giving rise to a solution of the fourth order equation with −∞ < 𝛾𝛾3 < 𝛾𝛾4 < 0 < 𝜆𝜆3 < 𝜆𝜆4 < +∞. 
Since we require lim𝑥𝑥↘𝑥𝑥𝑖𝑖𝐹𝐹

𝑖𝑖(𝑒𝑒) = 0,   𝑖𝑖 = 𝐴𝐴,𝑅𝑅 we eliminate the terms with negative roots 𝐴𝐴3𝑖𝑖 =
𝐴𝐴4𝑖𝑖 = 0 for 𝑖𝑖 = 𝐴𝐴,𝑅𝑅. As for the solution of 𝐛𝐛 we have the freedom to set the first term to unity 
𝑏𝑏1𝐵𝐵 = 𝑏𝑏2𝐵𝐵 = 1, so that we can relate 𝐴𝐴𝑗𝑗𝑅𝑅’s to 𝐴𝐴𝑗𝑗𝐵𝐵’s as follows: 
 

𝑙𝑙𝑗𝑗 =
𝐴𝐴𝑗𝑗𝑅𝑅

𝐴𝐴𝑗𝑗𝐵𝐵
=

1
ℎ𝐵𝐵
𝐐𝐐 �ℎ𝐵𝐵

𝐐𝐐 + 𝑟𝑟𝐵𝐵
𝑓𝑓 − 𝜇𝜇𝐵𝐵

𝐐𝐐𝛾𝛾𝑗𝑗 − 1 2⁄ 𝜎𝜎𝐵𝐵2𝛾𝛾𝑗𝑗2�,  𝑗𝑗 = 3,4.   (𝐴𝐴. 12) 

 
Hence, 𝐴𝐴𝑗𝑗𝑅𝑅 = 𝑙𝑙𝑗𝑗𝐴𝐴𝑗𝑗𝐵𝐵. 
 
In the region where 𝑒𝑒𝐵𝐵 ≤ 𝑒𝑒 < 𝑒𝑒𝑅𝑅, the claim is alive only in the 𝑅𝑅-regime, and in this case it satisfies 
the ODE: 
 

𝜎𝜎𝑅𝑅2

2
𝐹𝐹𝑥𝑥𝑥𝑥𝑅𝑅 + 𝜇𝜇𝑅𝑅

𝐐𝐐𝐹𝐹𝑥𝑥𝑅𝑅 + ℎ𝑅𝑅
𝐐𝐐(𝑉𝑉𝐵𝐵 − 𝐼𝐼 − 𝐹𝐹𝑅𝑅) − 𝑟𝑟𝑅𝑅

𝑓𝑓𝐹𝐹𝑅𝑅 = 0   (𝐴𝐴. 13) 

 
The homogeneous solution to Equation A.13 is 𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥 + 𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥, where 𝜉𝜉1 > 0 and 𝜉𝜉2 < 0 are the 
two roots of the quadratic equation 𝜇𝜇ℎ

𝐐𝐐𝜉𝜉 + 𝜎𝜎𝐵𝐵
2

2
𝜉𝜉2 = �𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝐐𝐐� with 

 

𝜉𝜉1,2 = −
𝜇𝜇𝑅𝑅
𝐐𝐐

𝜎𝜎𝑅𝑅2
± ��

𝜇𝜇𝑅𝑅
𝐐𝐐

𝜎𝜎𝑅𝑅2
�
2

+
2�𝑟𝑟𝑅𝑅

𝑓𝑓 + ℎ𝑅𝑅
𝐐𝐐�

𝜎𝜎𝑅𝑅2
.   (𝐴𝐴. 14) 

 
The particular solution to Equation A.13 takes the form of 𝐶𝐶3𝑒𝑒 + 𝐶𝐶4 with the solutions 
 

𝐶𝐶3 =
ℎ𝑅𝑅
𝐐𝐐𝐴𝐴‾𝐵𝐵

𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝐐𝐐 , and 𝐶𝐶4 =
𝜇𝜇𝑅𝑅
𝐐𝐐𝐶𝐶3 + ℎ𝑅𝑅

𝐐𝐐(𝐴𝐴‾𝐵𝐵 − 𝐼𝐼)

𝑟𝑟𝑅𝑅
𝑓𝑓 + ℎ𝑅𝑅

𝐐𝐐 − 𝜇𝜇𝑅𝑅
𝐐𝐐 . 

 
In the investment region 𝑒𝑒𝐵𝐵 < 𝑒𝑒𝑅𝑅 < 𝑒𝑒 the value of the option across regimes: 
 

𝐹𝐹𝑖𝑖 = 𝑉𝑉𝑖𝑖 − 𝐼𝐼,  𝑖𝑖 = 𝐴𝐴,𝑅𝑅. 
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Finally, we summarise the solutions as follows: 
 

𝐹𝐹𝐵𝐵 = 𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥 + 𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥   𝑒𝑒 ≤ 𝑒𝑒𝐵𝐵

𝐹𝐹𝑅𝑅 = 𝐴𝐴1𝑅𝑅𝑒𝑒𝛾𝛾3𝑥𝑥 + 𝐴𝐴2𝑅𝑅𝑒𝑒𝛾𝛾4𝑥𝑥   𝑒𝑒 ≤ 𝑒𝑒𝐵𝐵

𝐹𝐹𝐵𝐵 = 𝐴𝐴‾𝐵𝐵 + 𝐴𝐴‾𝐵𝐵𝑒𝑒 − 𝐼𝐼   𝑒𝑒𝐵𝐵 < 𝑒𝑒 ≤ 𝑒𝑒𝑅𝑅
𝐹𝐹𝑅𝑅 = 𝐶𝐶1𝑒𝑒𝜉𝜉1 + 𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥 + 𝐶𝐶3𝑒𝑒 + 𝐶𝐶4   𝑒𝑒𝐵𝐵 < 𝑒𝑒 ≤ 𝑒𝑒𝑅𝑅

𝐹𝐹𝐵𝐵 ≤ 𝐴𝐴‾𝐵𝐵 + 𝐴𝐴‾𝐵𝐵𝑒𝑒 − 𝐼𝐼   𝑒𝑒𝑅𝑅 < 𝑒𝑒
𝐹𝐹𝑅𝑅 ≤ 𝐴𝐴‾𝑅𝑅 + 𝐴𝐴‾𝑅𝑅𝑒𝑒 − 𝐼𝐼   𝑒𝑒𝑅𝑅 < 𝑒𝑒

 

 
To determine the constants 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖,𝐶𝐶𝑖𝑖 (for i=1,2) we use the value-matching and smooth-pasting 
conditions at the threshold boundaries 𝑒𝑒𝐵𝐵 and 𝑒𝑒𝑅𝑅: 
 

lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

𝐹𝐹𝐵𝐵(𝑒𝑒) = 𝐴𝐴‾𝐵𝐵 + 𝐴𝐴‾𝐵𝐵𝑒𝑒𝐵𝐵 − 𝐼𝐼

lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

∂𝑥𝑥𝐹𝐹𝐵𝐵(𝑒𝑒) = 𝐴𝐴‾𝐵𝐵

lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝐴𝐴‾𝑅𝑅 + 𝐴𝐴‾𝑅𝑅𝑒𝑒𝑅𝑅 − 𝐼𝐼

lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

∂𝑥𝑥𝐹𝐹𝑅𝑅(𝑒𝑒) = 𝐴𝐴‾𝑅𝑅

 

 
The solution also requires the transient boundary conditions associated with shifts from a recession 
to a boom regime: 
 

lim
𝑥𝑥↘𝑥𝑥𝐵𝐵

𝐹𝐹𝑅𝑅(𝑒𝑒) = lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

𝐹𝐹𝑅𝑅(𝑒𝑒)

lim
𝑥𝑥↘𝑥𝑥𝐵𝐵

∂𝑥𝑥𝐹𝐹𝑅𝑅(𝑒𝑒) = lim
𝑥𝑥↗𝑥𝑥𝐵𝐵

∂𝑥𝑥𝐹𝐹𝑅𝑅(𝑒𝑒) 

 
Recall that 𝐹𝐹(𝑒𝑒) = 𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥 + 𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥 + 𝐶𝐶3𝑒𝑒 + 𝐶𝐶4 gives the option value in the region 𝑒𝑒𝐵𝐵 ≤ 𝑒𝑒 <
𝑒𝑒𝑅𝑅. Hence, we write the above six conditions as follows: 
 

𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥
𝐵𝐵 + 𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥

𝐵𝐵 = 𝐴𝐴‾𝐵𝐵 + 𝐴𝐴‾𝐵𝐵𝑒𝑒𝐵𝐵 − 𝐼𝐼.
𝛾𝛾3𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥

𝐵𝐵 + 𝛾𝛾4𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥
𝐵𝐵 = 𝐴𝐴‾𝐵𝐵

𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥
𝐵𝐵 + 𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥

𝐵𝐵 + 𝐶𝐶3𝑒𝑒𝑅𝑅 + 𝐶𝐶4 = 𝐴𝐴‾𝑅𝑅 + 𝐴𝐴‾𝑅𝑅𝑒𝑒𝑅𝑅 − 𝐼𝐼
𝜉𝜉1𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥

𝐵𝐵 + 𝜉𝜉2𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥
𝐵𝐵 + 𝐶𝐶3 = 𝐴𝐴‾𝑅𝑅 .

𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥
𝐵𝐵 + 𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥

𝐵𝐵 + 𝐶𝐶3𝑒𝑒𝐵𝐵 + 𝐶𝐶4 = 𝑙𝑙1𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥
𝐵𝐵 + 𝑙𝑙2𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥

𝐵𝐵

𝜉𝜉1𝐶𝐶1𝑒𝑒𝜉𝜉1𝑥𝑥
𝐵𝐵 + 𝜉𝜉2𝐶𝐶2𝑒𝑒𝜉𝜉2𝑥𝑥

𝐵𝐵 + 𝐶𝐶3 = 𝛾𝛾3𝑙𝑙1𝐴𝐴1𝐵𝐵𝑒𝑒𝛾𝛾3𝑥𝑥
𝐵𝐵 + 𝛾𝛾4𝑙𝑙2𝐴𝐴2𝐵𝐵𝑒𝑒𝛾𝛾4𝑥𝑥

𝐵𝐵

 

 
A more stable way of solving this system of equations (Guo and Zhang (2004) and Bensoussan et 
al. (2012)) is to pursue a 2-by-2 procedure. We obtain 𝐴𝐴1 and 𝐴𝐴2 from the first pair of equations; 
𝐶𝐶1 and 𝐶𝐶2 from the second pair and finally 𝑒𝑒𝐵𝐵 and 𝑒𝑒𝑅𝑅 from the last one (see Arnold et al. (2013) 
for an alternative approach.) QED. 
 
6.3. Robustness Checks: Estimation Results from Alternative Statistical Packages 
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R Code AIC BIC logLik 
GBM 144.61 159.76 -70.30 
ABM 1133.16 1148.31 -554.58 

(a) R Code 
 

  
Stata AIC BIC logLik 
GBM 1.43 1.49 -80.04 
ABM 9.51 9.65 -564.58 

(b) Stata 
 

  
Statmodels AIC BIC logLik 
GBM 152.84 169.57 -70.42 
ABM 1140.41 1157.13 -564.20 

(c) Statmodels 
 

 
Table 2. Predictive Power of the GBM and ABM Regime-Switching Real Options Models 

 𝜇𝜇1
𝐐𝐐 𝜇𝜇2

𝐐𝐐 𝜎𝜎1 𝜎𝜎2 𝑒𝑒11 𝑒𝑒22 
GBM 0.350 0.203 0.254 0.824 0.937 0.850 
ABM 4.950 -0.686 20.230 97.162 0.987 0.839 

(a) R Code 
 

  
 𝜇𝜇1

𝐐𝐐 𝜇𝜇2
𝐐𝐐 𝜎𝜎1 𝜎𝜎2 𝑒𝑒11 𝑒𝑒22 

GBM 0.350 0.207 0.063 0.663 0.925 0.863 
ABM 5.026 -0.982 404.154 9110.400 0.978 0.889 

(b) Statmodels 
 

  
 𝜇𝜇1

𝐐𝐐 𝜇𝜇2
𝐐𝐐 𝜎𝜎1 𝜎𝜎2 𝑒𝑒11 𝑒𝑒22 

GBM 0.423 -0.569 0.400 0.469 0.956 0.673 
ABM 7.375 -9.012 17.779 80.083 0.956 0.837 

(c) Stata 
 

Table 3. Parameter Estimates of the GBM and ABM Regime-Switching Real Options Models 
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